рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Интерполяция функций с финитным спектром

Интерполяция функций с финитным спектром - раздел Изобретательство, При разработке перспективных и оптимизации существующих информационно-измерительных систем   В Данном Разделе В Качестве Моделей Полезных Сигналов Использ...

 

В данном разделе в качестве моделей полезных сигналов используются функции с финитным спектром (ФФС) [29], для которых в соответствии с известной теоремой отсчетов справедливо представление в виде ряда Котельникова. На базе ФФС развивается метод косвенного оценивания локальных характеристик полезного сигнала, который в отличие от традиционных подходов в меньшей степени чувствителен к случайным ошибкам измерений и может быть применен для вычисления соответствующей производной в любой точке фиксиро­ванного интервала наблюдения.

Следует отметить, что необходимость оценивания локальных характеристик до N-гo порядка включительно возникает довольно часто при решении широкого круга прикладных задач. При этом на практике, как правило, используются достаточно простые в вычислительном плане косвенные методы оценивания, основанные на численном дифференцировании измеренных сигналов с использованием разностных шаблонов. Среди данных методов наиболее распространены методы скользящего дифференцирования [26, 27], предполагающие разложение дифференцируемой функции в соответствующий конечный ряд Тейлора и вычисление искомой производной только для одной (средней) точки выбранного интер­вала измерений. Основной недостаток указанных методов состоит в следующем. Для уменьшения остаточной (методической) погрешности требуется либо уменьшать шаг дискретизации по времени либо повышать порядок используемых разностей. Но и в том, и в другом случаях резко возрастают погрешности, вызываемые случайными ошибками измерений. Как показано в [26], численные методы, основанные на разностных представлениях, относятся к классу некорректных, поскольку теряют устойчивость при наличии случайных ошибок, которые неизбежно сопутствуют процессу измерений.

Метод N-кратного дифференцирования ФФС, предлагаемый в данном разделе, позволяет разрабатывать алгоритмы косвенного оценивания, которые в отличие от традиционных являются корректными в вычислительном плане.

Ниже обсуждаются отдельные результаты [4, 5, 12], касающиеся интерполяции и аппроксимации ФФС и функций с нефинитным спектром, которые будут использованы нами при изложении основного материала.

Пусть функция f(t), интегрируемая в квадрате на всей вещественной оси, представима в виде

(2.1)

где F() - спектральная плотность функции f(t),

(2.2)

Согласно известной теореме Винера-Пэли-Шварца, для того чтобы f(t) была функцией с финитным интегрируемым в квадрате спектром F(), необходимо и достаточно, чтобы f(t) могла быть доопределена в комплексной плоскости как целая функция конечной степени, интегрируемая в квадрате на всей вещественной оси. Следуя [29], обозначим через класс функций f(t) с финитным интегрируемым в квадрате спектром F(), для которого справедливо представление (2.1).

Поскольку f(t) может быть доопределена как целая функция конечной степени, то можно воспользоваться следующей интерполяционной формулой Котельникова:

(2.3)

где - шаг между отсчетами fk = f(kΔt) функции f(t); sincx = sinx/x.

Формула (2.3) показывает, что для восстановления ФФС f(t) на всей вещественной оси необходимо использовать лишь значения этой функции fk, называемые отсчетами, которые выбираются через равные интервалы . В разложении (2.3) можно воспользоваться отсчетами , взятыми в периодической последовательности точек при любом фиксированном t0, которое указывает лишь начало отсчета переменной t, и при любом . Последнее утверждение следует из того, что если спектр f(t) сосредоточен в интервале (-2πFmax, 2πFmax) = (-Ω, Ω), то он подавно сосредоточен в большем интервале , где . Если функция f(t) принадлежит пространству , причем интервал (-Ω, Ω) - это наименьший интервал, вне которого спектр F() тождественно равен нулю, то величина Δt = π/Ω = l/(2Fmax) указывает наибольший возможный интервал между отсчетами, при котором представление (2.3) еще справедливо.

Таким образом, формула (2.3) отражает замечательное свойство ФФС - свойство однозначной восстановимости значений функции на всей оси по ее значениям в дискретной (периодической) последовательности точек.

В формуле (2.3) предполагается использование неограниченного числа отсчетов функции f(t). Очевидно, что для конечного числа отсчетов применение формулы (2.3) без дополнительных ограничений приводит к неединственности решения интерполяционной задачи. Для того чтобы данное решение было единственным, обычно сужают класс функций, в котором решается интерполяционная задача. Укажем три известных способа введения указанных ограничений.

Первый способ состоит в специальном задании отсчетов вне того интервала, на котором определена функция. Второй способ заключается во введении дополнительного ограничения экстремального типа: из всех ФФС в интервале (-Ω, Ω), обладающих заданными величинами отсчетов в конечном числе узлов, выбирается та, которая минимизирует некоторый функционал. Третий способ предполагает ограничение энергии функции вне заданного интервала и подбор минимального числа степеней свободы (свободных параметров), при котором достигается требуемая точность приближения функции.

Рассмотрим конкретные примеры применения этих различных подходов.

При первом подходе положим равными нулю все отсчеты функции f(t), кроме тех, которые заданы на отрезке [0, Т]. Отсчеты берутся в моменты
0 ≤ t0 < t1 < ... < tK ≤ Т. Такая интерполяционная задача имеет бесконечное множество решений, поскольку не заданы отсчеты функции f(t) вне отрезка [0,T].

Если же положить

f(tk) = 0 (2.4)

при k < 0 и k > К, т.е. считать, что все отсчеты вне отрезка [0, Т] равны нулю, то интерполяционная задача имеет единственное решение. Например, в случае равномерно следующих отсчетов из формулы (2.3) получаем общее представление для множества функций из класса , отсчеты которых равны нулю вне отрезка [0, T]:

(2.5)

Число отсчетов, которые берутся внутри отрезка [0, T], здесь равно
К + 1 = 2FmaxT + 1, т.е. считаем, что на отрезке [0, T] укладывается целое число интервалов длительности Δt. Следует особо подчеркнуть, что если все отсчеты вне отрезка [0, T] равны нулю, то из этого вовсе не вытекает, что функция f(t) тождественно равна нулю вне отрезка [0, T].

Обратимся теперь ко второму из указанных подходов к ограничению класса функций. В качестве примера рассмотрим функции с минимальной энергией. Среди всех функций класса выделим ту, для которой полная энергия минимальна:

(2.6)

Нетрудно указать представление для этого класса функций с минимальной энергией, который мы обозначим через . Класс - это подмножество класса , следовательно, по теореме отсчетов для любой из функций имеем представление вида (2.3).

Члены ряда (2.3) попарно ортогональны на всей оси в силу соотношений

(2.7)

Поэтому, возводя обе части равенства (2.3) в квадрат, раскрывая скобки и интегрируя почленно, получаем

(2.8)

Предположим сначала, что отсчеты на отрезке [0, T] берутся в моменты Поскольку в правой части равенства (2.8) стоит ряд из неотрицательных величин, причем отсчеты fk, фиксированы, выражение (2.8) достигает минимума, когда все остальные отсчеты обращаются в нуль. Следовательно, в том случае, когда отсчеты на отрезке [0, T] берутся в моменты , ФФС и минимальной энергией задаются формулой (2.5).

Таким образом, для восстановления функции рассматриваемого класса достаточно знать лишь отсчеты fk, и в классе эта интерполяционная задача имеет единственное решение.

 

– Конец работы –

Эта тема принадлежит разделу:

При разработке перспективных и оптимизации существующих информационно-измерительных систем

При разработке перспективных и оптимизации существующих... Среди указанных методов наиболее широкое распространение на практике получил МНК и его различные модификации...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Интерполяция функций с финитным спектром

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие положения
  В работах отечественных и зарубежных ученых неоднократно поднималась проблема разработки единого системного подхода к решению задачи оптимального оценивания. Были сформулированы усл

Основные элементы задачи. Условия регулярности
  Пусть известно, что оцениваемый процесс (вектор состояния) на отрезке времени [t0, T] характеризуется вектором

Адекватность моделей задачи оценивания
  Условие адекватности определяет некоторое отношение на множестве математических моделей. Введем в рассмотрение метрическое пространство

Состоятельность критерия качества
  Полагая и учитывая, что оценка

Аппроксимация функций с финитным спектром
  Рассмотрим теперь возможность аппроксимации с заданной точностью ε > 0 на отрезке [0, T] функции

Аппроксимация функций с нефинитным спектром
  Прежде всего, рассмотрим задачу приближения произвольных функций с конечной полной энергией (т.е. интегрируемых в квадрате на всей оси) при помощи ФФС и конечной полной энергией.

Дифференцирование функций с финитным спектром
  Рассмотрим новый метод N-кратного дифференцирования, базирующийся на применении ряда Котельникова, который по сравнению с известными методами в большой степени ориентирован н

Погрешности дифференцирования функций с финитным спектром
  Для оценки погрешностей дифференцирования введем ограничение на поведение функции при

Дифференцирование функций с нефинитным спектром
  Рассмотрим возможность применения изложенного в предыдущих подразделах математического аппарата для N-кратного дифференцирова­ния функций с нефинитным спектром. Пуст

Дифференцирование финитных функций
  Обратимся теперь к наиболее распространенному в практике случаю, когда дифференцируемые функции являются финитными на временной оси, и, следовательно, не принадлежат классу ФФС.

Математическая постановка задачи
  Пусть функция представима в виде  

Решение задачи
  С учетом (3.1), (3.5), и (3.7), замечая, что , имеем

Оценка методической погрешности
  Дадим теперь оценку методической погрешности оптимального оценивания, обусловленной неадекватностью принятой математической модели (3.1). Пусть истинная функция

Сравнительный анализ разработанного метода с методом наименьших квадратов
  Рассмотрим случай, когда и , следовательно,

Результаты вычислительного эксперимента
  Рассмотрим задачу оптимального оценивания при наличии сингулярной и флуктуационной помех для следующих исходных данных:

Перечень сокращений
В настоящей пояснительной записке применяются следующие обозначения и сокращения: - ФФС – функция с финитным спектром; - МНК

Библиографический список
  1. Березин И.С., Жидков Н.П. Методы вычислений. Т.1.M.: Наука, 1966. 2. Брандин В.Н., Васильев А.А., Худяков С.Т. Основы экспериментальной космической баллистики. М-:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги