рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ГЕТЕРОПОЛИСАХАРИДЫ

ГЕТЕРОПОЛИСАХАРИДЫ - раздел Химия, ПРОГРАММА БЛОКА ГЕТЕРОФУНКЦИОНАЛЬНЫЕ УГЛЕВОДОРОДЫ Пектиновые Вещества – Широко Распространенные В Природе Соед...

Пектиновые вещества – широко распространенные в природе соединения. Различают растворимые пектиновые вещества и нерастворимые (протопектин). Растворимые пектиновые вещества содержатся в растительных соках и могут быть осаждены спиртом из водных растворов. Протопектин находится в основном в межклеточном веществе и стенках растительных клеток.

Основу всех пектиновых веществ составляет полигалактуроновая (пектовая) кислота, построенная из остатков D-галактуроновой кислоты, соединенных a-1,4-гликозидными связями:

 

 

В растениях пектовая кислота содержится не в свободном виде: часть ее карбоксильных групп этерифицирована метиловым спиртом (12–19 % метоксильных групп), а часть карбоксилов существует в виде кальциевых, магниевых и калиевых солей.

Многочисленными исследованиями доказано, что пектиновые вещества являются гетерополисахаридами. В построении основной цепи наряду с D-галактуроновой кислотой участвуют и нейтральные монозы: L-рамноза и D-галактоза.

В протопектинах очень длинная цепь полигалактуроновой кислоты связана с целлюлозой или другими полиозами, или же с белковыми веществами. Пектиновые вещества, получаемые из различных растений, весьма разнообразны. Они отличаются степенью полимеризации (молекулярная масса от 20 тыс. до 200 тыс.), содержанием золы (зависящим от степени нейтрализации карбоксильных групп), содержанием метильных групп, различной кислотностью, различной способностью образовывать гели и т. д.

Пектиновые вещества с сахарами и кислотами легко образуют студни, что используется в пищевой промышленности для изготовления желе и мармеладов. Некоторые пектиновые вещества оказывают противоязвенное действие и являются основой ряда препаратов (например, «плантаглюцид» из подорожника).

Растительные камеди – вещества, выделяющиеся в виде прозрачных, твердеющих на воздухе масс при механическом повреждении растений. Из выделенной растением аморфной массы можно извлечь камеди действием щелочи с последующим осаждением кислотой. Это – гидрофильные вещества, в большинстве случаев хорошо растворимые в воде с образованием клейких растворов.

Камеди представляют собой нейтральные соли (кальциевые, магниевые и калиевые) высокомолекулярных кислот, состоящих из остатков гексоз, пентоз, метилпентоз и уроновых кислот, т.е. они являются гетерополисахаридами, состоящими из нескольких моносахаридов и уроновых кислот (D-глюкуроновая и D-галактуроновая). Таковы: аравийская камедь, или гуммиарабик, получаемая из сенегальской акации, вишневый клей и другие.

Мукополисахариды получили свое название потому, что ряд веществ этого класса имеют слизистую консистенцию (от лат. mucus – слизь). Для мукополисахаридов характерно наличие в их молекулах значительного количества остатков аминосахаров и уроновых кислот. Это полисахариды соединительной ткани. Мукополисахариды обычно связаны с белками. Важнейшими представителями этой группы полисахаридов являются гиалуроновая кислота, хондроитин-серные кислоты и гепарин.

Гиалуроновая кислота построена из дисахаридных остатков, соединенных b-1,4-гликозидными связями. Дисахаридный фрагмент состоит из остатков D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, связанных b-1,3-гликозидной связью:

 

Гиалуроновая кислота имеет высокую молекулярную массу порядка 106, растворы ее обладают высокой вязкостью. Вследствие высокой вязкости она понижает проницаемость тканевых оболочек и препятствует проникновению в ткани болезнетворных микроорганизмов.

Хондроитинсульфаты состоят из дисахаридных остатков N-ацети-лированного хондрозина, соединенных b-1,4-гликозидными связями. В состав хондрозина входят D-глюкуроновая кислота и D-галактозамин, связанные между собой b-1,3-гликозидной связью.

Эти полисахариды являются эфирами серной кислоты (сульфатами). Сульфатная группа образует эфирную связь с гидроксильной группой N-ацетил-D-галактозамина, находящейся либо в 4-м, либо в 6-м положении. Соответственно различают хондроитин-4-сульфат и хондроитин-6-сульфат:

 

Гепарин – гетерополисахарид, широко распространенный в тканях животного организма и особенно в значительных количествах содержащийся в печени, сердце, мышцах и легких. Ничтожные количества гепарина задерживают свертывание крови, т. е. он является сильным природным антикоагулянтом. Благодаря этому гепарин получил практи-ческое применение в медицине.

Гепарин состоит из повторяющихся дисахаридных единиц, в состав которых входят остатки D-глюкозамина и двух уроновых кислот – D-глюкуроновой и L-идуроновой (преобладает). Внутри дисахаридного фрагмента осуществляется a-1,4-гликозидная связь, а между дисахарид-ными фрагментами – a-1,4-связь, если фрагмент оканчивается L-идуро-новой кислотой, и b-1,4-связь – если D-глюкуроновой кислотой.

Аминогруппа у большинства глюкозаминных остатков сульфати-рована, а у некоторых из них – ацетилирована.

 

Гликопротеины – смешанные углеводсодержащие биополимеры, в которых с белковыми молекулами ковалентно связаны олигосахаридные цепи (от одной до нескольких сотен на одну белковую цепь). Среди гликопротеинов известны ферменты, гормоны, компоненты плазмы крови, защитные белки (иммуноглобулины) и др.

Рассмотрено строение некоторых представителей полисахаридов, имеющих важное биологическое значение. Несмотря на существенные отличия в свойствах и биологическом функционировании различных полисахаридов, их объединяет то, что все они построены преимущественно с использованием либо непосредственно D-глюкопиранозы, либо ее модификаций – аминозамещенных и карбоксил-содержащих производных. Наиболее распространенными типами гликозидной связи являются ab-1,4-гликозидные связи. Достаточно редко для построения полисахаридов привлекается другой моносахарид.

Распространенность D-глюкозы и ее производных в построении биополимеров углеводной природы подчеркивает уникальность этой монозы, имеющей среди других моносахаридов наиболее термодинамически устойчивое конфигурационное и конформационное строение.

Обобщенная информация о структурном строении природных ди- и полисахаридов представлена в таблице 1.

 

Таблица 1 – Структурные моносахаридные единицы природных ди- и полисахаридов

 

Название углевода Структурные моносахаридные единицы Характер гликозидных связей
D-глюкопираноза или ее аналоги Другие моносахариды или их производные
Дисахариды
Мальтоза Глюкоза a-(1,4)
Целлобиоза «–» b-(1,4)
Лактоза «–» Галактоза b-(1,4)
Сахароза «–» Фруктоза b-(2,1)
Полисахариды
Крахмал: амилоза амилопектин   «–» «–»   – – a-(1,4) a-(1,4) a-(1,6)
Гликоген «–» a-(1,4) a-(1,6)
Декстраны «–» a-(1,4) a-(1,6) a-(1,3) a-(1,2)
Целлюлоза «–» b-(1,4)
Хитин N-ацетилглюкозамин b-(1,4)
Мурамин N-ацетилглюкозамин N-ацетилглюкозамин1 b-(1,4)
Гиалуроновая кислота N-ацетилглюкозамин Глюкуроновая кислота b-(1,4) b-(1,3)
Хондроитин-сульфаты Глюкуроновая кислота N-ацетил-галактозамин2 b-(1,4) b-(1,3)
Гепарин Глюкозамин2 Глюкуроновая кислота L-идуроновая кислота a-(1,4)
             

 

1 Содержит остаток молочной кислоты.

2 Содержит сульфатные группы.

 

– Конец работы –

Эта тема принадлежит разделу:

ПРОГРАММА БЛОКА ГЕТЕРОФУНКЦИОНАЛЬНЫЕ УГЛЕВОДОРОДЫ

ГЕТЕРОФУНКЦИОНАЛЬНЫЕ УГЛЕВОДОРОДЫ УГЛЕВОДЫ Углеводы служат основным... НЕСАХАРОПОДОБНЫЕ ПОЛИСАХАРИДЫ Строение высших... АМИНОКИСЛОТЫ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ГЕТЕРОПОЛИСАХАРИДЫ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПРОГРАММА БЛОКА ГЕТЕРОФУНКЦИОНАЛЬНЫЕ УГЛЕВОДОРОДЫ.
Углеводы. Моносахариды.Определение, общая формула. Классификация. Номенклатура, изомерия. Структурные и проекционные формулы, антиподы, диастереомеры. D- и L-ряды. Фо

УГЛЕВОДЫ
Углеводы являются важным классом природных органических соединений. Значение углеводов определяется той доминирующей ролью, которая отводится им в живых организмах, и сложностью выполняемых ими фун

МОНОУГЛЕВОДЫ
Классификация. Моносахариды (монозы) классифицируют по количеству атомов углерода и по характеру карбонильной группы. По количеству атомов углерода:

Химическое строение моносахаридов
Карбонильные формы моносахаридов.Для выяснения строения и стереохимии моносахаридов химикам потребовалось более ста лет. В результате многолетних исследований было установлено,

Способы получения моносахаридов
1. Гидролиз ди- и полисахаридов, который происходит под действием кислот или ферментов, водные растворы щелочей не способствуют гидролизу:  

Реакции карбонильных форм моносахаридов
1.1 Окисление. Реакции окисления используют в структурных исследованиях и биохимических анализах для обнаружения моносахаридов. Монозы легко окисляются, причем в зависимости от

Реакции с участием всех гидроксильных групп
2.2.1 Алкилирование. При действии на моносахариды более сильных алкилирующих агентов, например алкилгалогенидов, наряду с гликозидным гидроксилом в реакцию вступают все спиртов

ОЛИГОСАХАРИДЫ
Олигосахариды – сахароподобные сложные углеводы, характеризую-щиеся сравнительно невысокой (несколько сотен) молекулярной массой, хорошей растворимостью в воде, легкой кристаллизацией и, как правил

ДИСАХАРИДЫ
Строение дисахаридов.В зависимости от моносахаридных компонентов олигосахариды (подобно полисахаридам) делятся на: · гомоолигосахариды, построенные из молекул одного монос

Получение дисахаридов
Практически дисахариды извлекают из природных источников в виде гликозидов. Некоторые из них могут быть получены путем неполного гидролиза полисахаридов. Природные источники являются в настоящее вр

Номенклатура олигосахаридов
Большинство встречающих в природе олигосахаридов имеют тривиальные, общеупотребимые названия (целлобиоза, лактоза, мальтоза, трегалоза, стахиоза, сахароза, рафиноза и целлотриоза), которые им были

Свойства дисахаридов
Дисахариды представляют собой твердые вещества или некристаллизующиеся сиропы, которые растворимы в воде. Как аморфные, так и кристаллические дисахариды плавятся в некотором интервале температур и,

Отдельные представители дисахаридов
Мальтоза, солодовый сахар.Дисахарид получается из крахмала при действии солода, содержащего фермент b-амилазу. Солод (от лат. maltum) – это проросшие, а затем высушенные

Отдельные представители трисахаридов
Принципы построения трисахаридов такие же, как и дисахаридов, т. е. трисахариды могут быть как восстанавливающие, так и невосстанавливающие. Многие из трисахаридов содержатся в растениях. Из трисах

Природные гликозиды
Гликозиды – это простые или сложные эфиры моносахаридов и олигосахаридов, образованные с участием полуацетального гидроксила. Гликозиды чрезвычайно распространены в животном и особенно в растительн

Строение высших полиоз
Несахароподобные полиозы – высокомолекулярные соединения, содержащие сотни и тысячи остатков моносахаридов. Остатки моноз связаны между собой кислородными мостиками, образованными за счет полуацета

ГОМОПОЛИСАХАРИДЫ
Крахмал представляет собой не однородное вещество, а смесь полисахаридов, отличающихся не только степенью полимеризации, но и строением. Изучение химических превращений крахмала бы

Изомерия.
Структурная: · скелетная; · взаимного положения; · метамерия. Пространственная: · оптическая Все природные ам

Получение α-аминокислот
1.1 Из природных веществ. Белки при гидролизе в водных растворах в присутствии кислоты дают смесь α-аминокислот, которые можно выделить и разделить. Все они оптичес

Кислотно-основные свойства аминокислот
Аминокислоты – амфотерные вещества, которые могут существовать в виде катионов или анионов. Это свойство объясняется наличием как кислотной (–СО2Н), так и основной (–NH2

Изоэлектрическая точка аминокислот
Если раствор аминокислоты поместить в электрическое поле, то в зависимости от кислотности или основности раствора будет наблюдаться различная картина. В сильнощелочном растворе концентрация анионов

Комплексные соли с ионами меди
Аминокислоты с ионами переходных металлов (Сu, Zn, Co, Pb, Ag, Hg) образуют прочные хелатные комплексы (от греч. сhele – клешня). Малорастворимые хелаты меди (II) имеют глубокую синюю

Образование сложных эфиров (этерификация).
Карбоксильная группа аминокислоты легко этерифицируется обычными методами. Например, метиловые эфиры получают, пропуская сухой газообразный хлористый водород через раствор аминокислоты в метаноле.

Качественные реакции аминокислот
Особенностью химии аминокислот является многочисленность качественных (цветных) реакций, которые необходимы при исследовании их физико-химическими методами (хроматография, электрофорез).

Практическое применение аминокислот
Аминокислоты широко используются в современной медицине в качестве лекарственных средств. К таким аминокислотам относится глутаминовая кислота, метионин, гистидин, глицин, цистеин. Глут

ОКСИКИСЛОТЫ
Оксикислотами называются карбоновые кислоты, в которых на ряду с карбонильной группой содержится гидроксильная группа. Классификация оксикислот, как и других бифункциональ

Способы получения оксикарбоновых кислот.
1. Гидролиз α-галогенкарбоновых кислот  

Cинтез из ненасыщенных кислот.
  9. Дегидратация (образование лактона).Д

Химические свойства оксикарбоновых кислот.
Оксикислоты, благодаря наличию спиртовой группы, реагируют не только, как кислоты, но и как спирты; гидроксильная группа в этих соединениях может быть замещена галогеном или ацилирована. Некоторые

Оксикислоты
Характерным отличием β-оксикислот от -оксикислот является легкость, с кото

Реакции нуклеофильного замещения α-галогенкарбоновых кислот.
Галоген в α-галогенкарбоновых кислотах легко замещается под действием различных нуклеофильных агентов. В результате этих реакций из α-галогенокарбоновых кислот получают &

Реакции со щелочами
  .   2. Взаимодействие со спиртами.

Б) Реакции гидроксильной группы
1. Реакция ацилирования.При ацилировании гидроксикарбоновых кислот галогенангидридами получаются сложные эфиры. Для ацилирования можно использовать и ангидриды кислот:

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Гетероциклическими соединениями называют соединения, содержащие циклы, в которых имеется один или несколько гетероатомов – N, О, S или другие атомы, способные образовывать не м

ПЯТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ С ОДНИМ ГЕТЕРОАТОМОМ
Общая характеристика пятичленных гетероциклов с одним гетероатомом.К простейшим ароматическим пятичленным гетеро-циклическим соединениям с одним гетероатомом относятся фуран, пирро

Представители пятичленных гетероциклических соединений с одним гетероатомом
Фуран представляет собой пятичленный ароматический гетероцикл с атомом кислорода в кольце:  

Производные фурана
Тетрагидрофуран.Тетрагидрофуран получается гидрированием фурана в присутствии никелевого катализатора.  

Химические свойства
1. Реакция галогенирования. Для галогенирования тиофена можно использовать бром или хлор при низкой температуре, при этом могут образовываться как моно-, так и полигалогентиофе

Практическое применение тиофена и его производных
Циклическая система тиофена встречается в природе в некоторых продуктах растительного происхождения, но гораздо большее значение имеет это соединение в составе синтетических лекарственных препарато

Основные способы получения
1. Сухой перегонкой аммонийной соли слизевой кислоты или действием аммиака на фуран в присутствии оксида алюминия:  

Химические свойства
1.Галогенирование. Осуществляется с помощью хлористого сульфурила, брома в спиртовом растворе и триодид-иона (йод в растворе иодида калия), причем в результате иодирования обра

Применение пиррола и его производных
Пиррол содержится в каменноугольной смоле. Цикл пиррола – структурный фрагмент природных пигментов (например, гема, хлорофиллов, желчи, витамина В12, некоторых антибиотиков), а та

Гемоглобин
Строение и функции гемоглобина.Гемоглобин вляется переносчиком кислорода от легких к тканям тела, представляет собою белок глобин, координационно связанный с гемом (гем – по

Химические свойства
Реакции индола и его простых производных сходны с реакциями пиррола. 1. Индол обладает слабоосновными свойствами и в то же время слабокислыми, образует металлические производные –

Триптофан.
Триптофан [2-амино-3-(3'-индолил)-пропионовая кислота] — бесцветное кристаллическое вещество, Тш = 283–285 °С, растворим в воде, плохо растворим в этаноле и не растворим в

ПЯТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ С НЕСКОЛЬКИМИ ГЕТЕРОАТОМАМИ
Среди гетероциклических соединений наиболее многочисленна и разнообразна группа пятичленных гетероциклов, содержащих более одного гетероатома. Большинство этих циклических систем можно формально по

Оксазол
Электронное строение.Ароматические свойства оксазола связаны с наличием циклической сопряженной π-электронной системы, построенной из двух π-электронов связ

Пиридин
Способы получения пиридина и пиридиновых оснований. В небольших количествах пиридини его метил- и этилпроизводные получают из каменноугольной смолы, которая содержит около 0,2 % см

Химические свойства
1. Восстановление водородом. При восстановлении водородом в момент выделения (действуя натрием на спиртовой раствор пиридина А.Н. Вешнеградский) или над катализатором пиридин п

ШЕСТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ С НЕСКОЛЬКИМИ ГЕТЕРОАТОМАМИ
Пиримидин. Является важнейшим из шестичленных гетероциклов с двумя атомами азота. Пиримидиновый цикл входит в многочисленные природные соединения: нуклеиновые кислоты, витамины, коферменты, являетс

Химические свойства
1. Основные свойства: Образование солей:

ШЕСТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ С ДВУМЯ РАЗНЫМИ ГЕТЕРОАТОМАМИ
Оксазины. Оксазиновое кольцо входит в состав многих органических веществ, имеющих большое практическое значение. Среди последних – широко распространенные красители, лекарст

Нобелевские премии по органической химии
Герман Эмиль Фишер "За эксперименты по синтезу веществ с сахаридными и пуриновыми группами". Адольф фон Бай

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги