рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Генераторы стабильного тока и напряжения

Работа сделанна в 2008 году

Генераторы стабильного тока и напряжения - раздел Физика, - 2008 год - «Генераторы Стабильного Тока И Напряжения» Минск, 2008 Генераторы Ст...

«Генераторы стабильного тока и напряжения» МИНСК, 2008 Генераторы стабильного тока Для смещения и стабилизации режимов ИС широко используют генераторы стабильного тока (ГСТ): для стабилизации режимов и в качестве активной нагрузки усилительных каскадов; в качестве ИП эмиттеров Т дифференциальных усилителей; в интеграторах, генераторах пилообразного напряжения и т.д. Под ГСТ понимают двухполюсник, ток через который практически не зависит от приложенного напряжения.Если на такой двухполюсник подать сумму постоянного и переменного напряжений, то его сопротивление для переменной составляющей будет высоким.

Сопротивление для постоянной составляющей обычно требуется небольшое. Важнейшими параметрами ГСТ являются выходное сопротивление (в идеале ), выходной постоянный ток и рабочий диапазон – диапазон выходного напряжения, в котором ГСТ сохраняет свои свойства.Простейший ГСТ (рис. 1, а) обеспечивает ток , где , – напряжение база – эмиттер и коэффициент передачи тока Т. Для определения параметра напомним, что выходное сопротивление каскада с ОЭ (без учета нагрузки) составляет , (1) а б в г д е ж Рис. 1. Схемы генераторов стабильного тока где – эквивалентное (с учетом делителя смещения) сопротивление генератора; – суммарное (с учетом дифференциального сопротивления ) сопротивление в цепи эмиттера. Применительно к рассматриваемому ГСТ выражение (1) трансформируется в . При малых токах величина составляет десятки и сотни килоом.

Рабочий диапазон соответствует изменению напряжения на коллекторе в пределах от до . Основными недостатками этого ГСТ являются: относительно невысокое выходное сопротивление; низкая температурная и режимная (при изменении напряжения ИП) стабильность выходного тока. Для повышения стабильности с помощью дополнительных сопротивлений и вводится эмиттерная стабилизация ГСТ (см. рис.1, а), при которой ток . Она, как следует из соотношения (1), увеличивает сопротивление ГСТ, но уменьшает его рабочий диапазон на падение напряжения . Дальнейшее повышение температурной стабильности достигают включением Д последовательно с сопротивлением . Если характеристики Д согласованы с аналогичными Т, то это нейтрализует изменение тока под влиянием температурного приращения . Согласование характеристик обеспечивают диодным включением Т. Требуемое напряжение на базу Т ГСТ можно подавать также с помощью стабилитрона (вместо сопротивления ) или нескольких диодов.

Иногда ГСТ, в которых ток вытекает из нагрузки, называют “поглотителями” тока, а со втекающим током – источниками(см. рис.1, а, б). Реализация ГСТ на ПТ может быть проще: без отдельного источника смещения, т.е. по схеме двухполюсного включения.

Такие ГСТ выполняют на ПТ с управляющим переходом и ПТ с изолированным затвором и встроенным каналом (рис. 1, в, г). Их выходное сопротивление равно , где , – внутреннее сопротивление и крутизна ПТ. Существенный недостаток рассматриваемых ГСТ – относительно небольшое выходное сопротивление. Для его увеличения применяют двухтранзисторные ГСТ (рис. 1, д – ж). В генераторе на БПТ сопротивление и составляет сотни (тысячи) килоом, в ГСТ на ПТ оно определяется соотношением ( ( ), ( ) – внутреннее сопротивление и крутизна транзистора VT1 (VT2)) и достигает единиц (десятков) мегаом.

Для повышения тока затвор ПТ VT1 можно подключить не к корпусу, а к истоку ПТ VT2, что уменьшает напряжение смещения ПТ VT1 и увеличивает его ток. Но выходное сопротивление ГСТ оказывается при этом меньше.

Напряжение на базе (затворе) Т приведенных ГСТ фиксировано.

Если предусмотреть возможность его изменения, то получим программируемый ГСТ. В случае изменения этого напряжения по закону сигнала ток отслеживает его, что соответствует управляемому генератору тока. От ГСТ со смещением на основе согласованной пары Т легко перейти к так называемому токовому зеркалу (ТЗ), широко применяемому в схемотех-нике аналоговых ИС. ТЗ (отражателем тока) называют функциональный узел, у которого токи двух сходящихся в одну точку ветвей равны, причем входной управляет выходным (рис. 2, а). В рассматриваемом случае общей точкой является заземление. В выходную ветвь включена нагрузка и подается питающее напряжение.

Входное сопротивление ТЗ мало, выходное – велико (в пределе ). Поэтому ток не зависит от напряжения в точке 2, а определяется током . Коэффициент передачи является основным параметром ТЗ. В общем случае ТЗ можно рассматривать как частный случай управляемого генератора тока. У него коэффициент не обязательно равен 1. а б Рис. 2. Функциональная схема (а) и применение (б) токового зеркала Наиболее часто ТЗ применяются в качестве ГСТ и динамических нагрузок Т дифференциального каскада, обеспечивая переход от симметричного выхода к несимметричному высокоомному.

Рассмотрим последнее применение (рис. 2, б). В исходном состоянии транзисторы VT1 и VT2 имеют равные коллекторные токи . Когда на дифференциальный вход поступает некоторое напряжение , первый из них, например , увеличивается до значения , а второй ( ) уменьшается до величины . Ток повторяется ТЗ, поэтому выходной ток каскада составляет и равен сумме полезных составляющих обоих Т. Если же на базы транзисторов VT1 и VT2 поступит синфазное (относительно корпуса) приращение напряжения, то выходной ток будет равен нулю и ( – коэффициент ослабления синфазного напряжения (синфазной помехи), показывающий, во сколько раз коэффициент передачи синфазного входного напряжения меньше, чем дифференциального). На практике , поэтому синфазная помеха подавляется не полностью. а б в Рис. 3 Реализация токовых зеркал Простейшая (основная) схема ТЗ представлена на рис. 3, а. Предполагается, что транзисторы VT1 и VT2 одинаковы.

Входной ток вводится через добавочное сопротивление . Очевидно, в схеме , , , , а выходное сопротивление (с учетом формулы (1)) равно . Для уменьшения различия токов ветвей, что увеличивает значение параметра , в ТЗ вводят буферный Т VT3 (рис.3, б), который уменьшает разность токов в раз. Поэтому . Выходное сопротивление такое же, как и в предыдущей схеме.

Коллекторный ток VT3 намного меньше токов Т VT1 и VT2, из-за чего коэффициент имеет низкое значение.

Для увеличения тока иногда включают токоотводящее сопротивление . Рассматриваемые ТЗ обладают относительно невысоким выходным сопротивлением. В результате ток зависит от выходного напряжения, которое при высокоомной нагрузке может быть значительным.Это влечет за собой дополнительный разбаланс плеч, т.е. уменьшает коэффициент . Для увеличения сопротивления применяют ТЗ со следящим напряжением второго Т, называемое ТЗ Уилсона (рис. 3, в). В нем эмиттер Т VT3 повторяет напряжение на коллекторе Т VT1, поэтому коллекторные напряжения Т VT1 и VT2 почти одинаковы и не зависят от выходного.

Коэффициент имеет то же значение, что и в основной схеме ТЗ. Выходное сопротивление существенно выше (порядка ), из-за чего схема не разбалансируется выходным напряжением и работоспособна при более высокоомной нагрузке.

Дальнейшее повышение сопротивления можно обеспечить включением в эмиттеры Т VT1 и VT2 сопротивлений, выбираемых порядка 1 кОм. Сказанное справедливо также для других ТЗ. Если в ТЗ (см. рис. 3, а) к коллектору Т VT1, помимо Т VT2, подключить еще несколько Т со своими нагрузками, то получим схему с несколькими выходами.При этом возможна ситуация, когда один из выходных Т входит в режим насыщения, например, при отключении его нагрузки.

Тогда база Т будет отбирать из общей линии повышенный ток, что уменьшит выходные токи других Т. Для исключения этого вводят буферный Т, аналогичный Т VT3 на рис. 3, б. Для построения ТЗ, отражающего удвоенный (половинный) входной ток, необходимо в схеме (см. рис. 3, а) параллельно Т VT2 (VT1) подключить еще один Т. В ТЗ на ИС коэффициент часто задают выбором размеров (площадей) эмиттерных переходов.Фирмой Texas Instruments выпускаются монолитные ТЗ с коэффициентом передачи 1,0 , 0,5 , 0,25 и 2,0 и рабочим диапазоном от 1,2 до 40 В . Возможным способом реализации ТЗ с кратными токами и является включение в цепь эмиттера выходного (входного) Т дополнительного сопротивления.

Генераторы стабильного напряжения В схемотехнике аналоговых ИС широко применяют генераторы стабильного напряжения (ГСН) – двухполюсники, падение напряжения на которых слабо зависит от протекающего тока. Простейший ГСН – диод, через который протекает ток (от ГСТ или через сопротивление от ИП). В качестве диода обычно используют прямосмещенный эмиттерный переход Т, стабилизирующий напряжение на уровне примерно 0,65 В. Для увеличения напряжения стабилизации применяют последовательное соединение двух Т в диодном включении либо схему рис. 4, а. В ней ( , – напряжения база – эмиттер Т). Иногда с целью повышения тока Т VT1 дополнительно вводят шунтирующее сопротивление величиной несколько килоом, что уменьшает его дифференциальное сопротивление.

Дальнейшее увеличение достигают цепями из трех (четырех) Т. Температурный коэффициент напряжения, стабилизируемого прямым включением диодов, является отрицательным. а б Рис. 4. Схемы ГСН на транзисторах Для получения малых значений часто используют параллельное соединение делителя и Т VT (рис. 4, б). Здесь напряжение и, значит, ток через сопротивление стабильны.

Приращение внешнего напряжения приложено к сопротивлению и изменяет ток базы, влияющий на ток коллектора.Напряжение стабилизации (пренебрегаем током базы) составляет . Варьируя значениями и , можно регулировать величину . Очевидно, в схеме , где ( ) – приращение тока (напряжения) ГСН; – крутизна последнего.

Поэтому выходное сопротивление рассматриваемого ГСН равно и составляет примерно 50…200 Ом. Вместо диодов в ГСН часто применяют стабилитроны.Они имеют следующие недостатки: конечный набор значений и большой допуск на них (кроме дорогих прецизионных стабилитронов); большой уровень шума; достаточно большое дифференциальное сопротивление; зависимость напряжения от температуры (например, стабилитрон с = 27 В из серии 1N5221 производства США имеет коэффициент = 0,1 % /град). Рис. 5. Зависимость ТКН Стабилитронов от напряжения стабилизации и рабочего тока Исследованиями фирмы Motorola, Inc. установлено, что в окрестности точки = 6 В стабилитроны имеют значительно меньшее, чем при других напряжениях, дифференциальное сопротивление и почти нулевой коэффициент , который зависит от рабочего тока (рис. 5). Это связано с используемыми в стабилитронах двумя механизмами пробоя: зенеровским (туннельным) при низком и лавинном при высоком напряжении.

С учетом отмеченных закономерностей применяют так называемые компенсированные опорные элементы в виде последовательного соединения стабилитрона с напряжением 5,6 В и прямосмещенного диода.

Выбирая величину и рабочий ток, можно компенсировать отрицательный температурный коэффициент диода, равный –2,1 мВ/град. Такой подход использован в производимых фирмой Motorola, Inc. дешевых опорных элементах с напряжением = 6,2 В, имеющих коэффициент от 10–4 % /град (1N821) до 510–6 % /град (1N829). Указанные значения справедливы при токе = 7,5 мА. При этом в случае стабилитрона 1N829 приращение тока на 1 мА изменяет напряжение в три раза сильнее, чем изменение температуры от –55 до +100 оС. в Рис. 6. Реализация ГСН на ИС а б Имея компенсированный опорный элемент VD с фиксированным напряжением = 6,2 В, можно построить с помощью буферного операционного усилителя DA1 ГСН на любое требуемое напряжение (рис. 6, а). Опорный элемент, представляющий последовательное соединение стабилитрона и диода, включается в любой полярности.

Необходимый рабочий ток его = 7,5мА задается сопротивлением , величина которого, например, при = 10 В составляет 510 Ом (при этом = 3,83 кОм и = 6,19 кОм ). По рассматриваемой схеме строятся так называемые стабилитронные ИС, обеспечивающие = 3010–6 % /град. Они, как и их дискретные аналоги, обладают существенным недостатком: имеют высокий уровень шума, который сильнее в стабилитронах с лавинным пробоем ( > 6 В). Для уменьшения шума используют стабилитронную структуру с так называемым захороненным, или подповерхностным, слоем.

В последнее время в ГСН в качестве опорных элементов все шире применяют так называемые стабилитроны с напряжением запрещенной зоны, которые было бы точнее назвать -стабилитронами (рис. 6, б). В них элементы VT1, VT2 и образуют ТЗ с коэффициентом передачи < 1. Очевидно, , , = , , , где , , – напряжения база – эмиттер Т VT1…VT3; , – входной и выходной токи ТЗ; – падение напряжения на резисторе . Из этого следует, что напряжение , в отличие от , имеет положительный температурный коэффициент.

Поэтому, подбирая (в зависимости от тока) величину , можно обеспечить нулевой коэффициент , что, как оказывается, выполняется при 1,22 В (напряжение запрещенной зоны кремния при температуре абсолютного нуля). Ток ТЗ задают при помощи сопротивления или от ГСТ. Подключая рассматриваемый опорный элемент в предыдущую схему вместо стабилитрона VD, можно получить ГСН на любое требуемое напряжение.

В весьма распространенной схеме ГСН на основе -стабилитрона (рис. 6, в) элементы VT1, VT2 и образуют ТЗ с коэффициентом передачи = 0,1. По аналогии со схемой рис. 6, б ток . Поэтому и = 1,22 В. Ток создает на сопротивлении напряжение с положительным температурным коэффициентом, которое можно использовать в качестве выходного сигнала температурного датчика.

Цепь отрицательной ОС (усилитель DA1, делитель , Т VT1 и VT2) дополнительно компенсирует возможные изменения . Существуют также другие варианты построения -стабилитро-нов, но все они основаны на ТЗ с кратным отношением токов и сложении напряжений и вырабатываемого ТЗ. Дальнейшие улучшение параметра достигают температурной стабилизацией всего ГСН (термостатированием). Как известно, обычному термостатированию присущи громоздкость, сравнительно большая потребляемая мощность, медленные разогрев и выход на режим (10 и более минут). Поэтому в последнее время температуру стабилизируют на уровне кристалла (чипа) ИС, включая в состав последней нагревательную схему с температурным датчиком. Подход впервые опробован в 60-х годах фирмой Fairchild (США), выпустившей стабилизированную дифференциальную пару &#61549;А726 и предварительный усилитель постоянного тока &#61549;А727. Позже появились “термостатированные” ГСН, например, серии National LM399, которые имеют = 2&#61655;10–5 % /град. Такие ГСН производятся в стандартных транзисторных корпусах типа ТО-46, имеют нагреватели с мощностью потребления 0,25 Вт и временем выхода на режим не более 3 с. Они построены на стабилитронах с захороненным слоем.

Отметим также, что на основе последних путем качественного схемотехнического решения фирмой Linear Technology (США) созданы ГСН без подогрева, имеющие = 0,05&#61655;10–6 % /град и на порядок лучшие характеристики по долговременной стабильности и шуму. ЛИТЕРАТУРА 1. Степаненко И. П. Основы теории транзисторов и транзисторных схем. – 4-е изд перераб. и доп. – М.: Энергия, 2003. – 608 с. 2. Математическое моделирование и макромоделирование биполярных элементов электронных схем / Е.А. Чахмахсазян, Г.П. Мозговой, В.Д.Силин. – М.: Радио и связь, 1999. – 144 с. 3. Ногин В.Н. Аналоговые электронные устройства: Учебное пособие для вузов. – М.: Радио и связь, 2002. – 304 с.

– Конец работы –

Используемые теги: Генераторы, стабильного, тока, напряжения0.071

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Генераторы стабильного тока и напряжения

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Синхронный генератор является основным типом генератора переменного тока, применяемым в процессе производства электроэнергии рис.3.1
Синхронной электрической машиной называется машина переменного тока в которой частота вращения ротора n равна частоте вращения магнитного потока... Синхронный генератор является основным типом генератора переменного тока... Синхронные двигатели в отличие от асинхронных двигателей имеют строго постоянную частоту вращения не зависящую от...

Регулирование и стабилизация напряжения и тока источников внешнего электропитания
Рисунок 1 Существуют регуляторы на основе так называемых поворотных трансформаторов. Используются угольные регуляторы. Весьма перспективными… Параметрические – основаны на принципе действия элементов с нелинейной ВАХ… Весьма эффективными для регулирования U ИВЭП, как отмечалось, являются управляемые выпрямители. Управляемые…

Тяговый генератор переменного тока ГС501АУ1
Структура условного обозначения ГС [*]А[*]2: Г – генератор; С – синхронный; [*] – номер модели (501, 515, 517); А – конструктивное исполнение; [*]2… Система вентиляции генераторов принудительная нагнетательная. Изоляция обмотки… Мощность, передаваемая на ротор, составляет не более 1,5 % мощности генератора, резко уменьшается трудоемкость при…

Генератор синусоидального напряжения
Так как генератор сам является источником сигнала, он не имеет входа. Генераторы строятся на основе усилителей с цепями положительной обратной… В качестве цепей обратной связи могут использоваться резонансные L-C или… L-C генераторы обычно используются для формирования радиочастотных сигналов, т.к весогабаритные характеристики…

Анализ сложных электрических цепей постоянного тока и однофазного переменного тока

Влияние гистерезиса и вихревых токов на ток катушки с ферромагнитным сердечником
Изменение энергии магнитного поля dWm выражается площадью элементарного прямоугольника со сторонами i и d. Следовательно dWм id Энергия магнитного… При размагничивании от Вмах до В, участок 3-5 напряженность поля по-прежнему… Площадь, ограниченную контуром 3-4-5-3, нужно считать отрицательной.

Генераторы переменного тока
Преобладающую роль в наше время играют электромеханическиеиндукционные генераторы переменного тока. В этих генераторах механическаяэнергия… Но все онисостоят из одних и тех же основных частей.Это, во-первых,… Для получения большого магнитного потока в генераторах применяютспециальную магнитную систему, состоящую из двух…

О выборе рациональных размеров сегнетоэлектрического тела импульсного генератора напряжения
Отличие в физических процессах при различных направлениях движенияфронта ударной волны анализируется в работах 1,2 . Окончательный… Обозначение размеров рабочего тела приведено на рис. 1. Существуют различные… Для большогочисла применяемых на практике сегнетоэлектрических источников электрическогонапряжения единственно…

Методы измерения переменных токов и напряжений средней и низкой частоты
В свою очередь уровень развития измерительной техники является одним из важнейших показателей прогресса науки и техники.Это особенно справедливо… Основными направлениями качественной стороны развития… Электрорадиоизмерения, как и другие измерения, основаны на метрологии. Метрология – наука об измерениях, методах и…

Спектры первичного тока и выходного напряжения выпрямителей
На сайте allrefs.net читайте: "Спектры первичного тока и выходного напряжения выпрямителей"

0.034
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам