рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основы металлических конструкций

Основы металлических конструкций - раздел Образование, Маслов Владимир Васильевич ...

Маслов Владимир Васильевич

Основы металлических конструкций

Учебное пособие

для студентов специальности

Промышленное и гражданское строительство

Г. Волгоград

В В Е Д Е Н И Е

Понятие «Металлические» конструкции» включают в себя их конструктивную форму, технологию изготовления и способы монтажа. Уровень развития… Металл применяли давно с ХII века в уникальных по тому времени сооружениях…  

Рис.1. Перекрытие коридора в Покровском соборе (Москва, 1560 г.)

С начала XVII века металл применяют в пространственных купольных конструкциях глав церквей. Стержни конструкций выполнены из кованых брусков и соединены на замок и скрепы горной сваркой. Такие конструкции можно видеть в наши дни: трапезная Троице-Сергиевой лавры в Сергиевом Посаде 1696-1698 гг., здание Большого Кремлевского Дворца в Москве (1640 г.), каркас купола колокольни Ивана Великого (1603 г.), каркас купола Казанского Собора в Петербурге, пролетом 15 м (1805 г.) и др.

С начала XVIII стали осваивать процесс литья чугунных стержней и деталей. Строятся чугунные мосты. Соединения чугунных элементов осуществляются на замках и болтах.

 
 

Первой чугунной конструкцией в России считается покрытие крыльца Невьянской башни на Урале (1725 г.). В 1784 г. в Петербурге построен первый чугунный мост. Уникальной чугунной конструкцией 40-х г. ХIХ века является купол Исаакиевского собора, собранного из отдельных косяков в виде сплошной оболочки (рис.2).

 

Рис.2. Купол Исаакиевского собора

 

Чугунная арка, пролетом 30м применена в перекрытии

В 50-е годы ХIХ века в Петербурге был построен Николаевский мост с восемью арочными пролетами от 33 до 47 м, это самый крупный чугунный мост мира. … С 30-х г. ХIХ века до 20-х г. ХХ века – идет быстрый технический прогресс в… Чугунные конструкции во второй половине ХIХ века применялись лишь в колоннах многоэтажных зданий, перекрытиях…

Рис.3. Стропильная ферма (70-е годы ХIХ в.)

 

Во второй половине ХIХ века значительное развитие получило металлическое мостостроение, где стали применять решетчатые фермы с треугольной шпренгельной решеткой, появляется металлический сортамент прокатных профилей.

В начале ХХ века промышленные здания стали строить с металлическим каркасом, который поддерживал как ограждающие конструкции, так и пути мостовых кранов. Несущим элементом каркаса стала поперечная рама, состоящая из колонн и ригелей (стропильные фермы). Все стальные конструкции изготавливались в основном клепанными. Сталь стала вытеснять чугун. К концу века совершенствуется форма ферм, появляются раскосы, узловые соединения вместо болтовых на проушинах, стали выполнять заклепочными с помощью фасонок.

В конце ХIХ столетия стали применять решетчатые рамно-арочные конструкции для перекрытий зданий значительных пролетов, например, Киевский вокзал в Москве по проекту В.Г.Шухова 1913 – 1914 гг. (рис..4). Развивается металлическое мостостроение (например, мост с решетчатыми фермами через реку Лугу, 1853 г.). Профессор Л.Д.Проскурянов ввел в мостовые фермы треугольную и шпренгельную решетки (мост через реку Енисей).

 
 

Дальнейшее развитие металлургии, машиностроения и других отраслей промышленности потребовало оборудования зданий мостовыми кранами. Сначала их устанавливали на эстакадах, но с увеличением грузоподъемности стало целесообразно строить здания с металлическим каркасом,

 

Рис.4. Перекрытие Киевского вокзала в Москве

 

 

поддерживающим пути мостовых кранов. Основным несущим элементом каркаса стала поперечная рама (рис.5).

 

 
 

Рис.5. Каркас промышленного здания (начало ХХ в.)

 

 

Профессор Ф.С.Ясинский первый запроектировал многопролетное промышленное здание. Академик В.Г.Шухов первый в мире разработал и построил пространственные и решетчатые конструкции покрытий и башен различного назначения (телебашня, рис.6).

В построенных им сооружениях реализованы идеи предварительного напряжения конструкций и возведения покрытий в виде висячих систем. Тем самым он предугадал будущие направления в развитии металлических конструкций. Значительна его работа также в области резервуаростроения, он разработал новые формы резервуаров, их расчет и методы нахождения оптимальных параметров (рис.7).

К концу 40-х годов ХХ века клепаные конструкции почти полностью заменили сварными, более экономичными. Появляются низколегированные и высокопрочные стали. Кроме стали, начали использовать алюминиевые сплавы, плотность которых почти втрое меньше.

Расширилась номенклатура металлических конструкций. Большие и многообразные задачи по развитию металлических конструкций решались

усилиями проектных, научных и производственных коллективов – Проектстальконструкций, Промстройпроекта и ЦНИПС, переименованного в дальнейшем в ЦНИИСК, а также вузовскими коллективами.

Проектировщики взяли за основу схему конструирования поперечной рамы с жестким сопряжением колонны с фундаментами и ригелем. С развитием металлических конструкций, большим объемом и связанная с ним

 

 

 
 

Рис.6. Башня В. Г. Шухова в Москве

 

повторяемость конструкций создали предпосылки для разработки типовых систем и конструктивных решений промышленных зданий. В связи с этим

впервые введен трехметровый модуль пролетов, который в 50-е годы был заменен шестиметровым. Типизация распространялась также на пролетные

строения мостов, резервуары, газгольдеры, радиобашни, радиомачты. Типизация, унификация и стандартизация – одно из главных направлений

 

 

 
 

Рис.7. Листовые конструкции:

а) капле видный резервуар;

Б) газгольдер мокрый

Наряду с совершенствованием конструкций развивались формы и методы расчета. До 1950 г. расчет велся по методу допустимых напряжений. Такой расчет… Успехами в развитии металлических конструкций мы обязаны профессору… Параллельно с развитием металлостроения в России, расширяется его использование и в западных странах. Первый чугунный…

РАЗДЕЛ 1. ЭЛЕМЕНТЫ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ

Номенклатура и область применения металлических

Конструкций

Металлические конструкции применяются во всех инженерных сооружениях значительных пролетов, высоты и нагрузок. В зависимости от конструктивной формы… 1. Промышленные здания– цельнометаллические или со смешанным каркасом (колонны… 2. Большепролетные покрытия зданий – спортивные сооружения, рынки, выставочные павильоны, театры, ангары и др.…

Условия эксплуатации.

3. Транспортабельность (перевозка по частям или целиком с применением соответствующих транспортных средств). 4. Технологичность – использование современных технологических приемов,… 5. Скоростной монтаж.Сборка в наименьшие сроки.

Свойства и работа строительных сталей и

Алюминиевых сплавов

Наиболее важными для работы являются механические свойства: прочность, упругость, пластичность, склонность к упругому разрушению, ползучесть,… Прочность - характеризует сопротивляемость материала внешним силовым… Упругость – свойство материала восстанавливать свою первоначальную форму после снятия внешних нагрузок.

Классификация сталей

 

По прочностным свойствам стали условно делятся на три группы: обычной (Ơ у = 29 кН/см), повышенной (Ơ у = 29-40 кН/см) и высокой прочности (Ơ у > >40 кН/см).

Повышение прочности стали, достигается легированием и термической обработкой.

По химическомусоставу стали, подразделяются на углеродистые и легированные.

Углеродистые сталисостоят из железа и углерода с добавкой кремния (или алюминия) и марганца.

 
 

 

Рис.1.1. К определению механических характеристик металла:

а – образец для испытания на растяжение; б – к определению

предела пропорциональности и предела упругости

 

Углерод (У)повышая прочность стали, снижает ее пластичность и ухудшает свариваемость, поэтому применяются только низкоуглеродистые стали (У < 0,22%).

Легированные стали помимо железа и углерода имеют специальные добавки, улучшающие качество стали. Однако, добавки ухудшают свариваемость стали и удорожают ее, поэтому в строительстве используют низколегированные стали с содержанием добавки не более 5%.

Основными легирующими добавками являются кремний (С), марганец (Г), медь (Д), хром (Х), никель (Н), ванадий (Ф), молибден (М), алюминий (Ю), азот (А).

Кремний раскисляет сталь, т.е. связывает избыточный кислород и повышает ее прочность, снижает пластичность, ухудшает свариваемость и коррозионную стойкость.

Марганец повышает прочность, снижает вредное влияние серы. При содержании марганца > 1,5% сталь становится хрупкой.

Медь повышает прочность, увеличивает стойкость против коррозии. Содержание меди > 0,7% способствует старению и хрупкости стали.

Хром и никель повышают прочность стали, без снижения пластичности

и улучшают ее коррозионную стойкость.

Алюминий раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость.

Ванадий и молибден увеличивают прочность почти без снижения пластичности, предотвращают разупрочнение термообработанной стали при сварке.

Азот в несвязном состоянии способствует старению стали, делает ее хрупкой, поэтому его должно быть не более 0,009%.

Фосфор относится к вредным примесям так как, повышает хрупкость стали. В зависимости от вида поставки стали подразделяются на горячекатаные и

термообработанные(закалка в воде и высокотемпературный отпуск).

По степени раскисления стали могут быть кипящими, полуспокойными и спокойными.

Спокойные стали используют при изготовлении ответственных конструкций, подвергающихся динамическим воздействиям. Полуспокойная сталь – промежуточная между кипящей и спокойной.

 

 

Выбор сталей для строительных конструкций.

температуры среды; характера нагружения; вида напряженного состояния;

Влияние различных факторов на свойства стали

Старению способствуют – механические воздействия, особенно пластические деформации (механическое старение), температурные колебания, приводящие к… Наклеп. Повторные загружения в пределах упругих деформаций (до предела…    

Виды разрушений

Разрушение металла в зависимости от степени развития пластических деформаций может быть хрупким или пластичным (вязким). Хрупкое разрушение происходит путем отрыва (рис.1.3,а), без заметных… Один и тот же материал может разрушаться хрупко и пластично (вязко) в зависимости от условий работы (вид напряженного…

Работа металла под нагрузкой

В стадии 1 до предела пропорциональности Ơр связь между напряжением и деформациями подчиняется закону Гука (Ơ=Еε) – это стадия… Деформации происходят за счет упруго возвратных искажений кристаллической…    

Рис.1.4. Диаграмма растяжения стали и образование шейки

 

При дальнейшем увеличении нагрузки (стадия 2) появляются отдельные сдвиги в зернах феррита, дислокации начинают скапливаться около границ зерен; прямая пропорциональность между напряжениями и деформациями нарушается (участок упруго пластической работы между Ơр и Ơy). Последующее увеличение напряжений приводит к интенсивному движению дислокаций и увеличению их плотности, развитию линий сдвига в зернах феррита; деформации растут при постоянной нагрузке. На диаграмме появляется площадка текучести (стадия 3).

Протяженность площадки текучести низкоуглеродистых и некоторых низколегированных сталей составляет 1,5 – 2,5%.

Развитие деформаций происходит в результате упругого деформирования и необратимых пластических сдвигов. При снятии нагрузки упругая часть деформаций исчезает, а необратимая остается, приводя к остаточным деформациям (линия разгрузки идет параллельно упругой части линии нагрузки).

Дальнейшее развитие деформации сдерживается у границ зерен. Линии сдвига искривляются, движение дислокации затрудняется, и рост деформаций возможен только при увеличении нагрузки (стадия 4 – самоупрочнение), материал работает как упругопластический.

При напряжениях, близких к временному сопротивлению (Ơu) продольные и поперечные деформации локализуются в наиболее слабом месте, и в образце образуется шейка. Площадь сечения шейки интенсивно уменьшается, напряжения в месте сужения растут, поэтому, несмотря на то, что нагрузка на образец снижается, в месте образования шейки нарушаются силы межатомного

Сцепления и происходит разрыв.

Площадка текучести свойственна сталям с содержанием углерода 0,1-0,3%.

При работе конструкции в упругопластической области диаграмму работы стали Ơ - ε можно упростить в сторону некоторого запаса и заменить идеализированной диаграммой упругопластического тела, совершенно упругого до предела текучести и совершенно пластичного после него (диаграмма Прандтля, рис.1.5.).

 

 
 

Рис.1.5. Идеализированная диаграмма работы стали

 

 

При сжатии коротких образцов, которые не могут потерять устойчивость, сталь ведет себя также как и при растяжении, т.е. предел пропорциональности, предел текучести и модуль упругости совпадают.

Однако разрушить при сжатии короткие образцы, изготовленные из пластической стали, и определить временное сопротивление не представляется возможным, поскольку образец сжимается и в конечном результате расплющивается. Высокопрочные стали, с пониженной пластичностью, могут разрушаться по наклонному сечению от среза.

Так как в упругой и упругопластической стадиях работы сталь ведет себя при растяжении и сжатии одинаково, то соответствующие характеристики принимаются также одинаковыми.

Повышенная несущая способность при сжатии некоторых образцов в области само упрочнения используется при работе стали на смятие.

При работе материала в упругой стадии повторное загружение не отражается на работе, поскольку упругие деформации обратимы.

При повторном нагружении металла в упругопластической области возникает наклеп. Увеличивается область упругой работы, а пластичность падает. Сталь становится более хрупкой.

Многократное повторное нагружение может привести к разрушению при меньших напряжениях, чем временное сопротивление и даже предел текучести. Это явление называется усталостью металла, а разрушение – усталостным.

Способность металла сопротивляться усталостному разрушению называется выносливостью, а напряжения, при которых происходит разрушение – вибрационной прочностью Ơвб.

Усталостное разрушение происходит вследствие накопления числа дислокаций при каждом загружении и концентрации их около стыков зерен с последующим скоплением в большие группы, что приводит к рыхлению металла в этом месте и образованию трещин, которые развиваясь, приводят к разрыву. При каждом нагружении деформации в поврежденном месте нарастают. Линии разгрузки не совпадают с линиями нагрузки, образуя петли гистерезиса (см. рис.1.2,в). Площадь петли характеризует энергию, затраченную при каждом цикле нагрузки на образование новых несовершенств в атомной структуре и дислокаций там, где образуются трещины, металл как бы перетирается, образуя гладкие истертые поверхности, затем трещина быстро развивается и происходит разрыв.

Вибрационная прочность зависит от числа циклов загружения (рис.1.6.) и вида загружения.

При большом числе циклов кривая вибрационной прочности (кривая Вел Лера) асимметрически приближается к некоторому пределу, называемому пределом выносливости (усталости). Обычно проводят 2х106 циклов нагружения, чтобы определить выносливость, так как меньшее количество циклов мало отличается от предела усталости.

Алюминиевые сплавы не имеют предела усталости, и их вибрационная прочность при увеличении числа циклов постоянно снижается (см. рис.1.6).

Большое влияние на усталостную прочность оказывает концентрация напряжений. Так при круглом отверстии (кривая 3, рис. 1.7) предел упругости снижается в 1,4 раза, а при остром концентраторе (кривая 7) около начала флангового шва - в 3,5 раза.

Применение высокопрочных сталей в конструкциях, подвергающихся многократному воздействию повторных нагрузок, не всегда оправдывается по экономическим соображениям.

Значительное снижение усталостной прочности наблюдается даже при необработанных после огневой резки или гильотинных ножниц кромок деталей. Поэтому кромки следует обрабатывать механическим способом.

Особенно чувствительны к концентрации напряжений стали повышенной и высокой прочности.

Повысить усталостную прочность конструкции можно путем снижения концентрации напряжений (механическая обработка кромок, зачистка швов, обеспечение плавного изменения сечения и т. д.), создания в местах концентрации напряжений сжатия, например, с помощью нагрева мест концентрации, предварительной вытяжкой конструкций, обкаткой подкрановых балок кранами с допустимой перегрузкой и т. д.

 

 
 

 

 

Рис.1.6. Зависимость вибрационной прочности от числа циклов для стали (1) и алюминиевых сплавов (2) Рис.1.7. Зависимость предела усталости от коэффициента 1 – сталь С255 с необработанной поверх- ностью, преобладает растяжение; 2 – то же, преобладает сжатие; 3 – сталь С255, полка с отверстием (преобладает растя- жение); 4 – сталь С235 с необработанной поверхностью, преобладает растяжение; 5 – сталь С255, основной металл около сварного необработанного соединения встык; 6 – то же, для стали С345; 7 – сталь С 255, основной металл у начала флангового шва; 8 – то же, сталь С345    

-------------------------------------------------------------------------------------------------------

1. Развитие металлических конструкций, общая характеристика, область применения, достоинства и недостатки (стр.1-9).

2 . Как выбирают стали при проектировании? (9-10; 12-13).

3. Требуемые свойства металлов и их оценка (стр.10-11).

4. Классификация сталей (стр.11-12).

5. Какие факторы влияют на свойства стали? (стр.13-15).

6. Какие виды разрушения металла? (стр.15).

7. Как работает металл под нагрузкой при однократном нагружении?(стр.16-17)

8. Что такое усталость металла? Какие меры принимают для повышения усталостной прочности? (стр.18-19).

9. Что влияет на снижение усталостной прочности? (стр.19).

 

 

Р а з д е л 2. Основы расчета металлических конструкций

Основные понятия и определения

 

Проектирование металлических конструкций – многоэтапный процесс, включающий в себя выбор конструктивной формы, расчет и разработку чертежей для изготовления и монтажа конструкций.

Целью расчета является строгое обоснование габаритов конструкции, ее размеров поперечных сечений и их соединений обеспечивающих условия эксплуатации в течение всего срока с необходимой надежностью и долговечностью при минимальных затратах материалов и труда на их создание и эксплуатацию. Эти требования часто противоречат друг другу (минимальный расход металла и надежность), поэтому реальное проектирование является процессом поиска конструктивного оптимального решения.

Расчет состоит из следующих этапов: установления расчетной схемы, сбор нагрузок, определения усилий в элементах конструкций, подбор сечений и проверка допустимости напряженно-деформированного состояния конструкций, ее элементов и соединений.

Ключевыми словами в расчетах металлических конструкций являются “предельные состояния”, “расчетная нагрузка”, “расчетное сопротивление”, “надежность”, “усталость”, “оптимальный параметр”, “конструктивное оптимальное решение” и т.д.

Уже отмечалось, что до 1951г. расчет металлических конструкций производился по допускаемым напряжениям с использованием единого коэффициента запаса. В 1951г. выходят новые строительные нормы и правила, основанные на методе предельных состояний, где вместо одного используются три коэффициента, обоснованные методами математической статистики.

Достоинством методики допустимых напряжений является простота, но эта методика недостаточно точно учитывает факторы, влияющие на работу конструкции. Вероятностные методы слишком сложны для повседневной инженерной практики. Применение их оправдано при проектировании уникальных, ответственных сооружений.

Поэтому оптимальной считается методика предельных состояний, которая проста и научно обоснована.

 

 

Основные положения расчета металлических конструкций

 

Предельным называется состояние конструкции, при котором она перестает удовлетворять эксплуатационным требованиям.

Первая группа включает в себя потери несущей способности и полную непригодность конструкции к эксплуатации вследствие потери устойчивости,… Вторая группа предельных состояний характеризуется затруднением нормальной… Расчетные формулы для подбора сечений и проверки несущей способности конструкции по первому предельному состоянию…

Классификация нагрузок и их сочетаний

При методике предельных состояний все нагрузки классифицированы в зависимости от вероятности их воздействия на нормативные и расчетные.

По признаку воздействия нагрузки разделяются на постоянные и временные. Последние могут быть длительного и кратковременного воздействия.

Кроме того, есть нагрузки, которые выделяются в разряд особых нагрузок и воздействий.

Постоянные нагрузки – собственный вес несущих и ограждающих конструкций, давление грунта, предварительное напряжение.

Временные длительные нагрузки – вес стационарного технологического оборудования, вес складируемых материалов в хранилищах, давление газов, жидкостей и сыпучих материалов в емкостях и т.д.

Кратковременные нагрузки – нормативные нагрузки от снега, ветра, подвижного подъемно-транспортного оборудования, массы людей, животных и т.п.

Особые нагрузки– сейсмические воздействия, взрывные воздействия. Нагрузки, возникающие в процессе монтажа конструкций. Нагрузки, связанные с поломкой технологического оборудования, воздействия, связанные с деформациями основания в связи с изменениями структуры грунта (просадочные грунты, осадка грунтов в карстовых районах и над подземными выработками).

Существует иногда термин “полезная нагрузка”. Полезной называют нагрузки, восприятие которых составляет цельное назначение сооружений, например, вес людей для пешеходного моста. Они бывают как временными, так и постоянным, например, вес монументального выставочного сооружения является постоянной нагрузкой для постамента. Для фундамента вес всех вышележащих конструкций также представляет полезную нагрузку.

При действии на конструкцию нескольких видов нагрузок усилия в ней определяются как при самых неблагоприятных сочетаниях с использованием коэффициентов сочетаний .

В СНиПе 2.01.07-85 “ Нагрузки и воздействия” различают:

основные сочетания, состоящие из постоянных и временных нагрузок;

особые сочетания, состоящие из постоянных, временных и одной из особых нагрузок.

При основном сочетании, включающем одну временную нагрузку, коэффициент сочетаний . При большем числе временных нагрузок, последние умножаются на коэффициент сочетаний .

В особых сочетаниях временные нагрузки учитываются с коэффициентом сочетаний , а особая нагрузка - с коэффициентом . Во всех видах сочетаний постоянная нагрузка имеет коэффициент .

 

 

2.4. Напряженное и деформированное состояние центрально

нагруженных элементов

Учет сложного напряженного состояния при расчете металлических конструкций производится через расчетное сопротивление , которое устанавливается на основе испытаний металлических образцов при одноосном нагружении. Однако в реальных конструкциях материал, как правило, находится в сложном многокомпонентном напряженном состоянии. В связи с этим необходимо установить правило эквивалентности сложного напряженного состояния одноосному.

В качестве критерия эквивалентности принято использовать потенциальную энергию, накапливаемую в материале при его деформировании внешним воздействиям.

Для удобства анализа энергию деформации можно представить в виде суммы работ по изменению объема Ао и изменения формы тела Аф. Первая не превышает 13% полной работы при упругом деформировании и зависит от среднего нормального напряжения.

 

1 - 2υ

Ao = ----------( ƠΧ + ƠУ + ƠΖ )2 (2.3.)

Вторая работа связана со сдвигами в материале:

 

1 +

Аф = -------[(ƠΧ2Υ2+ Ơz2-(ƠxƠyyƠzzƠx) + 3 (τxy2yz2+ τzx2)] (2.4.)

 

Известно, что разрушение кристаллической структуры строительных сталей и алюминиевых сплавов связано со сдвиговыми явлениями в материале (движение дислокаций и пр.).

Работа формоизменения (2.4.) является инвариантом, поэтому при одноосном напряженном состоянии Ơ = Ơ имеем А1 =[(1 + ) / 3Е ] Ơ2

Приравнивая это значение выражению (2.4) и извлекая квадратный корень, получим:

 

Ơпр=(2.5)

 

Это соотношение устанавливает энергетическую эквивалентность сложного напряженного состояния одноосному. Выражение в правой части иногда называют приведенным напряжением Ơпр,имея в виду приведение к некоторому состоянию с одноосным напряжением Ơ .

Если предельно допустимое напряжение в металле (расчетное сопротивление) устанавливается по пределу текучести стандартного образца ƠT, то выражение (2.5) принимает вид Ơпр = ƠT и представляет собой условие пластичности при сложном напряженном состоянии, т.е. условие перехода материала из упругого состояния в пластичное.

В стенках двутавровых балок вблизи приложения поперечной нагрузки

Ơx 0 . Ơy 0 . τxy 0 . остальными компонентами напряжений можно пренебречь. Тогда условие пластичности принимает вид

 

Ơпр == ƠT (2.6)

 

В точках, удаленных от места приложения нагрузки, можно пренебречь также локальным напряжением Ơ y = 0, тогда условие пластичности еще более упростится: Ơпр = = ƠT .

При простом сдвиге из всех компонентов напряжений только

τxy 0 . тогда Ơпр = = ƠT . Отсюда

 

τxy= ƠT /= 0,58 ƠT (2.7)

 

В соответствии с этим выражением в СНиПе принято соотношение между расчетными сопротивлениями на сдвиг и растяжение ,

где - расчетное сопротивление сдвигу; - предел текучести.

Поведение под нагрузкой центрально растянутого элемента и центрально сжатого при условии обеспечения его устойчивости полностью соответствует работе материала при простом растяжении-сжатии (рис.1.1, б).

Предполагается, что напряжения в поперечном сечении этих элементов распределяются равномерно. Для обеспечения несущей способности таких элементов необходимо, чтобы напряжения от расчетных нагрузок в сечении с наименьшей площадью не превышали расчетного сопротивления.

Тогда неравенство первого предельного состояния (2.2) будет

 

, (2.8)

 

где - продольная сила в элементах; - площадь нетто поперечного сечения элемента; - расчетное сопротивление, принимаемое равным , если в элементе не допускается развитие пластических деформаций; если же пластические деформации допустимы, то равняется наибольшему из двух значений и (здесь и - расчетные сопротивления материала по пределу текучести и по временному сопротивлению соответственно); - коэффициент надежности по материалу при расчете конструкции по временному сопротивлению; - коэффициент условий работы.

 

Проверка по второму предельному состоянию сводится к ограничению удлинения (укорочения) стержня от нормативных нагрузок

 

Nn l / (E A ) (2.9)

 

где - продольная сила в стержне от нормативных нагрузок; - расчетная длина стержня, равная расстоянию меду точками приложения нагрузки к стержню; - модуль упругости; - площадь брутто поперечного сечения стержня; - предельная величина удлинения (укорочения).

 

Основы расчета изгибаемых элементов

сечения происходит по линейному закону, напряжения распределяются только до предела текучести ƠT (рис.2.1). Напряжения в точках, находящихся на расстоянии “y” от нейтральной оси,… Максимальное напряжение возникает когда : Ơmax. = М(h/2)/Ix. Отношение момента инерции Ix к расстоянию от…

Рис.2.1. Изменение эпюры напряжений в изгибаемом элементе при развитии

Пластических деформаций в материале

    ; (2.10) τ = Q S /I t≤ Rs c.

Изгибаемого элемента

При рассмотренном многократном напряженном состоянии проверку прочности балки можно производить по формуле:    

Основы расчета центрально сжатых стержней

Исчерпание несущей способности длинных гибких стержней, работающих на осевое сжатие, происходит от потери устойчивости (рис.2.4,а). Поведение стержня под нагрузкой характеризуется графиком (рис.2.4,б), где… Устойчивое состояние может быть при и (точки 1 и 2). Однако при стержень может находиться в устойчивом состоянии…

РАЗДЕЛ 3. Сортамент

Характеристика основных профилей сортамента

Перечень прокатных профилей с указанием формы, геометрических характеристик, веса единицы длины, допусков и условий поставки называется…    

Рис.3.1.Основные виды профилей

 

 

Поставляется прокат (листовой, фасонный) партиями. Партия состоит из проката одного размера, одной плавки-ковша и одного режима термообработки. При проверке качества металла от партии отбирают любые две пробы. Прокат поставляется как в горячекатаном, так и в термообработанном состоянии.

Разнообразие видов профилей, входящих в сортамент, частая градация размеров одного вида профиля обеспечивает экономическое проектирование конструкций при возможности создания разнообразных конструктивных форм.

Стоимость разных профилей различна. Наиболее дешевыми являются листовая сталь, прокатные двутавры и швеллеры, что стимулирует их широкое применение. Применение при проектировании большого разнообразия профилей увеличивает объем работы на заводах металлоконструкций по сортировке, складированию, транспортировке, правке профилей и т.п. С целью уменьшения объема работ при изготовлении конструкций введены сокращенные сортаменты, составленные для проектирования строительных конструкций из наиболее употребляемых и экономичных профилей.

Изготовленные на заводах металлические элементы конструкций (балки, колонны, фермы и т.п.) собираются на строительных площадках в конструктивные комплексы – сооружения.

Рассмотрение различных критериев эффективности профиля при работе на изгиб и сжатие показало, что решающую роль имеет “тонкостенность” профиля – отношение его высоты к его толщине , чем оно больше, тем профиль экономичнее. Для прокатных профилей технология прокатки ограничивает толщину стенки 4-6 мм, поэтому применение тонкостенных сварных балок для изгибаемых элементов, а также гнутосварочных коробчатых профилей для сжатых элементов более эффективны, чем применение прокатных профилей, так как толщина стенки в них не ограничена прокатом.

 

Листовая сталь

Сталь толстолистовая (ГОСТ 19903- 74). Сортамент этой стали включает листы толщиной от 4 мм до 160 мм, шириной от 600 мм до 3800 мм. Наиболее… Сталь тонколистовая до 4 мм прокатывается холодным и горячим способами.… Сталь широкополосная универсальная (ГОСТ 82-70) благодаря прокату между четырьмя валками имеет ровные края. Толщина…

Швеллеры

 

Геометрические характеристики сечения швеллеров (см. рис. 3.1,в,ж) определяются его номером, который соответствует высоте стенки швеллера

 

 

 
 

Рис.3.2.Компановка сечений стержней из прокатных профилей

 

(в см). Сортамент (ГОСТ 8240-89) включает швеллеры от № 5 до № 40 с уклоном внутренних граней полок (см. прил. 16, табл. 5). Однако, уклон внутренних граней полок затрудняет конструирование. В ГОСТ входят и

швеллеры с параллельными гранями полок, сечения которых имеют лучшие расчетные характеристики относительно осей x и y, так как упрощают болтовые крепления к полкам. Швеллеры применяются в мощных стержневых конструкциях (мостах, большепролетных фермах и т.п.), а также в колоннах, связях и кровельных прогонах.

Стержни из швеллеров, работающие на осевую силу, компонуются в жесткие относительно осей x и y симметричные сечения (рис. 3.2,б).

 

 

Двутавры

Двутавры – основной балочный профиль – имеют наибольшее разнообразие по типам (см. рис. 3.1,г-ж), которые соответствуют определенным областям… Балки двутавровые обыкновенные (ГОСТ 8239-89) как и швеллеры, имеют уклон… Балки двутавровые широкополочные(ГОСТ 26020-81) имеют параллельные грани полок (см. рис.3.1, д). Широкополочные…

Тонкостенные профили

Тонкостенные двутавры (ТУ 14-2-205-76) и швеллеры (ТН 14-2-204-76) (см. рис.3.1,ж) прокатываются на непрерывном стане с особо тонкими стенками и полками, что делает их экономичнее обычных прокатных профилей на 14-20%. Тонкостенные профили имеют высоту от 120 до 300 мм и полки с параллельными гранями. Применяются тонкостенные профили в балках площадок, фахверках, легких перекрытиях и покрытиях.

 

 

Трубы

Стальные трубы, применяемые в строительстве, бывают круглые – горячекатаные (ГОСТ 8732-78 с изм.) и электросварные (ГОСТ 10704-76) (см. рис.3.1,з). Трубчатые профили особенно экономичны при применении в сжатых элементах благодаря наибольшему значению радиуса инерции при заданной площади сечения.

Горячекатаные бесшовные трубы имеют диаметр от 25 до 550 мм с толщиной стенок от 2,5 до 75 мм. Эти трубы применяются главным образом в конструкциях радио и телевизионных опор.

Круглые электросварные трубы имеют диаметр от 8 до 1420 мм с толщиной стенок от 1 до 16 мм. Эти трубы применяются в трубопроводах, элементах радио и телевизионных опор и конструкциях покрытий, особенно в зданиях с агрессивной средой.

 

 

Холодногнутые профили

с изм.) сечений и оцинкованные профилированные настилы (ГОСТ 24045-86). Основная область применения этих профилей – легкие конструкции покрытий…    

Рис. 3 3. Типы гнутых профилей

 

 

Различные профили и изделия из металла, применяемые в строительстве

Кроме того, изготавливаются также трубы специального назначения из стали класса К 52 17Г1С-У: для магистральных газонефтепроводов по ГОСТ 20295-85, d = 720 и 820 мм; для трубопроводов высокого давления по ТУ 14-3-620-77, d = 1000мм и 1220 мм;

Профили из алюминиевых сплавов

Строительные профили из алюминиевых сплавов (рис.3.4), получают прокаткой, прессованием или литьем. Листы, ленты и плиты прокатываются в горячем или… Продавливая слитки через матрицы различных типов, можно получить профили… Наиболее распространенное на заводах оборудование требует, чтобы профили вписывались в круг диаметром 320 мм (в…

Правила использования профилей в строительных

Конструкциях

2. Применяемые в одном отправочном элементе уголки, тавры, полосы одного номинального размера, но разной толщины должны иметь разность толщин… 3. Не допускается применять в одном отправочном элементе одинаковые… 4. Применение в одном объекте профилированных листов одной номинальной высоты, но разной толщины не допускается. …

РАЗДЕЛ 4. СВАРНЫЕ СОЕДИНЕНИЯ

Сварные соединения являются основным видом соединений в строительных конструкциях. При проектировании конструкций со сварными соединениями следует предусмотреть применение высокопроизводительных эффективных видов сварки, обеспечивающих повышение надежности сварных соединений и производительности труда.

Сваркой металлов называют технологической процесс образования неразъемного соединения деталей конструкции путем местного сплавления или совместного пластического деформирования в области соединения этих деталей, сопровождающегося диффузией атомов. В результате сварки возникает прочное сцепление, основанное на межатомном взаимодействии в примыкающих участках деталей.

Сварка позволяет получить простую конструктивную форму соединения, дает экономию металла по сравнению с другими видами соединений (например, болтовыми), позволяет применять высокопроизводительные механизированные способы изготовления. Сварные соединения обладают свойством газо- и водонепроницаемости, что важно для листовых конструкций, предназначенных для хранения газов или жидкостей (резервуары, газгольдеры, трубопроводы).

Однако при проектировании сварных конструкций следует помнить, что процесс сварки, являясь мощным энергетическим процессом, вносит изменения в свойства исходного металла. В сварном соединении образуются зоны с различным химическим составом металла, различной структуры, различными механическими свойствами. Возможные дефекты сварных соединений (поры, подрезы и др.) также создают неоднородность соединения.

Все эти обстоятельства учитываются при проектировании конструкций путем применения сварочных материалов в соответствии со свойствами основного материала и условиями работы (температура окружающей среды при изготовлении и эксплуатации, вид напряжения – статические нагрузки или циклические и т.п.), выбор режима сварки, а также назначения специальных коэффициентов сварного соединения.

 

Виды сварки, применяемые в строительстве

Длинномерные швы в конструкциях (поясные швы балок, колонн и др.) выполняются в заводских условиях автоматической сваркой под флюсом. Флюс защищает… электродной проволоки и относительное перемещение дуги и изделия. К… Короткие швы (приварка ребер, сварка узлов в решетчатых конструкциях) выполняют полуавтоматической сваркой. При этом…

Виды сварных швов и соединений

Сварные швы классифицируются по конструктивному признаку, назначению, положению, протяженности и внешней форме. По конструктивному признаку швы разделяют на стыковые и угловые (валиковые).… При автоматической сварке принимаются меньшие размеры разделки кромок швов вследствие большего проплавления…

Рис. 4.1. Виды швов.

а – стыковой шов в однопроходном стыковом соединении; б –стыковой шов с подваркой корня в однопролетном стыковом соединении; в – фланговый и лобовой швы в нахлесточном соединении; г – угловые швы в тавровом соединении; д – прерывистые (шпоночные) швы в нахлесточном соединении; 1 – подварка корня шва; 2 – лобовой шов; 3 – фланговый шов; 4- угловые швы; 5 - прерывистые или шпоночные швы

 

удобна, легко поддается механизации, дает лучшее качество шва, поэтому при проектировании следует рассматривать возможность выполнения большинства швов в нижнем положении. Вертикальные, горизонтальные и потолочные швы в большинстве своем выполняются при монтаже. Они плохо

поддаются механизации, выполнить их вручную трудно, качество шва хуже, поэтому применение их в конструкциях ограничено.

Различают следующие сварные соединения: стыковые, внахлестку, угловые и тавровые (рис.4.3).

Стыковыми называются соединения, в которых элементы соединяются торцами и один элемент является продолжением другого. Такие соединения наиболее рациональны, так как имеет наименьшую концентрацию напряжений при передаче усилий, экономичны и удобны для контроля.

 
 

Стыковые соединения листового металла выполняют прямым или косым швом.

 

Рис. 4.2.Положение швов в пространстве

1 – нижнее; 11 – вертикальное; 111 – потолочное; 1У – горизонтальное на вертикальной поверхности

Соединения внахлестку называют такие, в которых свариваемые элементы, частично находят друг на друга (рис.4.3,б). Эти соединения широко применяют для сварки листовых конструкций небольшой толщины (2-5 мм), в решетчатых и других видах конструкций. Разновидностью соединений внахлестку являются соединения с накладками с целью усиления стыков.

Соединения внахлестку с накладками просты, но менее экономичны по расходу металла и вызывают резкую концентрацию напряжений, поэтому их редко используют при переменных и динамических нагрузках, а так же при низкой температуре.

Угловыми называются соединения, в которых свариваемые элементы расположены под углом (рис.4.3,г).

Тавровые соединения отличаются от угловых тем, что в них торец одного элемента приваривается к поверхности другого (рис.4.3,д).

Во всех видах сварных соединений применяются угловые швы (валиковые). Только стыковые соединения выполняются с помощью стыковых швов.

Работоспособность сварного соединения зависит от его качества, т.е. минимального числа дефектов. Наиболее часто встречающимися дефектами

сварного соединения являются:

а) подрезы, представляющие собой углубления (канавки) в металле, идущими вдоль границы шва;

б) непровары - отсутствие оплавления между металлом шва и основным металлом. При этом в местах непроваров обнаруживаются тонкие пленки оксидов и шланговые включения;

в) шлаковые (неметаллические) включения – частицы шлака, не успевшие всплыть на поверхность шва до затвердения металла шва;

г) поры – области, заполненные газом, выделяющимся в процессе сварки;

 

Т а б л и ц а 4.1. Виды сварки в зависимости от толщины шва (двусторонняя

Или с подваркой корня)

  д) горячие трещины – разрушение металла шва при температурах близких к температурам солидуса. Горячие трещины представляют собой

Рис. 4.3. Виды сварных соединений

а – стыковые; б – внахлестку; в – комбинированные; г –угловые; д – тавровые; 1 – лобовые; 2 – фланцевые швы; 3 – косой шов

 

трещин после сварки до нагружения конструкции эксплуатационными нагрузками и даже до монтажа.

Все дефекты снижают работоспособность конструкции, так как являются концентраторами напряжения, однако, при определенных размерах, форме, числе и расположении сварных швов в соединении работоспособность конструкции может быть обеспечена в соответствии с заданными условиями эксплуатации (вид нагружения – статическое или циклическое, температура эксплуатации и т.п.). Особо важную роль играют выбранные методы контроля качества сварных соединений и тщательность их выполнения.

При сварке конструкций наблюдаются как продольная (вдоль линии шва), так и поперечная (перпендикулярно шву) усадки, в результате чего форма конструкции искажается по отношению к исходному состоянию (или проектному). Это явление называется короблением.

Чтобы избежать коробления конструкции, при изготовлении применяют ряд мероприятий. Мероприятия могут быть предварительными, сопутствующими и последующими, т.е. проводятся после сварки.

К основным мероприятиям относятся следующие:

увеличение жесткости путем специальных закреплений свариваемых элементов (кондукторы, кассеты и т.п.);

создание деформаций обратного знака до сварки (обратный выгиб и т.п.);

пластическое деформирование обратного знака (растяжение металла шва и около шовной зоны – прокатка, проколачивание и т.п.);

местный подогрев, применяемый обычно с целью уменьшения неравномерности распределения температуры при сварке;

применение правильного порядка сварки; при выполнении ряда швов первыми следует делать швы, расположенные ближе к центру тяжести сечения свариваемого элемента, например, в несимметричном двутавре первой должна привариваться к стенке полка большого сечения;

механическая правка деформированных изделий.

 

 

Конструирование и работа сварных соединений

Хорошо сваренные встык соединения имеют небольшую концентрацию напряжений от внешних сил, поэтому прочность таких соединений при растяжении или… Сварной шов в начале и конце, насыщен дефектами (в силу неустановившегося… вывести концевые участки шва на технологические планки расчетная длина шва будет меньше его фактической длины.

Расчет сварных соединений

При расчете сварных соединений необходимо учитывать вид соединения, способ сварки (автоматическая, полуавтоматическая, ручная) и сварочные… Расчет стыковых сварных соединений при действии осевой силы , проходящей через…  

Рис. 4.4. Виды сварных стыковых соединений

а – прямой стык; б – косой стык; в, г – при разной ширине соединяемых элементов;

д, е – при разной толщине соединяемых элементов; ж – однослойный с подваркой корня; 1 – технологические планки; 2 – подварочный шов

 

При отсутствии физических методов контроля расчетное сопротивление металла сварного соединения по нормам составляет .

Чтобы соединение было равнопрочным основному элементу, длина шва должна быть больше размера “b” (рис.4.5), поэтому в соединении применяют косой шов, который выполняют с наклоном реза при . Такой шов равнопрочен с основным металлом и не требует проверки прочности. При действии сдвигающей силы Q на стыковой шов, в шве возникают срезывающие напряжения .

Расчетное сопротивление при сдвиге соединения , где - расчетное сопротивление основного металла на сдвиг.

Если расчетное сопротивление металла шва в стыковомсоединениименьше расчетного сопротивления основного металла, проверку выполняют по сечению металла шва.

Т а б л и ц а 4.2. Материалы для сварных соединений стальных конструкций

    П р и м е ч а н и е: 1. Для проволок Св-08Г2С следует принимать кН/см2 и кН/см2, кроме угловых швов с катетом мм. 2.…

Рис 4.6. К расчету угловых швов

а - на разрушение соединений с фланговыми швами; б – с лобовыми швами; в – работающих на изгиб

 

 

трещин. Поэтому СНиП диктует, что катеты угловых швов должны быть не более , где - наименьшая толщина соединяемых элементов.

Сварные соединения с угловыми швами при действии “” в плоскости, перпендикулярной плоскости расположения швов, рассчитывают на срез:

 

 
 

 

Рис. 4.7 Расчетные сечения шва

1 – по металлу шва;2 – по металлу границы сплавления

 

 

по металлу шва

 

(4.5)

 

по металлу границы сплавления

 

(4.6)

 

где и - моменты сопротивления расчетных сечений сварного соединения соответственно по металлу шва и металлу границы сплавления; и - коэффициенты условия работы шва, и во всех случаях, кроме конструкций, возводимых в климатических районах, указанных в СНиП 2.01.07-85; и - расчетные сопротивления металла шва и металла границы сплавления (см. табл.4.2 и прил.2).

 

 

При действии момента в плоскости расположения швов их рассчитывают на срез по формулам:

 

по металлу шва (4.7)

 

по металлу границы сплавления (4.8)

 

где x и y - коэффициенты точки А сварного соединения, наиболее удаленные от центра тяжести; и - моменты инерции расчетного сечения сварного соединения по металлу шва относительно его главных осей “x” и “y”; и - то же, по металлу границы сплавления.

 

 

При расчете сварного соединения с угловыми швами на одновременное действие продольной силы, поперечной силы и момента должны выполняться условия

 

и ;

 

где и - напряжения в точке расчетного сечения сварного соединения соответственно по металлу шва и металлу границы сплавления, определяемые по формуле:

 

(4.9)

Т а б л и ц а 4.3. Коэффициенты проплавления в зависимости от вида сварки
Вид сварки и ди- аметр сварочной проволоки, мм   Положение шва     Коэффициент проплавления Значения коэффициентов и при нормальных режимах сварки и катетов швов, мм
3 – 8 9 – 12 14 – 16 >16
Автоматическая, d = 3 - 5     В лодочку     1,1 0,7
1,15 1,0
Нижнее 1,1 0,9 0,7
    1,15 1,05   1,0  
Автоматическая и полуавтоматическая, d =1,4 – 2   В лодочку     0,9   0,8     0,7  
  1,05   1,0
Нижнее Горизон- тальное Вертикаль-ное   0,9 0,8 0 ,7
1,05     1,0    
Ручная полуавтома- тическая проволо- кой сплошного се- чения, d < 1,4, или порошковой проволокой В лодочку Нижнее Горизон- тальное Вертикаль-ное Потолочное         0,7  
  1,0  

 

 

 

 


М е т а л л и ч е с к и е к о н с т р у к ц и и

Учебное пособие

для студентов специальности

(часть п)

 

РАЗДЕЛ 9. ФЕРМЫ

Классификация ферм и область их применения

 

Фермой называется система стержней соединенных между собой в узлах и образующих геометрически неизменяемую конструкцию. При узловой нагрузке жесткость узлов несущественно влияет на работу конструкции, и в большинстве случаев их можно рассматривать как шарнирные. В этом случае все стержни ферм испытывают только растягивающие или сжимающие осевые усилия.

Фермы экономичнее балок по расходу стали, но более трудоемки в изготовлении. Эффективность ферм по сравнению со сплошностенчатыми балками тем больше, чем больше пролет и меньше нагрузка.

Фермы бывают плоскими (все стержни лежат в одной плоскости) и пространственными.

Плоские фермы воспринимают нагрузку, приложенную только в их плоскости, и нуждаются в закреплении их связями. Пространственные фермы образуют жесткий пространственный брус, воспринимающий нагрузку в любом направлении (рис.9.1).

 

 
 

Рис. 9.1. Плоская (а) и пространственная (б) фермы

 

Основными элементами ферм являются пояса, образующие контур фермы, и решетка, состоящая из раскосов и стоек (рис. 9.2). Соединение элементов в узлах осуществляется путем непосредственного примыкания одних элементов к другим (рис 9.3,а) или с помощью узловых фасонок (рис. 9.3,б). Элементы ферм центрируются по осям центра тяжести для снижения узловых моментов и обеспечения работы стержней на осевые усилия.

 

 
 

 

Рис. 9.2. Элементы ферм

1 – верхний пояс; 2 – нижний пояс; 3 – раскосы; 4 - стойки

 

 
 

 

Рис. 9.3. Узлы ферм

а – с непосредственным примыканием элементов; б – на фасонках

 

Расстояние между соседними узлами поясов называется панелью

(dв – панель верхнего пояса, dн – нижнего), а расстояние между опорами

– пролетом (l).

Пояса ферм работают на продольные усилия и момент (аналогично поясам

Знак усилия (минус – сжатие, плюс – растяжение) в элементах решетки ферм с параллельными поясами можно определить, если воспользоваться “балочной… Стальные фермы широко применяются во многих областях строительства; в… Фермы имеют разную конструкцию в зависимости от назначения, нагрузок и классифицируются по различным признакам:

Рис. 9.6. Системы решетки ферм

а – треугольная; б – треугольная с дополнительными стойками; в – раскосная

с восходящими раскосами; г – раскосная с нисходящими раскосами;

д – шпренгельная; е – крестовая; ж – перекрестная; и – ромбическая;

к - полу раскосная

 

 

Компоновка конструкций ферм

Выбор статической схемы и очертания фермы – первый этап проектирования конструкций, зависящий от назначения и архитектурно – конструктивного решения… В покрытиях зданий, мостах, транспортных галереях и других сооружениях нашли… Для двух и более перекрываемых пролетов применяют неразрезные фермы. Они экономичнее по расходу металла и обладают…

Типы сечений стержней ферм

Наиболее распространенные типы сечений элементов легких ферм, показаны на рис.9.10. По расходу стали наиболее эффективным является трубчатое сечение (рис.9.10,а).… Для предотвращения коррозии внутренних плоскостей трубчатые элементы следует герметизировать. Однако определенные…

Рис.9.11. Типы сечений стержней тяжелых ферм

 

основном для верхних поясов тяжелых мостовых ферм. Жесткость сечения повышается, если снизу вертикальные листы соединить решеткой (рис.9.11,ж) или перфорированным листом.

Одностенчатое двутавровое сечение состоит из сварного или широкополочного прокатного двутавра, поставленного вертикально (рис.9.11,и).

Трубчатые стержни применяются в тяжелых сварных фермах, имеют те же преимущества, что и в легких фермах.

Замкнутое коробчатое сечение (рис.9.11,к,л,м) обладает повышенной изгибной и крутильной жесткостью, поэтому применяют его для длинных сжатых элементов тяжелых ферм. Сечение может быть выполнено как из гнутых элементов, так и сварных, составленных из четырех листов.

 

Расчет ферм

на ферму прикладывается обычно в узлах фермы, к которым прикрепляются элементы поперечной конструкции (прогоны кровли или подвесные потолки),… Рекомендуется определять усилия в стержнях ферм отдельно для каждого вида… постоянной, в которую входит собственный вес фермы и всей поддерживаемой конструкции (кровли с утеплением, фонарей и…

Определение усилий в стержнях ферм

В фермах со стержнями, имеющими повышенную жесткость, влияние жесткости соединений в узлах более значительно. Моменты, возникающие в узлах, приводят… В верхних поясах ферм при непрерывном опирании на них настилов (равномерное… пролетный момент в крайней панели

Определение расчетной длины стержней

В момент потери устойчивости сжатый стержень выпучивается, поворачивается вокруг центров соответствующих узлов и вследствие жесткости фасонок… Примыкающие стержни сопротивляются изгибу и повороту узла и Препятствуют свободному изгибу стержня, теряющего устойчивость.

Предельные гибкости стержней

Даже при незначительных сжимающих усилиях гибкость сжатых стержней не должна быть слишком большой, так как гибкие стержни легко искривляются от… , где - расчетное усилие, - несущая способность стержня:  

Подбор сечений элементов ферм

Из условия обеспечения качества сварки и повышения коррозионной стойкости толщину профилей (труб, гнутых сечений) не следует принимать менее 3 мм, а… Профильный прокат поставляется длиной до 12 м, поэтому при изготовлении ферм… Для снижения расхода стали, целесообразно, особенно при больших усилиях и нагрузках, элементы ферм (пояса, опорные…

Подбор сечений сжатых элементов

(9.5)   где - коэффициент условий работы (по прил.14). Т а б л и ц а 9.1. Подбор сечений стержней легких…

Подбор сечения растянутых элементов

Стали с нормативным пределом текучести кН/см² имеют развитую площадку текучести (см. гл.1), поэтому несущая способность элементов из таких…   (9.7)

Рис. 9.13. К примеру 9.3 и 9.4

 

 

Подбираем сечение элемента из условия его работы на растяжение по формуле (9.9); Aтр=800/( 24= 35,1см2.

Принимаем сечение из двух уголков 125х9; А=22=44см2; моменты сопротивления для обушка Wобx и пера Wпx равны:

 

Wобx = 327/3,4 = 192,4 см2; Wпx =327/(12,5 – 3,4) = 72 см2

 

Момент с учетом неразрезности пояса М = ( Fd / 4)0.9 = ( 10/4 )0.9 = 675 кН см.

Проверка несущей способности пояса: по табл.5 приложения для сечения из двух уголков n = 1, c = 1.6.

Пол формуле (9.10) для растянутого волокна (по обушку)

 

800 / (44= 0,893 < 1;

 

для сжатого волокна (по перу)

 

800 / (44= 0,54 < 1

 

Принятое сечение удовлетворяет условию прочности.

 

Подбор сечения стержней по предельной гибкости

Зная расчетную длину стержня и значение предельной гибкости , определяют требуемый радиус инерции , а затем по сортаменту выбирают сечение и…    

Особенности расчета и подбора сечений элементов

Тяжелых ферм

Если высота сечения превысит длины элемента, необходимо учитывать моменты, возникающие от жесткости узлов, и подбирать сечения внецентренно сжатые… Узлы тяжелых ферм при больших усилиях делают двухстенчатыми, т.е. размещают… В необходимых случаях между фасонкой и гранью элемента устанавливают прокладки.

Конструкция легких ферм

Угловые моменты, определяются как произведение нормальных усилий стержней и внешних узловых сил на их плечи до точки пересечения двух раскосов… Момент 1, распределяется между элементами фермы, сходящимися в узле… воспринимается в основном поясом фермы. При постоянном сечении пояса и одинаковых панелях момент в поясе . …

Фермы из одиночных уголков

      Рис. 9 16. Узлы ферм из одиночных уголков

Фермы из парных уголков

выпускают их за обушок поясных уголков на 10-15 мм. Швы, прикрепляющие фасонку к поясу, при отсутствии узловых нагрузок…  

Ферма с поясами из широкополочных тавров

Тавры с параллельными гранями полок получают путем продольного роспуска широкополочных двутавров. Тавры применяют в поясах ферм; решетка выполняется… уголков. Фермы с поясами из тавров экономичнее по расходу металла на 10-12%, по трудоемкости на 15-20% и по стоимости на 10-15% по сравнению с

Фермы из труб

В трубчатых фермах рациональны безфасоночные узлы с непосредственным примыканием стержней решетки к поясам (рис.9.22,а). Узловые сопряжения должны… Стержни также центрируются по геометрическим осям, но допускается и… Расчет такового узлового сопряжения довольно сложен и относится к области расчета пересекающихся цилиндрических…

Фермы из гнутых профилей

     

Рис. 9.22. Узлы трубчатых ферм

а – с непосредственным примыканием; б – со сплющиванием концов стержней;

в – на фасонках; г – со вставками; 1 - заглушка

 

 

 
 

Рис. 9.23. Стыковые соединения труб

 

 
 

Рис. 9. 24. Опорные узлы трубчатых ферм

 

 

Толщину стенок стержней принимать не менее 3 мм. Применение профилей

одинаковых размеров сечения, отличающихся толщиной стенок менее чем

на 2 мм не допустимо в одной ферме.

Ширину стержней решетки “” (из плоскости конструкции) следует принимать, возможно, большей. Но не более из условия наложения продольных сварных швов и не менее 0,6 поперечного размера пояса

В (, - толщина пояса и решетки).

Углы примыкания раскосов к поясу должны быть не менее 300 для обеспечения плотности участка сварного шва со стороны острого угла.

Заводские стыки стержней рекомендуется выполнять сваркой встык на остающейся подкладке, а монтажные стыки – фланцевыми на болтах.

Сварные швы, прикрепляющие стержни решетки к полкам поясов рассчитывают как стыковые (см. гл.4).

Узлы ферм из открытых гнутых профилей можно выполнять без фасонок.

При поясе фемы коробчатого сечения и раскосах из двух ветвей, соединенных планками, раскосы примыкают с двух сторон внахлестку к поясу и привариваются фланговыми швами (рис.9.25,а). Если высота пояса недостаточна, то к нему приваривают фасонки в двух плоскостях стыковыми швами (рис.9.25,б). Опорный узел показан на рис.9.25,в.

 

Оформление рабочего чертежа легких ферм (КМД)

На деталировочном (рабочем) чертеже показывают фасад отправочного элемента, планы верхнего и нижнего поясов, вид сбоку и разрезы. Узлы и сечения… Основными размерами узла являются размеры от центра узла до торцов… На деталировочном чертеже размещается спецификация деталей для каждого отправочного элемента и таблица заводских швов…

Узлы тяжелых ферм

В тяжелых фермах надо более строго выдерживать центрирование стержней в узлах по осям, проходящим через центр тяжести, так как даже небольшие эксцентриситеты при больших усилиях в стержнях вызывают значительные моменты, которые необходимо учитывать при расчете ферм.

При изменении сечения поясов центрирование элементов следует проводить по осредненной линии центров тяжести, при этом в расчете учитывается момент от расцентровки (если эксцентриситет больше 1,5% высоты сечения пояса).

Тяжелые фермы имеют, как правило, высоту больше 3,85 м, поэтому их собирают на монтаже из отдельных элементов. Монтажные стыки располагают в узлах или вблизи узлов.

При расположении стыка в узле, усложняется конструкция узла.

При монтаже не всегда удается обеспечить качество сварного соединения. Поэтому монтажные соединения элементов ферм, работающих на динамические нагрузки (мостовые, подкрановые фермы и т.д.), часто выполняют на высокопрочных болтах (рис.9.26). При Н-образном или швеллерном сечении стержней простыми и надежными являются узлы на фасонках, соединяющих с наружной стороны все подходящие к узлу стержни.

К фасонкам крепят только вертикальные элементы стержней.

Фасонки при устройстве стыков пояса в центре узла служат стыковыми элементами. Чтобы обеспечить работу фасонок целесообразно усиливать их в местах стыков наружными накладками. Число болтов, прикрепляющих

 

 

 
 

 

Рис.9.25. Узлы ферм из открытых гнутых профилей

 

накладки, увеличивается на 10%. Фасонки следует принимать достаточно толстыми, не меньше толщины скрепляемых элементов.

Болты в узлах тяжелых ферм следует размещать по унифицированным рискам на расстояниях, требуемых кондуктором и многошпиндельным сверлением (обычно при болтах мм шаг болтов принимают 80мм).

В большепролетных фермах горизонтальное смещение опор весьма значительно. Чтобы исключить дополнительные горизонтальные усилия, конструктивное решение опорных узлов должно соответствовать расчетной схеме (одна опора шарнирно неподвижная, другая – подвижная). Неподвижную

опору выполняют в виде плиточного шарнира или неподвижного балансира, подвижную на катках по типу мостовых ферм (см. гл.18).

 

 
 

Рис.9.26. Узел тяжелой фермы на болтах

 

 

Предварительно напряженные фермы

высокопрочной проволоки и т.п.). Затяжки следует размещать так, чтобы в результате их натяжения в наиболее нагруженных стержнях фермы возникали… Затяжки можно размещать в пределах длины отдельных стержней, работающих под… В фермах, пояс которых (работающий на растяжение) имеет значительный удельный вес по расходу металла, можно создать…

– Конец работы –

Используемые теги: основы, металлических, конструкций0.069

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основы металлических конструкций

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Основы планирования. Теоретические основы управления проектами. Основы планирования. Планирование проекта в MS Project 7
Использованная литература В В Богданов Управление проектами в Microsoft Project Учебный курс Санкт Петербург Питер г...

Деление клеток - основа размножения и роста организмов Деление клеток - процесс, лежащий в основе размножения и индивидуального развития всех живых организмов. Основную роль в делении клеток играет ядро. На окрашенных препаратах клетки содержимое ядра в
В процессе деления ядра нуклеопротеины спирализуются, укорачиваются и становятся видны а световой микроскоп в виде компактных палочковидных… Она в десятки раз продолжительнее митоза. В эту фазу происходит синтез молекул… В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена…

ОСНОВИ ТЕОРIЇ КIЛ, ОСНОВИ РАДІОЕЛЕКТРОНІКИ
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ... ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ РАДІОЕЛЕКТРОНІКИ...

Экономические основы технологического развития тема “ Основы технологического и экономического развития”
Особенностью современного развития технологий является переход к целостным технолого-экономическим системам высокой эффективности, охватывающим… В практической деятельности экономиста и финансиста технология является… Именно за счет прибыли, полученной от своевременно и разумно вложенных в технологию средств, и достигается…

ДЕРЕВО КАК МАТЕРИАЛ ИНЖЕНЕРНЫХ СООРУЖЕНИЙ. РАСЧЕТ ЭЛЕМЕНТОВ КОНСТРУКЦИИ ЦЕЛЬНОГО СЕЧЕНИЯ. СОЕДИНЕНИЯ ЭЛЕМЕНТОВ ДЕРЕВЯННЫХ КОНСТРУКЦИЙ. ПРОСТЕЙШИЕ СТРОПИЛЬНЫЕ КОНСТРУКЦИИ. ПРОСТРАНСТВЕННОЕ КРЕПЛЕНИЕ ПЛОСКОСТНЫХ ДЕРЕВЯННЫХ КОНСТРУКЦИЙ
Древесина как строительный материал известна с незапамятных времен В старину древесина применялась в простых конструктивных формах в виде стоек и... В нашей стране при изобилии лесных богатств древесина всегда являлась... Страницы летописи повествуют о том что еще в г при Владимире Мономахе в Киеве был построен большой деревянный...

Ведение в курс "Основы экономической теории" (Введення в курс "Основи економiчної теорiї)
В працях Ксенофонта 430 355 рр. до н. е Платона 427 347 рр. .о н. Аристотеля 384 322 рр. до н. е а також мислителв стародавнього Риму, нд, Китаю… Але не кожна економчна думка розвиваться у систему поглядв ста економчним… Н в рабовласницькому, н у феодальному суспльств ще не снувало струнко системи економчних поглядв на економчн процеси.…

Функциональные основы проектирования: антропометрия, эргономика и технология процессов, как основа назначения основных габаритов здания
Семестр... специальности Промышленное и гражданское строительство... Городское строительство и хозяйство Лекция Функциональные основы...

Модуль 1. ЕСТЕСТВЕННОНАУЧНЫЕ ОСНОВЫ ПРЕДСТАВЛЕНИЙ ОБ ОКРУЖАЮЩЕЙ ДЕЙСТВИТЕЛЬНОСТИ Тема 1. Основы концепций представления детерминированной физической картины мира
Модуль ЕСТЕСТВЕННОНАУЧНЫЕ ОСНОВЫ ПРЕДСТАВЛЕНИЙ ОБ ОКРУЖАЮЩЕЙ ДЕЙСТВИТЕЛЬНОСТИ... Тема Основы концепций представления детерминированной физической картины... Из наблюдений установлять теорию через теорию исправлять наблюдения есть лучший способ к изысканию правды...

Перспективные композиты XXI века на основе органических и неорганических полимеров и новые металлические сплавы, приоритетные технологии, структура, свойства
В настоящее время среди различных теорий прочности материалов выделяется кинетическая теория разрушения, разрабатываемая с 50-х гг. ленинградской… Согласно этой теории разрушение рассматривается как необратимый процесс… Основываясь на положениях кинетико-статистической модели разрушения: кинетического уравнения прочности твердых тел…

Перспективные композиты XXI века на основе органических и неорганических полимеров и новые металлические сплавы, приоритетные технологии, структура, свойства
Целью настоящей работы является изучение биологической активности талийорганических соединений (ТОС), обладающих АО активностью, и определение их… Клеточную суспензию бактерий Y. pestis EV НИИЭГ обрабатывали ТОС… Таблица 1 Антифаговая и антиоксидантная активности ТОС № Формула соединения Выживаемость Т4 (%) Антиоксидантная…

0.04
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам