рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теплопроводность через сферическую оболочку

Теплопроводность через сферическую оболочку - раздел Физика, Объектом Исследования Является Сферическая Оболочка Заданной Толщины С Перем...

Объектом исследования является сферическая оболочка заданной толщины с переменным коэффициентом теплопроводности и с заданными значениями температуры на внутренней и внешней поверхностях оболочки. Цель проекта — определить распределение температуры внутри оболочки.В процессе работы выведено дифференциальное уравнение теплопроводности применительно к данным конкретным условиям задачи и получено решение этого уравнения в виде функции T ( r ), где T - температура в произвольной точке оболочки а r - расстояние между этой точкой и геометрическим центром оболочки.

Разработана программа TSO , рассчитывающая функцию T ( r ) и строящая её график для различных задаваемых пользователем параметров задачи . Результатом исследования является аналитическое решение уравнения теплопроводности T ( r ) и графическая иллюстрация этого решения, изображаемая на экране компьютера программой TSO . Полученная в проекте функция T ( r ) и разработанная программа TSO могут быть полезными для разработчиков химических и ядерных реакторов, котлов тепловых станций и различных сосудов в области промышленной и бытовой техники.

Курсовой проект выполнен в текстовом редакторе Microsoft WORD 0. Abstract Object of study is a spherical shell of given thickness with floating factors heatconduct and with given values of temperature on internal and external surfaces of shell. Purpose of project — define a sharing a temperature of inwardly shell.In the process of work is remove differential equation heatconduct is aplicable to given concrete conditions of problem and is received decision of this equation in the manner of functions T(r), where T - a temperature in the free spot of shell, but r - a distance between this spot and geometric shell centre.

Designed program TSO, calculate function T(r) and build its graph for different assign by the user of parameters of task. Result of studies is an analytical decision of equation heatconduct T(r) and graphic illustration of this deciding, express on the computer screen by the program TSO. Received in the project a function T(r) and developping program TSO are to be useful for developers of chemical and nucleus reactors, caldrons of heat stations and different containers in the field of industrial and home appliances.

Course project is executed in the textual editor Microsoft WORD 0. Задание Пространство между двумя сферами радиусы которых R 1 и R 2 ( R 1 < R 2 ), температура которых Т 1 и Т 2 , заполнено веществом, теплопроводность которого изменяется по закону ( b=const) , где r - радиус от центра сфер. Найти закон распределения температуры в этом веществе Т = Т ( r ). Содержание 1 Введение 2 Основные положения теплопроводности 2.1 Температурное поле 2.2 Градиент температуры 2.3 Основной закон теплопроводности 2.4 Дифференциальное уравнение теплопроводности 13 2.5 Краевые условия 2.6 Теплопроводность через шаровую стенку 3 Заключение 22 Список используемых источников 23 Приложение А Программа TSO , рассчитывающая функцию T ( r ) 1 Введение В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах.

Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией.

Эти формы глубоко различны по своей природе и характеризуются различными законами. Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой.Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент.

Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты. Известно, что при нагревании тела кинетическая энергия его молекул возрастает. Частицы более нагретой части тела, сталкиваясь при своем беспорядочном движении с соседними частицами, сообщают им часть своей кинетической энергии.Этот процесс постепенно распространяется по всему телу. Перенос теплоты теплопроводностью зависит от физических свойств тела, от его геометрических размерах, а также от разности температур между различными частями тела. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему; кроме того, трудности возникают с увеличением сложности конфигурации системы.

Целью данного курсового проекта является нахождение закона распределения температуры в веществе, которым заполнено пространство между двумя сферами. 2 Основные положения теплопроводности 2.1 Температурное поле Теплопроводность представляет собой процесс распространения энергии между частицами тела, находящимися друг с другом в соприкосновении и имеющими различные температуры.

Рассмотрим нагрев какого-либо однородного и изотропного тела. Изотропным называют тело, обладающее одинаковыми физическими свойствами по всем направлениям.

При нагреве такого тела температура его в различных точках изменяется во времени и теплота распространяется от точек с более высокой температурой к точкам с более низкой.Из этого следует, что в общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры T как в пространстве, так и во времени: , (2.1) где — координаты точки; t — время.

Эта функция определяет температурное поле в рассматриваемом теле. В математической физике температурным полем называют совокупность значений температуры в данный момент времени для всех точек изучаемого пространства, в котором протекает процесс.Если температура тела есть функция координат и времени, то температурное поле называют нестационарным, т.е. зависящим от времени: . (2.2) Такое поле отвечает неустановившемуся тепловому режиму теплопроводности.

Если температура тела есть функция только координат и не изменяется с течением времени, то температурное поле тела называют стационарным: . (2.3) Уравнения двухмерного температурного поля для режима стационарного: ; (2.4) нестационарного: . (2.5) На практике встречаются задачи, когда температура тела является функцией одной координаты, тогда уравнения одномерного температурного поля для режима стационарного: ; (2.6) нестационарного: . (2.7) Одномерной, например, является задача о переносе теплоты в стенке, у которой длину и ширину можно считать бесконечно большой по сравнению с толщиной. 2.2 Градиент температуры Если соединить точки тела с одинаковой температурой, то получим поверхность равных температур, называемую изотермической.

Изотермические поверхности между собой никогда не пересекаются.Они либо замыкаются на себя, либо кончаются на границах тела. Рассмотрим две близкие изотермические поверхности с температурами T и T + D T (рисунок 2.1). Перемещаясь из какой либо точки А , можно обнаружить, что интенсивность изменения температуры по различным направлениям неодинакова. Если перемещаться по изотермической поверхности, то изменения температуры не обнаружим.

Если же перемещаться вдоль какого-либо направления P , то наблюдаем изменение температуры. Наибольшая разность температур на единицу длины будет в направлении нормали к изотермической поверхности.Предел отношения изменения температуры к расстоянию между изотермами по нормали , когда стремится к нулю, называют градиентом температуры. (2.8) Градиент температуры есть вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный частной производной от температуры по этому направлению.

За положительное направление градиента принимается направление возрастания температур. 2.3 Основной закон теплопроводности Для распространения теплоты в любом теле или пространстве необходимо наличие разности температур в различных точках тела. Это условие относится и к передаче теплоты теплопроводностью, при которой градиент температуры в различных точках тела не должен быть равен нулю. Связь между количеством теплоты , проходящим за промежуток времени через элементарную площадку dS , расположенную на изотермической поверхности, и градиентом температуры устанавливается гипотезой Фурье, согласно которой . (2.9) Минус в правой части показывает, что в направлении теплового потока температура убывает и grad T является величиной отрицательной.

Коэффициент пропорциональности называется коэффициентом теплопроводности или более кратко - теплопроводностью.

Справедливость гипотезы Фурье подтверждено многочисленными опытными данными, поэтому эта гипотеза в настоящее время носит название основного уравнения теплопроводности или закона Фурье. Отношение количества теплоты, проходящего через заданную поверхность, ко времени называют тепловым потоком.Тепловой поток обозначают q и выражают в ваттах (Вт): . (2.10) Отношение теплового потока dq через малый элемент изотермической поверхности к площади dS этой поверхности называют поверхностной плотностью теплового потока (или вектором плотности теплового потока), обозначают j и выражают в ваттах на квадратный метр (Вт/м 2 ): . (2.11) Вектор плотности теплового потока направлен по нормали к изотермической поверхности в сторону убывания температуры.

Векторы j и grad T лежат на одной прямой, но направлены в противоположные стороны.Тепловой поток q , прошедший сквозь произвольную поверхность S , находят из выражения . (2.12) Количество теплоты, прошедшее через эту поверхность в течение времени t , определяется интегралом . (2.13) Таким образом, для определения количества теплоты, проходящего через какую-либо произвольную поверхность твердого тела, необходимо знать температурное поле внутри рассматриваемого тела. Нахождение температурного поля и составляет основную задачу аналитической теории теплопроводности. 2.4 Дифференциальное уравнение теплопроводности Изучение любого физического процесса связано с установлением зависимости между величинами, характеризующими данный процесс.

Для сложных процессов, к которым относится передача теплоты теплопроводностью, при установлении зависимостей между величинами удобно воспользоваться методами математической физики, которая рассматривает протекание процесса не во всем изучаемом пространстве, а в элементарном объеме вещества в течение бесконечно малого отрезка времени.

Связь между величинами, участвующими в передаче теплоты теплопроводностью, устанавливается дифференциальным уравнением теплопроводности.

В пределах.

– Конец работы –

Используемые теги: Теплопроводность, через, сферическую, оболочку0.072

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теплопроводность через сферическую оболочку

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Теплопроводность через сферическую оболочку
Цель проекта - определить распределение температуры внутри оболочки.В процессе работы выведено дифференциальное уравнение теплопроводности… Разработана программа TSO, рассчитывающая функцию T r и строящая её график для… Курсовой проект выполнен в текстовом редакторе Microsoft WORD 0. Abstract Object of study is a spherical shell of…

Теплопроводность. Теплопроводность жидкостей и газов.
Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса… Учение о теплопроводности однородных и изотропных тел опирается на весьма… Частицы более нагретой части тела, сталкиваясь при своем беспорядочном движении с соседними частицами, сообщают им…

Каналы утечки информации через электромагнитное излучение
На сайте allrefs.net читайте: "Каналы утечки информации через электромагнитное излучение"

2. Полученным раствором смазывайте кожу с нежелательными волосками 2 раза в день. Через пару дней волосы выпадают сами навсегда.
На сайте allrefs.net читайте: "Владислав Лебедько"

Интерфейс пользователя ОС Linux и программирование на языке оболочки
На сайте allrefs.net читайте: "Интерфейс пользователя ОС Linux и программирование на языке оболочки"

Использования языка PL/SQL и оболочки SQL*Plus
На сайте allrefs.net читайте: "По курсу СУБД ORACLE. Использования языка PL/SQL и оболочки SQL*Plus"

Атака через Internet. Книга 2
Авторы: Медведовский И.Д., Семьянов П.В., Платонов В.В. "Атака через Internet"...

Сравнительный анализ некоторых положений «Тайной Доктрины» Блаватской и Учения Вознесенных Владык, данного через Профет
На сайте allrefs.net читайте: Сравнительный анализ некоторых положений «Тайной Доктрины» Блаватской и Учения Вознесенных Владык, данного через Профет...

ГЛАВА II. Энергетические оболочки человека. Пропитывание минералов энергией живых существ по резонансным частотам. Проблема бессмертия. 4
На сайте allrefs.net читайте: ГЛАВА II. Энергетические оболочки человека. Пропитывание минералов энергией живых существ по резонансным частотам. Проблема бессмертия. 4...

механизмы химических процессов, т.е. промежуточные стадии, через которые система переходит из начального в конечное состояние
Химическая кинетика изучает... механизмы химических процессов т е промежуточные стадии через которые система переходит из начального в...

0.031
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам