рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Распространение пламени в гибридных смесях уголь-метан-воздух

Работа сделанна в 2004 году

Распространение пламени в гибридных смесях уголь-метан-воздух - Курсовая Работа, раздел Физика, - 2004 год - Министерство Образования И Науки Украины Одесский Национальный Университет Им...

Министерство образования и науки Украины Одесский национальный университет им. И.И. Мечникова Кафедра общей и химической физики Распространение пламени в гибридных смесях уголь-метан-воздух Курсовая работа студентки IV курса физического факультета Каменецкой Ольги Ивановны Научный руководитель профессор Шевчук В.Г. Одесса-2004 Содержание Введение Глава1. Распространение пламени в горючих смесях 1.1 Распространение пламени в газофазных смесях. 1. Структура одностадийной волны и скорость горения в приближении узкой зоны реакции. 2. Воспламенение газовых смесей и скорость распространения пламени. 1.2 Ламинарное пламя в пылях. 1.3 Распространение пламени в гибридных смесях. Глава2. Экспериментальная установка и методика исследования пламени гибридных смесях. 2.1 Описание установки. 2.2 Методика обработки результатов. Выводы.

Введение.

Горение в режиме распространения пламени является наиболее часто встречающимся видом горения как в гомогенных газообразных системах, так и в пылях. Задача распространения пламени в газах является классической задачей физики горения и подробно изучена как в экспериментальном [1], так и в теоретическом плане [2]. В отличие от газов, где горючее и окислитель перемешаны на молекулярном уровне, в пылях появляются дополнительные управляющие параметры, обусловленные дисперсным состоянием горючего, такие как: размер частиц, их форма, распределение частиц по размерам [3]. В газодинамическом отношениями между газами и пылями существует определённое подобие, проявляющееся в существовании режимов распространения пламени: ламинарного, вибрационного, турбулентного, детонационного. Однако, если в газах условия существования этих режимов определяются только концентрационными соотношениями, то в пылях они в более значительной мере зависят от дисперсных характеристик горючего.

Промежуточное положение между газами и пылями занимают так называемые гибридные смеси, т. е. смеси горючего порошка с газообразным окислителем и горючим.

Например, гибридные смеси уголь-метан-воздух. Именно в таких смесях происходят наиболее разрушительные шахтные взрывы. Однако в экспериментальном плане такие системы практически не изучались (за исключением детонаций в экспериментальных штреках). Теоретическое моделирование распространение пламени в смеси горючих газов и частиц, основанное на численном интегрировании уравнений теплового и массового баланса проводились в единственно известной нам работе [4]. Из общих физических соображений следует ожидать, что если частицы достаточно мелкие для того, чтобы воспламеняться и гореть в зоне газового пламени, то твёрдая фаза будет выступать как дополнительный источник тепла и скорость пламени должна численно возрастать в гибридной смеси по сравнению с чисто газовой смесью.

Если же газообразная смесь является быстрогорючей, а частицы достаточно крупными, то горение частиц будет происходить вблизи или в зоне газофазных продуктов сгорания.

В этом случае тепловыделение на частицах реализуется на больших расстояниях от границы предпламенная зона – зона газофазного горения и не будет оказывать существенного влияния на динамику прогрева предпламенной зоны, т.е. частицы будут служить дополнительным стоком тепла в зоне горения аналогично инертной добавки. Вследствие этого следует ожидать снижение скорости распространения пламени.

Для указанных двух подходов должны реализовываться различные расчётные схемы ламинарного пламени. Выбор того или иного подхода, прежде всего, должен основываться на экспериментальных исследованиях ламинарного пламени в гибридных смесях. Наша работа посвящена экспериментальному изучению ламинарного пламени в гибридных смесях метан-уголь-воздух. Её основная идея заключается в сравнительных исследованиях процесса распространения пламени в следующих смесях: метан-воздух при различных концентрационных соотношениях компонентов; метан-уголь-воздух; метан-воздух-инертная добавка при соответствующих концентрациях метана.

В качестве базового экспериментального метода выбран метод тонкостенного резинового зонда, т.е. предварительно создаётся горючая газообразная смесь, затем производится распыл твёрдого компонента и центральное зажигание. Для этого нам понадобилось модифицировать установку “зонд” [5] прежде всего системой приготовления и контроля параметров горючей метановоздушной смеси.

В работе дано Описание установки и приведены результаты предварительных опытов. Глава 1:

Распространение пламени в горючих смесях

Распространение пламени в горючих смесях . 1.1

Распространение пламени в газофазных смесях

Распространение пламени в газофазных смесях . 1.1

Структура одностадийной волны и скорость горения в приближении узкой зоны реакции

В волне горения протекают химические реакции, приводящие к выделению т... (1.13) Поскольку в стационарной волне горения профиль температуры оста... Снова будем рассматривать уравнение теплопроводности (1.15): (1.16) Ис... Решение (1.20) показано на рис. Пренебрегая вторым слагаемым в (1.18) и интегрируя, получим для зоны р...

Воспламенение газовых смесей и скорость распространения пламени

То же наблюдается и при слишком большом содержании газа в газовоздушно... Для метана нижний предел воспламеняемости в воздухе составляет 5,3%, в... концентрационные пределы воспламенения сужаются. Условиями осуществления вынужденного воспламенения являются: наличие э... Различают два режима стационарного распространения пламени: в покоящей...

Ламинарное пламя в пылях

Ламинарное пламя в пылях. Анализ проблемы ламинарного пламени в газовзвесях основывается на подходах, развитых применительно к горению газофазных систем [2] и учитывает целый ряд присущих взвесям особенностей.

Это, в первую очередь -отличия в температурах и скоростях конденсированной и газовой компонент, закономерности воспламенения и горения частиц в волне горения. Указанные особенности обуславливают существование в газовзвесях более широких, в сравнении с газами, фронтов горения и наличие значительных радиационных потоков.

В связи с этим, с нашей точки зрения, принципиально важными для ламинарного режима являются взаимосвязанные вопросы о механизме передачи тепла в предпламенную зону и о возможности использования применительно к газовзвесям понятия нормальной (фундаментальной) скорости пламени. Нормальная скорость пламени определяет объем горючей смеси, поступающий в единицу времени на единицу поверхности фронта пламени и в случае искривленных фронтов характеризует скорость перемещения фронта пламени по нормали к его поверхности.

Для газовзвесей введение нормальной скорости оправдано в том случае, когда ширина предпламенной зоны ln и ширина зоны горения lr = v много меньше радиуса кривизны фронта пламени, сопоставимого с размерами экспериментальной установки (для труб -диаметр трубы, для горелок - диаметр устья). Таким образом, применительно к газозвесям частиц речь может идти о соотношении кондуктивного потока из зоны горения и радиационного потока от зоны горения и от зоны высокотемпературных конденсированных продуктов сгорания.

Практически задача должна решаться двумя путями: 1) прямыми измерениями кондуктивного и радиационного потоков, выходящих из зоны горения; 2) определением функциональной зависимости скорости пламени от параметров аэровзвеси (размера частиц и концентрации твердой фазы) в максимально возможном диапазоне их значений и в различных экспериментальных условиях. Теоретические исследования горения газовзвесей основываются на хорошо развитых моделях горения одиночных капель и частиц (начиная с работ Г. А. Варшавского и Д. Срезневского). В общем случае прогрев частиц до температуры воспламенения в волне горения осуществляется совместным действием кондуктивного, конвективного и радиационного потоков тепла.

Однако, целесообразен раздельный учет каждого из указанных слагаемых, с тем, чтобы в дальнейшем, основываясь на экспериментальных данных, выявить область преобладания того либо иного механизма теплоперадачи. Кондуктивный механизм предполагает, что прогрев взвеси осуществляется молекулярной теплопроводностью. Первые теоретические работы в этой области выполнены О. И. Лейпунским [10] и Ф. Вильямсом [11]. Так, в [10], в предположении, что скорость горения черного пороха определяется горением выносимых с поверхности угольных частиц, получено выражение для скорости пламени, где к - коэффициент температуропроводности газа, - время горения частиц, Тп - температура поверхности пороха, Тэф - эффективная температура горения. (1.25) Несмотря на простоту, (1.25) передает все основные особенности кондуктивного механизма волны горения.

Действительно, в случае диффузионного режима горения частиц ( ) скорость пламени пропорциональная d-1, а для кинетического ( ) пропорциональна. Радиационный механизм.

Наличие высокотемпературных горящих частиц и продуктов их сгорания в зоне горения (или в послепламенной зоне), а также высокая поглощательная способность взвеси в зоне прогрева, могут обусловить существенную роль процессов радиационного переноса в явлениях распространения фронта горения в газовзвесях.

Общие черты радиационного механизма распространения пламени передают следующие простые оценки, проведенные В. Нуссельтом [12]. При стационарном распространении пламени лучистый поток от сплошного фронта горения с эффективной температурой Тэф за время dt равен dt, за это же время фронт пламени перемещается на dx = vdt и, следовательно, лучистый поток должен прогреть этот слой до некоторой температуры Тв, т.е. dt = Соб(Тв – T0)dx, здесь – Соб - объемная теплоемкость смеси.

Откуда (1.26) А зависимость от d реализуется только через TB(d), т. е. для магния v должна была бы расти с ростом d (поскольку Тв уменьшается), для алюминия - наоборот, уменьшаться или оставаться неизменной. Конвективный механизм предполагает, что перенос тепла из зоны горения в предпламенную зону производится в основном движущимися газообразными продуктами сгорания. Этот режим может реализовываться при распространении пламени от закрытого конца реакционного сосуда и в облаках газовзвеси.

Необходимыми условиями его возникновения являются: существенное газовыделение при горении частиц, тепловое расширение продуктов сгорания в направлении движения фронта пламени и различие в скоростях движения частиц и газа. Таким образом, теоретически возможные механизмы распространения пламени по газовзвеси достаточно подробно изучены. Вместе с тем, по нашему мнению, применительно к задачам волнового горения конкретных газовзвесей, учитывая неполноту (или ограниченный характер) информации о термокинетических параметрах системы, оптико-спектральных характеристиках исходных частиц и продуктов сгорания, возможные смены гидродинамических режимов, применение строгих постановок задач в рамках механики многофазных потоков имеет скорее иллюстративный характер, т.е. предполагает получение не столько количественной сколько качественной информации о зависимости скорости пламени от параметров взвеси.

Естественно, выбор той или иной модели ламинарного пламени применительно к конкретному типу взвеси и аппаратурным условиям может производиться только путем сравнения с соответствующими опытными данными.

Нормальная скорость пламени определяется из системы дифференциальных уравнений, описывающих динамику прогрева газового и твердого компонентов в предпламенной зоне (рассматривается плоский стационарный фронт пламени, распространяющийся в бесконечном пространстве горючей газовзвеси) (1.27) (1.28) Уравнение (1.25) описывает прогрев частиц (индекс s относится к частицам) с учетом радиационного потока q0, поступающего из зоны продуктов сгорания, и возможного движения частиц относительно газа vы; п =6 В / - счетная концентрация частиц, В - массовая концентрация горючего; l= 2dps/3B - длина пробега излучения в исходной взвеси; а = Nu /d -коэффициент теплообмена; с - теплоемкость; р - плотность; -теплопроводность газа; Т - температура; d - диаметр частиц.

В (1.26) пренебрегаем тепловыделением за счет реакции в зоне прогрева.

Условия на холодной границе (1.29) На границе зоны прогрева и горения (х = 0) в качестве граничного условия запишем уравнение теплового баланса между зонами прогрева и реакции (1.30) Здесь Ti и Tsi - температура газа и частиц в точке воспламенения, г - время горения частиц, T∞ - адиабатическая температура сгорания. Профиль температуры газа в зоне горения полагаем линейным, так что - средний кондуктивный поток тепла в предпламенную зону. В качестве условия воспламенения берем Tsi=Ts* , (Ts* - температура частиц в режиме самовоспламенения). Можно показать, что выбор иного условия воспламенения не сказывается существенно на получаемых результатах, вместе с тем выбранное условие существенно упрощает задачу. Решая (1.27 – 1.30) приходим к следующему трансцендентному уравнению: где (1.31) Из (1.31) легко получить предельные выражения для чисто кондуктивного и радиационного механизмов горения.

Полагая А = 0 (q0 = 0) и vs= 0, имеем для кондуктивного механизма Пренебрегая теплопроводностью ( ), получим для v выражение. 1.3 Распространение пламени в гибридных смесях.

В работе [4] исследовано распространение фронта горения по газовзвеси, в которой экзотермические химические реакции идут в газовой фазе и на поверхности частиц дисперсной фазы с одним из компонентов газовой фазы. Такие процессы, в частности, происходят при горении метановоздушной смеси со взвешенными в ней частицами угольной пыли. Сформулирована физико-математическая модель распространения пламени по газовзвеси, состоявшей из смеси газов (окислителя, горючего и инертного) и частиц конденсированного вещества, гетерогенно реагирующих с окислителем.

На основе численного анализа получены зависимости скорости распространения пламени от параметров, характеризующих массовую концентрацию частиц, их размер, энергию активации гетерогенной реакции на поверхности частиц, тепловой эффект гетерогенной реакции и массообмен частиц. В зависимости от соотношения параметров дисперсной фазы скорость распространения пламени в такой среде может увеличиваться в несколько раз по сравнению со скоростью пламени в незапыленной газовой смеси либо уменьшаться, и тогда влияние частиц аналогично влиянию инертной дисперсной фазы. Рассматривается полубесконечная газовзвесь, состоящая из смеси газов (окислителя, горючего и инертного), в которой равномерно взвешены мелкие частицы вещества, способного гетерогенно реагировать с одним из компонентов газовой смеси.

Предполагается, что реакция на поверхности частиц идёт с окислителем; газодисперсная смесь неподвижна; частицы имеют одинаковый размер и сферическую форму; теплообмен между частицами и газом происходит по закону Ньютона; скорость химических реакций в газе и на поверхности частиц от температуры по закону Аррениуса; продуктами гетерогенной реакции на частицах являются газы; все химические реакции идут без возрастания объема; термическим расширением газовой смеси пренебрегаем; на границе области х=0 расположен источник воспламенения (горячая стенка), а газовзвесь расположена на расстоянии l от горячей стенки.

Математическая модель горения такой смеси построена на основе теплодиффузионной модели горения газов [2], дополненной уравнениями энергии и выгорания дисперсной фазы с учётом межфазного теплового массового взаимодействия.

Подобные модели, учитывающие двухтемпературность среды, успешно применяли для моделирования самовоспламенения [13] и зажигания газовзвесей [14], для исследования вопросов пожаротушения и огнепреграждения [15]. С учётом сделанных допущений уравнения, описывающие процессы в такой смеси, имеют следующий вид: уравнение энергии газовой фазы- (1.32) уравнение энергии частицы- (1.33) уравнения сохранения массы горючего и окислителя в газовой фазе- (1.34) (1.35) уравнение изменения массы частицы- (1.36) уравнение сохранения массы среды- (1.37) Начальные условия: (1.38) граничные условия: (1.39) Здесь t – время; х - координата; Т- температура; ρ- плотность; с- удельная теплоемкость; Qpg,0 –теплота химической реакции в газе, q – на поверхности частиц; Е – энергия активации химической реакции; k0, k0,k- предэкспоненциальные множители в законе Аррениуса для гомогенной и гетерогенной реакций; m - масса частицы; N – число частиц в единице объема; λ, α, βm, D – коэффициенты теплопроводности, теплообмена, массообмена, диффузии; R- универсальная газовая постоянная; Y1,Y2- концентрации горючего и окислителя в газовой фазе; NuD- диффузионное число Нуссельта; af – стехиометрический коэффициент. Индексы: 1- горючий газ, 2- окислитель, in- инертная часть исходной газовой смеси и продукты горения, g- газовая фаза, k-дисперсная фаза, 0- начальные условия.

Таким образом, построена математическая модель горения газовзвеси, состоящей смеси газообразного окислителя и горючего и взвешенных в ней частиц, гетерогенно реагирующих с газообразным окислителем.

Проведенное численное исследование влияния параметров дисперсной фазы на стационарную скорость распространения пламени по газовзвеси показало, что в зависимости от соотношения параметров газовой и дисперсной фаз возможны случаи, когда наличие химически активной дисперсной фазы увеличивает скорость распространения волны горения в несколько раз по сравнению со скоростью фронта горения в чистой газовой смеси.

Это может быть причиной перехода горения такой смеси в детонацию.

При некоторых соотношениях параметров дисперсной фазы ее влияние аналогично влиянию инертной дисперсной фазы. Постановка задачи.

Исходя из вышеизложенного, в нашей работе ставятся следующие цели: 1. Модифицировать установку по изучению распределения пламени в пылях для исследования процессов горения гибридных смесей метан-воздух-уголь. 2. Провести опыты с различными концентрационными соотношениями метана и угля. 3. Сделать выводы о роли угля (как экзотермической или инертной добавки) в процессах горения таких гибридных смесей.

– Конец работы –

Используемые теги: Распространение, пламени, гибридных, смесях, уголь-метан-воздух0.075

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Распространение пламени в гибридных смесях уголь-метан-воздух

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Уравнения и характеристики распространения волн реального электромагнитного поля
При этом свойства этого поля физически полно и математически исчерпывающе описываются системой взаимосвязанных электродинамических уравнений,… Поэтому при жизни его электродинамическая теория ЭМ поля не нашла должного… Впоследствии, после триумфа теории Максвелла - открытия ЭМ волн (Герц, 1888 г.), первоначальная структура…

Распространение звука в пространстве и его воздействие на органы слуха человека
Первое по существу является причиной, второе следствием, при этом первое понятие о звуке – объективное, второе – субъективное. В первом случае звук… Самые разнообразные эмоции вызывает у нас тот сложный комплекс звуков, который… При достижении звуковой волной какой-либо точки пространства, частицы вещества, до того не совершавшие упорядоченных…

Экспериментальное наблюдение волн магнитного поля и исследование их распространения в металлах

Строение семян. Прорастание и распространение
Прорастание семени Перед прорасталием семена в большинстве случаев проходят период покоя. Величина его у всех растений разная. Для прорастания… Приток питательных,веществ к зародышу выводит его из состояния покоя, и…

Планирование распространения печати
Так, в конце 2001 г. в РФ было зарегистрировано 33,318 тыс. наименований печатных изданий (большинство составляли газеты). Теперь о самом рынке… В условиях бешеной инфляции издатели терпели убытки. К тому же складывался… Издателю это тоже было на руку. Он располагал живыми деньгами и сразу же пускал их в производство. Такая практика…

О реальной структуре электромагнитного поля и его характеристиках распространения в виде плоских волн.
Уравнения в этих других системах рассматривают такие об-ласти пространства, где присутствуют либо только поле ЭМ векторного по-тенциала с… Основная и отличительная особенность уравнений систем (2) – (4) в сравнении с… Однако самое главное и уникальное в них то, что все вместе эти соотношения являют собой систему базовых …

Остаться человеком в пламени войны (по произведениям Василя Владимировича Быкова)
Задачи современных литераторов, пишущих о войне - огромны. Им необходимо показать значимость борьбы и победы, истоки героизма советских людей, их… Бескомпромиссность нравственных требований. Основой его сюжетов является… Если есть шанс – выстрелить. Если нет – выстоять. И победить, пусть не физически, но духовно. Война загоняет человека…

Профилактическая работа по предупреждению распространения наркотических веществ среди военнослужащих
В соответствии с Федеральным Законом О наркотических средствах и психотропных веществах под наркотическими средствами понимаются вещества… Классификация наркотиков 1. Производные конопли наркотики, изготовленные из… Под влиянием медицинских факторов ослабленный организм часто не в состоянии противостоять негативным воздействиям…

Пути распространения рекламы
Внешние ограничения могут быть вызваны или невозможностью применения данного средства (например, телевидения в удаленных неэлекрифицированных… Практика показывает, что реклама товаров производственного назначения наиболее… Например, газетные и журнальные публикации в большей степени соответствуют обращениям, использующим рациональные…

Причины возникновения и распространения фашистской идеологии и неофашизма в Европе и России.
Поэтому целью моего исследования будет изучение причин возникновения и распространения фашистской идеологии, фашизма и неофашизма в Европе и как… Она была написана в период экономического кризиса в Германии (1930 – 1933) и… Анализируется государственно-политическая практика и созданный фашизмом специфический механизм власти.Особое внимание…

0.03
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам