рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Предмет теории вероятности

Предмет теории вероятности - раздел Математика, Теория вероятности. Возникновение математики случайного Любая Наука Изучает Не Сами Явления, Протекающие В Природе, В Обществе, А Их ...

Любая наука изучает не сами явления, протекающие в природе, в обществе, а их математические модели, т.е. описание явлений при помощи набора строго определенных символов и операций над ними.

При этом для построения математической модели реального явления во многих случаях достаточно учитывать только основные факторы, закономерности, которые позволяют предвидеть результат опыта по его заданным начальным условиям. Обнаруженные закономерности явления называют детерминическими (опреленными).

Однако есть множество задач, для решения которых приходится учитывать и случайные факторы, придающие исходу опыта элемент неопределенности. Например в вопросах стрельбы по цели невозможно без учета случайных факторов ответить на вопрос: сколько ракет нужно потратить для поражения цели? Невозможно предсказать какая сторона выпадет при бросании монеты? Сколько лет проживет родившийся сегодня ребенок? Сколько студентов опоздают на лекцию по теории вероятности? И т.д. Такие задачи, исход которых нельзя предсказать с полной уверенностью, требуют изучения не только основных, главных закономерностей, определяющих явление в общих чертах, но и случайных, второстепенных факторов. Выявленные в таких задачах (опытах) закономерности называются статистическими (или вероятными). Статистические закономерности исследуются мето­дами специальных математических дисциплин — теории вероятностей и математической статистики.

Теория вероятностей — математическая наука, изучающая зако­номерности, присущие массовым случайным явлениям. При этом из­учаемые явления рассматриваются в абстрактной форме, независимо от их конкретной природы. То есть теория вероятностей рассматрива­ет не сами реальные явления, а их упрощенные схемы — математиче­ские модели.

Предметом теории вероятностей являются математи­ческие модели случайных явлений. При этом под случайным явлением понимают явление, предсказать исход которого невозможно (при не­однократном воспроизведении одного и того же опыта оно протекает каждый раз несколько по-иному). Примеры случайных явлений: вы­падение герба при подбрасывании монеты, выигрыш по купленному лотерейному билету, результат измерения какой-либо величины, дли­тельность работы телевизора и т. п.

Цель теории вероятностей — осуществление прогноза в области случайных явлений, влияние на ход этих явлений, контроль их, огра­ничение сферы действия случайности. В настоящее время нет практи­чески ни одной области науки, в которой в той или иной степени не применялись бы вероятностные методы.

– Конец работы –

Эта тема принадлежит разделу:

Теория вероятности. Возникновение математики случайного

Теория вероятности как и другие науки возникла из потребностей практики Ее элементы были знакомы еще первобытным людям шансы убить зверя у двух.. Возникновение математики случайного относится к середине века и связано с.. Пример одной из ситуаций два игрока договорились играть в кости до тех пор пока одному не удастся выиграть три..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Предмет теории вероятности

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Действия над событиями
Введем основные операции над событиями; они полностью соответ­ствуют основным операциям над множествами. Суммой событий А и В называется событие С = А +

Статистическое определение вероятности
Для математического изучения случайного события необходимо ввести какую-либо количественную оценку события. Понятно, что одни события имеют больше шансов («более вероятны») наступить, чем дру­гие.

Элементы комбинаторики
Согласно классическому определению подсчет вероятности собы­тия А сводится к подсчету числа благоприятствующих ему исходов. Делают это обычно комбинаторными методами. Комбин

Геометрическое определение вероятности
    Геометрическое определение вероятности прим

Аксиоматическое определение вероятности
Аксиоматическое построение теории вероятностей создано в начале 30-х годов академиком А. Н. Колмогоровым. Аксиомы теории вероят­ностей вводятся таким образом, чтобы вероятность события обладала осн

Свойства вероятностей
Приведем ряд свойств вероятности, являющихся следствием акси­ом Колмогорова. С1. Вероятность невозможного события равна нулю, т.е. Р(Æ) =0.

Конечное вероятностное пространство
Пусть производится некоторый опыт (эксперимент), который имеет конечное число возможных исходов w1, w2, w3,.., wn. В этом случае Ώ = {

Условные вероятности
Пусть А и В — два события, рассматриваемые в данном опыте. На­ступление одного события (скажем, А) может влиять на возможность наступления другого (В). Для характеристики зависимости одн

Независимость событий
Из определения условной вероятности (п. 1.14) следует, что Р(А×В) = Р(А)×Р(ВçА)=Р(В)-Р(АçВ), (1.22) т. е. вероятность произведения

Вероятность суммы событий
Как известно (п. 1.11), вероятность суммы двух несовместных событии определяется аксиомой A3: ({А + В) = Р(А) + Р(В), А×В = Æ Выведем формулу суммы вероятностей двух совместных с

Формула полной вероятности
Одним из следствий совместного применения теорем сложения умножения вероятностей являются формулы полнойвероятности и Байеса. Напомним, что события А1, А2, …

Формула Байеса (теорема гипотез)
Следствием формулы (1.30) является формула Байеса или теорема гипотез. Она позволяет переоценить вероятности гипотез Hi, принятых до опыта и называе

Формула Бернулли
Простейшая задача, относящаяся к схеме Бернулли, состоит в определении вероятности того, что в п независимых испытаниях собы­тие А наступит т раз (0 £т £ n

Понятие случайной величины. Закон распределения случайной величины
Одним из важнейших понятий теории вероятностей (наряду со слу­чайным событием и вероятностью) является понятие случайной вели­чины. Под случайной величиной понимают величину, которая в резул

Закон распределения дискретной случайной величины. Многоугольник распределения
Пусть X — д. с. в., которая принимает значения x1, x2, x3,…,xn,… (множество этих значений конечно или счетно) с некоторой вероят­ностью pi

Функция распределения и ее свойства. Функция распределения дискретной случайной величины
Очевидно, ряд распределения с.в. может быть построен только для д.с. в.: для н. с. в. нельзя даже перечислить все ее возможные значения. Кроме того, как увидим позже (п. 2.3, 2.4), вероятность кажд

Математическое ожидание случайной величины
Математическим ожиданием (или средним значением) д. с. в. X, — имеющей закон распределения рi = Р{Х = xi}, i= 1,2, 3,... , n, назы­вается число, равное сумме произвед

Дисперсия
Дисперсией (рассеянием) с. в. X называется математическое ожи­дание квадрата ее отклонения от своего математического ожидания. Обозначается дисперсия через DX (или

Среднее квадратическое отклонение
Дисперсия DX имеет размерность квадрата св. X, что в сравни­тельных целях неудобно. Когда желательно, чтобы оценка разброса (рассеяния) имела размерность с.в., используют еще одну числовую характер

Мода и медиана. Моменты случайных величин. Асимметрия и эксцесс. Квантили
Модой д. с. в. X называется ее значение, принимаемое с наибольшей вероятностью по сравнению с двумя соседними значениями, обознача­ется через M0X. Для н.с.b. M0X — точ

Предмет математической статистики
Математическая статистика — раздел математики, в котором изучаются методы сбора, систематизации и обработки результатов наблюдений массовых случайных явлений для выявления

Генеральная и выборочная совокупности
Пусть требуется изучить данную совокупность объектов относи­тельно некоторого признака. Например, рассматривая работу диспет­чера (продавца, парикмахера,...), можно исследовать: его загружен

Статистическое распределение выборки
Эмпирическая функция распределения/ Пусть изучается некоторая св. X. С этой целью над с. в. X про­изводится ряд независимых опытов (наблюдений). В каждом из этих опытов ве

Графическое изображение статистического распределения
Статистическое распределение изображается графически (для на­глядности) в виде так называемых полигона и гистограммы. Полигон, как правило, служит для изображения дискретного (т. е. варианты от­лич

Числовые характеристики статистического распределения
Для выборки можно определить ряд числовых характеристик, ана­логичным тем, что в теории вероятностей определялись для случайных величин (см. п. 2.5). Пусть статистическое распределение выб

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги