рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ В ПОТЕНЦИАЛЬНОМ ПОЛЕ

РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ В ПОТЕНЦИАЛЬНОМ ПОЛЕ - раздел Механика, Лекция №4   Молекулярная Физика   ...

ЛЕКЦИЯ №4

 

Молекулярная физика

 

РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ В ПОТЕНЦИАЛЬНОМ ПОЛЕ

При выводе основного уравнения МКТ газов и распределения Максвелла предполагалось, что на молекулы газа внешние силы не действуют, а это значит, что… Получим закон изменения давления с высотой, предполагая, что по всей высоте:… Пусть на высоте h давление р. Тогда на высоте h + dh давление – р + dp. Причём, если dh >0, то dp < 0. (р + dp)…

ЧИСЛО СОУДАРЕНИЙ И СРЕДНЯЯ ДЛИНА СВОБОДНОГО ПРОБЕГА МОЛЕКУЛ ИДЕАЛЬНОГО ГАЗА.

Молекулы газа в результате хаотического движения непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекула… , (30) где – средняя арифметическая скорость молекул.

ЯВЛЕНИЯ ПЕРЕНОСА

 

В термодинамически неравновесных системах, т.е. в системах, для которых значения макропараметров (Т, р, ) в разных ее точках различны, возникают необратимые процессы, получившие название явлений переноса. В результате таких процессов из одной локальной области системы в другую происходит перенос энергии (явление теплопроводности), массы (явление диффузии), импульса (внутреннее трение), заряда и т.д. Это ведет к выравниванию значений макропараметров по объему системы. Понятно, что перенос любой величины объясняется переходом с места на место некоторого числа частиц (молекул и атомов) в результате их хаотического движения.

Получим общее уравнение переноса вдоль произвольного направления. Направим вдоль него ось Ох (рис 3). Выделим мысленно элемент плоскости площадью ∆S, перпендикулярный Ох. В силу хаотичности движения за время ∆t через ∆S в направлении Ох переместится N частиц:

(1)

Здесь n – концентрация молекул (атомов), а – их средняя арифметическая скорость. Переходя через ∆S, каждая молекула переносит присущие ей массу, заряд, импульс, энергию или какие-то другие свои характеристики. Обозначим значение величины, переносимое одной молекулой буквой φ. Тогда за время ∆t через площадку ∆S в направлении оси Ох будет перенесено количество физической величины

(2).

Очевидно, если концентрация справа тоже n, то и справа налево перейдет столько же частиц. Т.е. результирующий перенос в этом случае равен нулю: ΔN = 0 и ΔNφ = 0.

Если же среда неоднородна, т.е. либо концентрация частиц, либо значения φ для частиц слева и справа неодинаковы, то более вероятными будут переходы из областей, где значение (nφ) больше в области, где оно меньше. Если предположить, что (nφ)1 > (nφ)2 , то результирующий перенос величины φ будет определяться соотношением: . (3)

Знак «минус» в (3) отражает факт убыли величины (nφ) в направлении переноса.

Выясним, на каком расстоянии от ∆S слева и справа следует взять значения (nφ). Т.к. изменение физических характеристик молекул происходит только при соударениях, а до соударения каждая из молекул прошла расстояние равное длине свободного пробега, то можно считать, что (nφ) молекул сохраняются неизменными на расстоянии, равном длине свободного пробега влево и вправо от ∆S. Разделим и умножим правую часть (3) на 2:

(4)

 

Распределение величин вдоль какого-либо направления определяется характеристикой, которая называется – градиент. Градиент это изменение величины на расстоянии равном единице длины.

В данном случае, в точке с координатой х2 значение перенасимой величины – (nφ)2, а в точке х1 – (nφ)1, тогда под градиентом величины nφ, переносимой вдоль оси Ох, следует понимать отношение:

.

 

Тогда градиент величины nφ в области ∆S.

. (5)

(5) – общее уравнение переноса.

Диффузия – это перенос массы вещества. При условии, что массы молекул одинаковы (m0 = const), температура газа по объёму одинакова (T = const) и однородного по объему распределения скоростей (= const), подставляя вместо φ массу молекулы в (5), получим:

 

, или . (6)

Это закон Фика. D = – коэффициент диффузии. [D] = м2/с.

Теплопроводность – это перенос энергии. При условии, что по всему объему газа концентрация молекул (n = const), массы молекул одинаковы (m0 = const), распределение скоростей по объёму однородно (= const), а средняя кинетическая энергия поступательного движения одной молекулы , получим закон Фурье:

, или . (7)

 

 

– коэффициент теплопроводности. [χ] = Вт/(м·К) = кг·м/(с3·К).

Вязкость – это перенос импульса между параллельными слоями, которые упорядоченно движутся со скоростями u1 и u2. При условии, что по всему объему газа концентрация молекул n = const, массы молекул одинакова (m0 = const), распределение скоростей по объёму однородно (= const), а модуль импульса одной молекулы, связанный со скоростью упорядоченного движения слоев φ = р = m0u, для импульса силы взаимодействия слоёв имеем:

 

, или . ()

 

Это уравнение Ньютона, которое определяет величину силы внутреннего трения (вязкости). – поперечный градиент скорости, характеризующий быстроту изменения скорости в направлении х перпендикулярном движению трущихся слоев. η – динамический коэффициент вязкости . [η] = Па·с.

 

МОЛЕКУЛЯРНЫЕ СИЛЫ

 

Силы взаимодействия между молекулами, или, как их еще называют, Ван-дер-Ваальсовские силы имеют электрическую природу. Это кулоновские силы взаимодействия заряженных частиц, из которых состоят атомы и молекулы. Они проявляются на расстояниях, соизмеримых с размерами самих молекул и очень быстро убывают при увеличении расстояния. При этом одновременно действуют силы притяжения (взаимодействие разноименных зарядов) и силы отталкивания (взаимодействие одноименных зарядов). Т.к. реальные частицы не являются точечными, то величина этих сил зависит от расстояния между ними по-разному.

Различают три типа сил Ван-дер-Ваальса:

a) ориентационные – действуют между полярными молекулами:

,

где р – электрический дипольный момент частиц, r – расстояние между ними, k – постоянная Больцмана, Т – термодинамическая температура.

б) индукционные – описывают взаимодействие молекул, поляризация

зарядов в которых возникает под воздействием электрических полей соседних частиц:

.

Здесь: ринд = ε0αЕ – приобретённый электрический дипольный момент частиц; α – поляризуемость молекул.

в) дисперсионные – определяют взаимодействие молекул, несимметричное распределение зарядов в которых возникает случайно, в процессе движения электронов по орбитам, что и приводит к образованию мгновенных диполей:

.

В общем случае все три типа сил могут действовать одновременно:

Fм = Fо + Fи + Fд.

Рассмотрим зависимость сил межмолекулярного взаимодействия от расстояния. Силы притяжения Fпр считаются отрицательными, а силы отталкивания Fот – положительными. Сумма этих сил дает результирующую – Fрез = f(r). На некотором расстоянии r0 между молекулами |Fпр| = |Fот| и результирующая сила F = Fпр + Fот = 0. Если r < r0, то преобладают силы отталкивания. Если r >r0, то преобладают силы притяжения. Однако на расстоянии r > 10-9 м силы Ван-дер-Ваальса быстро стремятся к нулю.

Система взаимодействующих молекул характеризуется некоторым запасом потенциальной энергии, которая сложным образом зависит от r, Еп = f(r):

r → ∞ – Еп → 0 ;

r > r0 и r → r0 – Еп → Еп min , Еп < 0 ;

r = r0 – Еп = Еп min , Еп < 0;

r < r0 и уменьшается – Еп → ∞, Еп > 0.

Наименьшая потенциальная энергия взаимодействия называется энергией связи молекул. Она равна работе, которую необходимо совершить против сил притяжения, чтобы разъединить молекулы, находящиеся в равновесии.

Соотношение минимальной потенциальной энергии (Еп min) и величины удвоенной средней энергии теплового движения приходящейся на одну степень свободы является критерием агрегатного состояния вещества. Если:

а) Еп min << kT – газ;

б) Еп min » kT – жидкость;

в) Еп min >> kT – твердое тело.

Таким образом, любое вещество в зависимости от температуры может находиться в газообразном, жидком или твердом агрегатном состоянии.

 

 

ОСОБЕННОСТИ СТРОЕНИЯ ГАЗОВ, ЖИДКОСТЕЙ И ТВЕРДЫХ ТЕЛ

Р.Н.Грабовский. Курс физики. 1980 г., стр.168-174.

 

РЕАЛЬНЫЕ ГАЗЫ

Таким образом, задача заключается в том, чтобы получить такое уравнение состояния реального газа, которое бы учитывало объем молекул и их…  

УРАВНЕНИЕ ВАН-ДЕР-ВААЛЬСА

Из всех уравнений состояния реального газа, предложенных в свое время, самым простым и достаточно точным оказалось уравнение голландского физика… Как видно, оно получено из уравнения Клапейрона для моля идеального газа путем введения поправок. Константы а и b…

ИЗОТЕРМЫ ВАН-ДЕР-ВААЛЬСА И ИХ АНАЛИЗ

Для исследования поведения реальных газов рассмотрим изотермы Ван-дер-Ваальса… Опыты ирландского ученого Т. Эндрюса (1869г.) по изучению изотермического сжатия реальных газов подтвердили выводы,…

– Конец работы –

Используемые теги: распределение, молекул, потенциальном, поле0.072

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ В ПОТЕНЦИАЛЬНОМ ПОЛЕ

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

По идее Максвелла изменяющееся магн. поле является порождением вихревого эл. поля, а это поле создаёт индукционный ток
Если рассматривать возникновение ЭДС индукции в движущемся проводнике в этом случае ЭДС возникает благодаря силе Лоренца Если проводник неподвижен... По идее Максвелла изменяющееся магн поле является порождением вихревого эл... Вынужденные колебания ДУ вынужденных колебаний и его решение...

Электрический заряд. Электрическое поле. Поле точечного заряда
На сайте allrefs.net читайте: " Электрический заряд. Электрическое поле. Поле точечного заряда"

НОВЫЕ МЕТОДЫ ИЗВЛЕЧЕНИЯ СКРЫТОЙ ЭНЕРГИИ ПОТЕНЦИАЛЬНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ В КИНЕТИЧЕСКУЮ ЭНЕРГИЮ И ЭЛЕКТРОЭНЕРГИЮ
На сайте allrefs.net читайте: "НОВЫЕ МЕТОДЫ ИЗВЛЕЧЕНИЯ СКРЫТОЙ ЭНЕРГИИ ПОТЕНЦИАЛЬНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ В КИНЕТИЧЕСКУЮ ЭНЕРГИЮ И ЭЛЕКТРОЭНЕРГИЮ"

Вопросы к коллоквиуму №2 Электрические заряды. Закон Кулона. Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции.
Электрические заряды Закон Кулона Электростатическое поле Напряженность электростатического поля... Масса и импульс фотона Давление света... Фото н элементарная частица квант электромагнитного излучения Это безмассовая частица способная существовать...

Расчет распределения температурного поля
Следовательно, тепловую модель можно рассматривать как двухмерную. 2. Геометрические размеры блока по осям координат X, Y 0.20.1м. 3. Объемная… Комплексная микро миниатюризация устройств электронной техники привела к… Появление ЭВМ вызвало поистине революционные изменения в теории и практике математического моделирования и синтеза…

Работа в электростатическом поле по переносу заряда. Потенциал электростатического поля
План лекции... Работа в электростатическом поле по переносу заряда Потенциал... Циркуляция напряженности по замкнутому контуру...

Проводники: определение, проводимость, распределение заряда в проводнике в отсутствие внешних электрических полей
План лекции... Проводники определение проводимость распределение заряда в проводнике в... Напряженность поля вблизи поверхности проводника механизм образования поля на поверхности проводника потенциал...

Методы проверки гипотез о законах распределения и параметрах законов распределения
На сайте allrefs.net читайте: "Методы проверки гипотез о законах распределения и параметрах законов распределения"

Экранирование электрического поля в полупроводниках. Дебаевская длина экранирования. Эффект поля
Система с зарядами экранирует внешнее поле если носители заряда связаны с атомами то уравнение Пуассона описывает экранирование электрического... уравнение Пуассона описывает экранирование эл поля в среде...

Функции распределения, плотность распределения
функции распределения плотность распределения... Мат ожидание дисперсия... Практика...

0.036
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам