рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дублирование и доминирование стратегий.

Дублирование и доминирование стратегий. - Лекция, раздел Науковедение, Курс лекций по дисциплине: Методы исследования операций Если Матрица Игры Содержит Несколько Одинаковых Строк Или Стобцов, То Из Них ...

Если матрица игры содержит несколько одинаковых строк или стобцов, то из них оставляют одну строку(столбец), а отброшенным стратегиям присваиваем нулевые вероятности.

Это дублирование стратегий.

Если i-ая строка поэлементно не меньше j-ой строки(≥), то говорят, что i-ая строка доминирует над j-ой строкой. Тогда игрок А не использует j-ую стратегию, так как его выигрыш при i-ой стратегии не меньше , чем при j-ой стратегии внезависимости от того , как играет игрок В. Аналогично по столбцам. Стратегии, над которыми доминируют другие стратегии надо отбросить, на цене игры это никак не скажется, зато уменьшится размерность матрицы.

Пример1:

1 2 3 4

 

1 1-я и 4-я строка равны. Поэтому отбросим 4ю строку(вероятность p4=0). Получим матрицу 2

2 2-я строка доминирует над 3-й(6>3;5>4;8=8;7>6). Поэтому отбросим 3-ю строку(вероятность p3 =0).Получим матрицу 3

3 3-й столбец доминирует над 2-м(9=9;5<8). Поэтому отбросим 2-ой столбец(вероятность q3=0). Получим матрицу 4

Пример2:

 

– Конец работы –

Эта тема принадлежит разделу:

Курс лекций по дисциплине: Методы исследования операций

Федеральное агенство по образованию.. Московский государственный строительный университет.. Курс лекций по дисциплине..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дублирование и доминирование стратегий.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Экономико-математическая модель. ТЗ
Транспортные задачи(ТЗ)- частный случай задачи линейного программирования. В ТЗ существуют поставщики и потребители грузов. У каждого поставщика имеется определенное количест

Метод северо-западного угла.
С помощью метода северо-западного угла реализуется первоначальный план поставок.   Таблица 2.1   Nj M

Метод потенциалов нахождения оптимального решения.
Введем показатель U1 для каждой строки и V1 для каждого столбца. Эти показатели называются потенциалами поставщиков и потребителей. Потенциалы подбираются так, чтобы для запол

Открытая (не сбалансированная) модель ТЗ.
Открытая модель сводится к закрытой. Если суммарная мощность поставщика больше суммарного спроса потребителей, то вводится фиктивный потребитель, к которому присваивается спрос равный разнице между

Постановка задачи динамического программирования.
Рассматривается управляемый процесс. В результате управления система (объект управления) приводится из начального состояния S0 в конечное S(S0 → S). Предположим, что упр

Принцип оптимальности.
Впервые был сформулирован Р. Беллманом в 1953 году. Каково бы не было состояние системы в результате какого-либо числа шагов на ближайшем шаге нужно выбрать управление так, чтобы оно приво

Задачи замены оборудования без приведения затрат к текущему моменту времени.
1) Постановка задачи: В эксплуатации находятся оборудование, цена нового оборудования S. Известны затраты на эксплуатацию оборудования С t зависящие от времени. В результ

Задачи замены оборудования с учетом приведения затрат к текущему моменту времени.
  1) Постановка задачи: В эксплуатация находится с первоначальной ценой S. Известны затраты на эксплуатацию оборудования в периоды 1, 2, 3 . . . t - С1, С

Детерминированные задачи упорядочивания.
  1) Постановка задачи: Имеется несколько изделий, каждое из которых надо обработать на двух машинах последовательно (сначала на первой, потом на второй). Известны вре

Решение игры с седловой точкой.
  B1 B2 А1 -4 А2

Смешанные стратегии.
Рассмотрим пример;   В1 В2 min А1

Решение игры 2хn.
Самым удобным способом для определения оптимальной стратегии игроков в игре 2хn является графическим способом.   Пример:  

Марковские процессы.
Для математического описания многих случайных процессов может быть применен аппарат, разработанный в теории вероятностей, для так называемых Марковских случайных процессов. Они обладают следующим с

Простейший пуассоновский поток событий.
Для простейшего потока справедливы три свойства: 1) Стационарность потока λ = const. Интенсивность λ – частота появления события или среднее число событий, поступающих в СМО в ед

Система дифференциальных уравнений Колмогорова.
Рассмотрим математическое описание процесса с дискретными состояниями системы и непрерывным временем на примере случайного процесса, размеченный граф которого размещен на рисунке:

Уравнение Колмогорова для простейшего потока событий.
Особый интерес представляют вероятности системы Рi(t) в предельном стационарном режиме, т.е. при t→∞, которые называются предельными вероятностями состояний. Т.к. пр

Системы массового обслуживания с отказом.
В качестве показателей эффективности СМО с отказами будет рассматривать: А – абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых системой в единицу времени;

Системы массового обслуживания с ожиданием
В качестве показателей эффективности СМО с ожиданием, кроме уже известных показателей – абсолютной А и относительной Q пропускной способности, вероятности отказа ρотк, среднего числ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги