рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ЭЛЕКТРОПИТАНИЕ УСТРОЙСТВ И СИСТЕМ СВЯЗИ

ЭЛЕКТРОПИТАНИЕ УСТРОЙСТВ И СИСТЕМ СВЯЗИ - раздел Связь, Министерство Российской Федерации По Связи И Информатизации ...

Министерство Российской Федерации

по связи и информатизации

 

Сибирский государственный университет

телекоммуникаций и информатики

 

 

Ю.Д. Козляев, Л.Г. Рогулина, А.М. Сажнёв

 

 

ЭЛЕКТРОПИТАНИЕ УСТРОЙСТВ

И СИСТЕМ СВЯЗИ

 

 

Новосибирск

 

УДК 621.314.2

 

 

к.т.н., проф. Ю.Д. Козляев, к.т.н., доц. Л.Г. Рогулина, к.т.н., доц. А.М. Сажнёв. Приводятся варианты заданий по дисциплине ЭПУСС и методические указания по выполнению контрольной работы «Электропитание устройств и систем связи». Излагаются алгоритмы расчета отдельных блоков источника, таблицы расчетных соотношений и необходимые справочные данные материалов и радиокомпонентов. Методические указания могут быть использованы студентами 4 курса заочного отделения (201100).

 

 

Каф.ППУ

Илл. 14 , табл. 19 , список лит. - 8 назв.

Рецензент д.т.н. Сединин В.И.

Для специальности 201100

Утверждено редакционно-издательским советом СибГУТИ в качестве методических указаний

 

 

ã Сибирский государственный

университет телекоммуникаций

и информатики, 2001 г.

 

 

ОГЛАВЛЕНИЕ

Cтр.

ВВЕДЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. ЗАДАНИЕ И ОБЩИЕ УКАЗАНИЯ ПО ОФОРМЛЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ

РАБОТЫ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.Структурная схема источника электропитания . . . . . . . . . . . . . . . . . . . . . . .

2.2.Основные схемы преобразователей напряжения. . . . . . . . . . . . . . . . . . . . . .

2.3.Основные схемы сетевых выпрямителей . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4. Порядок расчета . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .

2.4.1. Исходные данные. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4.2. Алгоритм выбора схемы преобразователя . . . . . . . . . . . . . . . . . . . .

2.4.3. Выбор и расчет трансформатора . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4.4. Порядок расчета элементов силовой части преобразователя. . . . .

2.4.5. Расчет сетевого выпрямителя. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5. Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Приложения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

ВВЕДЕНИЕ

 

 

Целью настоящей работы является закрепление студентами теоретических знаний, полученных при изучении основных разделов курса «Электропитание устройств и систем связи».

При выполнении контрольной работы студент должен: обосновать выбор одной из четырех наиболее широко применяемых на практике схем высокочастотных регулируемых транзисторных преобразователей и провести расчет элементов силовой части выбранной схемы преобразователя.

Выполнение контрольного задания предусматривает большой объем работы со справочной литературой по современным радиокомпонентам.

Задание предусматривает сто вариантов. Номер варианта задачи, выполняемой студентом, должен соответствовать двум последним цифрам номера зачётной книжки.

Контрольная работа с заданием, решенным не по своему варианту, не проверяется преподавателем и возвращается студенту без зачёта.

 

1. ЗАДАНИЕ И ОБЩИЕ УКАЗАНИЯ ПО ОФОРМЛЕНИЮ

КОНТРОЛЬНОЙ РАБОТЫ

 

Исходные данные к расчету выбираются из таблиц 1 и 2 в соответствии с номером зачётной книжки.

Контрольная работа выполняется в обычной ученической тетради. Она должна быть аккуратно оформлена, разборчиво написана на одной стороне каждого листа, т.е. на правой странице развернутой тетради. Левая страница должна быть оставлена чистой, так как она предназначена для внесения студентами исправлений и дополнений по результатам рецензии.

Для замечаний преподавателя на каждой странице тетради необходимо оставлять поля шириной 3…4 см. Все страницы нумеруются.

На обложке тетради следует наклеить заполненный адресный бланк, а на первой странице тетради – титульный лист.

КОНТРОЛЬНАЯ РАБОТА ДОЛЖНА БЫТЬ ОФОРМЛЕНА СЛЕДУЮЩИМ ОБРАЗОМ:

- записать исходные данные к расчету;

- обосновать выбор схемы, которая будет рассчитываться, и кратко описать её работу;

- расчетные формулы должны быть приведены в общем виде и с подставленными в системе СИ численными значениями величин;

- принципиальные схемы и графики должны соответствовать требованиям ЕСКД (чертежи могут быть выполнены карандашом);

- все рисунки, графики, чертежи и таблицы должны быть пронумерованы;


Таблица 1

 

Варианты задания

 

 

Предпоследняя цифра номера зачетной книжки
Напряжение фазы питающей сети Uф, В
Частота тока питающей сети fc, Гц
Число фаз сети, m
Пульсность сетевого выпрямителя p
Относительное изменение напряжения питающей сети: в сторону увеличения а макс в сторону уменьшения а мин   0,2 0,2   0,1 0,15   0,2 0,1   0,1 0,1   0,1 0,2   0,1 0,2   0,15 0,1   0,2 0,2   0,1 0,15   0,2 0,2
Частота преобразования fn, кГц
Диапазон рабочих температур, ˚ С -10… +50 -20… +40 -10… +30 -30… +40 -20… +40 -5… +50 -20… +20 -10… +40 -20… +50 -10… +60

 

 

Таблица 2

Варианты задания

 

 

Последняя цифра номера зачетной книжки
U0, В 5,0 5,0 24,0 5,0 27,0 12,0 5,0 5,0 27,0
I0 макс., А 6,0 10,0 8,0 6,0 10,0 6,0 8,0 4,0
I0 мин., А 0,6 2,0 3,0 1,0 0,8 2,0 2,0 1,0 2,0 0,6
Нестабильность выходного напряжения при изменении питающей сети δ, %                    
Амплитуда пульсации выходного напряжения Uвых. m , В   0,05   0,05   0,2   0,12   0,05   0,27   0,15   0,05   0,05   0,27

- в конце контрольной работы привести перечень элементов схемы, выполненный в соответствии с требованиями ЕСКД;

- в конце работы привести список литературы;

- работа должна быть подписана и указана дата.

Допускается выполнение контрольной работы с помощью средств вычислительной техники.

Получив контрольную работу с рецензией преподавателя, студент должен ознакомиться со всеми замечаниями, исправить отмеченные ошибки и письменно ответить на все поставленные преподавателем вопросы.

В том случае, если контрольная работа выполнена неудовлетворительно и возвращена студенту, необходимо внести в неё исправления или выполнить задание заново в соответствии с указаниями преподавателя, после чего её следует снова выслать для повторной проверки вместе с незачтённой ранее работой.

 

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

 

2.1 Структурная схема источника электропитания

 

Широкое внедрение микросхем в электронной аппаратуре диктует необходимость улучшения массо-объёмных показателей стабилизирующих источников вторичного электропитания (ИВЭП), что достигается применением импульсных способов регулирования и отказом от низкочастотных трансформаторов. В литературе подобные ИВЭП получили названия источников электропитания с бестрансформаторным входом [1], [2].

 

 


Наиболее часто эти ИВЭП выполняются по структурной схеме, приведенной на рисунке 1.

 

 
 

Рисунок 1 - Структурная схема ИВЭП с бестрансформаторным входом.

 

На этом рисунке: В1– входной сетевой выпрямитель напряжения; Ф1 – входной сглаживающий фильтр (ФНЧ); Пр – импульсный преобразователь напряжения (конвертор); СУ– схема управления; U 0 – выходное напряжение преобразователя; U вх. – входное напряжение преобразователя.

 

В этих устройствах первым элементом является так называемый сетевой выпрямитель, преобразующий электрическую энергию сети переменного тока в электрическую энергию постоянного тока.

В качестве сетевого выпрямителя В1 для однофазной и трёхфазной сетей используются выпрямители с емкостным характером нагрузки.

Расчет схемы сетевого выпрямителя осуществляется после расчета преобразователя. Преобразователь Пр (конвертор) преобразует напряжение постоянного тока U вх в напряжение постоянного тока другого уровня - U 0 .

Конвертор ИВЭП с бестрансформаторным входом строится в основном на базе регулируемых транзисторных преобразователей. Транзисторы в преобразователях работают в режиме переключения так, что большую часть периода преобразования они находятся в режиме отсечки или насыщения. Этим объясняются высокие энергетические показатели источников с импульсным регулированием.

Повышение частоты преобразования позволяет уменьшить объем и массу электромагнитных элементов и конденсаторов, и тем самым улучшить удельные массо-объёмные показатели.

В стабилизирующих ИВЭП, как правило, применяют широтно-импульсный (ШИМ) способ регулирования, при котором период коммутации постоянен, а время нахождения транзистора в области насыщения (отсечки) изменяется.

Схема управления содержит следящий делитель с коэффициентом передачи

Kд ≤ 1, усилитель сигнала ошибки (Kу »1) и широтно-импульсный модулятор (Kшим »1). Произведение Kд· Kу· Kшим называют петлевым коэффициентом усиления, который определяет нестабильность выходного напряжения Uо (абсолютную - Δ Uо, или относительную - δ = Δ Uо/ Uо):

2.2. Основные схемы преобразователей напряжения

 

В системах электропитания устройств связи и радиоэлектронной аппаратуры (РЭА) в основном применяются однотактные и двухтактные преобразователи напряжения с гальванической развязкой между источниками энергии и нагрузкой.

В отечественной практике из однотактных преобразователей используются следующие типы:

- однотактный преобразователь с прямым включением диода, в котором энергия в нагрузку передается на интервале включенного (открытого) состояния регулирующего транзистора;

- однотактный преобразователь с обратным включением диода, в котором энергия в нагрузку передается во время выключенного (закрытого) состояния регулирующего транзистора;

- однотактный преобразователь с разделительными конденсаторами (так называемый преобразователь Кука);

- двухтактный полумостовой преобразователь.

 
 

Эти схемы приведены ниже. На рисунке 2а изображена классическая схема однотактного преобразователя с прямым включением выпрямительного диода, а на рисунке 2б эпюры, поясняющие её работу.

Рисунок 2 - Схема однотактного преобразователя

С прямым включением выпрямительного диода

При открытом транзисторе VT1напряжение Uвх оказывается приложенным к первичной обмотке трансформатора W1. Диод VD1– открыт и энергия источника… Чем шире пределы регулирования, тем больше значение gмакс и тем меньше должно… Так, при gмакс=0,5 напряжение на закрытом транзисторе идеального преобразователя превышает входное напряжение в два…

Рисунок 3 - Схема однотактного прямоходового преобразователя

с пониженным напряжением на транзисторах

 

В этой схеме транзисторы VT1 и VT2 управляются синхронно. Диоды VDp1 и VDp2 обеспечивают рекуперацию энергии, запасенной трансформатором Т1 в источник питания. Достоинством схемы рисунка 3 является меньшее напряжение на закрытых транзисторах VT1 и VT2, которое не превышает величины Uвх.

 
 

На рисунке 4а приведена классическая схема однотактного преобразователя с обратным включением выпрямительного диода, а на рисунке 4б, эпюры поясняющие её работу.

 

 

Рисунок 4 - Схема однотактного преобразователя

с обратным включением выпрямительного диода

 

В схеме рисунка 4 при отпирании транзистора VT1 напряжение питания прикладывается к первичной обмотке W1 трансформатора Т1. Полярность напряжения на вторичной обмотке такова, что диод VD1 закрыт. В этом интервале происходит накопление энергии в трансформаторе. При запирании транзистора VT1 изменяется полярность напряжения на обмотках трансформатора, открывается диод VD1 и энергия, накопленная трансформатором, передается в нагрузку. Регулировочная характеристика идеального преобразователя нелинейна и имеет вид:

 

(2)

 

Достоинством схемы рисунка 4 является наличие одного моточного элемента (трансформатора Т1), что является в ряде случаев определяющим при выборе схемы малогабаритного, маломощного, экономичного источника электропитания.

При высоких уровнях входного напряжения может применяться полумостовая схема обратноходового однотактного преобразователя, представленная на рисунке 5.

В этой схеме напряжение на закрытых транзисторах VT1 и VT2 не превышает Uвх. С ростом выходной мощности габариты емкостного фильтра Сн преобразователей (рисунки 4, 5) резко растут, что вызывает необходимость применения LC-фильтра.

 
 

Рисунок 5 - Схема однотактного обратноходового преобразователя

с пониженным напряжением на транзисторах

 

 
 

Достаточно широкое применение в последнее время находит схема преобразователя с разделительными конденсаторами (схема Кука), показанная на рисунке 6.

Рисунок 6 - Однотактный преобразователь с симметричным

перемагничиваением сердечника трансформатора

 

В этой схеме при открытом транзисторе VT1 дроссель L1 подключен к источнику питания, а напряжение на первичной обмотке трансформатора W1 равно напряжению на конденсаторе C1. Диод VD1 закрыт и к обмотке дросселя L2 приложено напряжение вторичной обмотки трансформатора. Дроссели L1 и L2 на этом интервале времени запасают энергию. При запирании транзистора VT1 энергия, накопленная дросселем L1, идет на заряд конденсаторов С1, С2 и перемагничивание трансформатора Т1. Энергия, накопленная дросселем L2, передается через диод VD1 в нагрузку. Отличительной особенностью данной схемы является перемагничивание трансформатора по частному симметричному циклу петли гистерезиса. Это позволяет уменьшить габариты трансформатора по сравнению с другими рассмотренными типами однотактных преобразователей. Синфазность изменения э.д.с. обмоток трансформатора и дросселей позволяет объединить эти элементы в один конструктивный узел.

В тех случаях, когда требуется построить ИВЭП при Uвх > 300 В, целесообразно применять двухтактный полумостовой преобразователь, выполненный по схеме рисунка 7. В этой схеме на базы транзисторов VT1 и VT2 от схемы управления (СУ) поступают управляющие импульсы определенной длительности tи. Во время открытого состояния одного из транзисторов к первичной обмотке W1 трансформатора Т1 прикладывается напряжение, равное 0,5 Uвх. При этом к закрытому транзистору прикладывается напряжение, равное Uвх.

Достоинством полумостовой схемы преобразователя является отсутствие постоянного подмагничивания трансформатора.

 

 
 

Рисунок 7 - Двухтактный полумостовой преобразователь

 

На выходе трансформатора Т1 (см. рисунок 7) в большинстве случаев включают выпрямитель, выполненный либо по мостовой, либо по двухполупериодной схеме со средней точкой. Поэтому на вход LC-фильтра с выхода выпрямителя за один период работы преобразователя поступают два прямоугольных однополярных импульса, что и определяет особенности его расчета.

 

2.3. Основные схемы сетевых выпрямителей

 

Назначение сетевого выпрямителя для ИВЭП с бестрансформаторным входом это во-первых, преобразование рода тока – из переменного в постоянный и, во-вторых, сглаживание пульсаций выпрямленного напряжения. В качестве сглаживающих обычно используют емкостные низкочастотные фильтры. Наиболее часто сетевые выпрямители выполняют по схемам, приведенным на рисунке 8.


Рисунок 8 - Схемы выпрямителей с емкостными сглаживающими фильтрами

 

Nbsp;   На рисунке 9 приведены временные диаграммы поясняющие работу двухполупериодной однофазной схемы (рисунок 8а) на ёмкостную нагрузку.

 

 

Рисунок 9 - Эпюры работы однофазного мостового выпрямителя

На нагрузку емкостного характера

 

Здесь 2θ угол отсечки тока вентиля. Очевидно, с уменьшением пульсации напряжения на конденсаторе , уменьшается угол θ, а среднее значение напряжения

 

стремится к амплитуде напряжения .

 

Величина емкости Сф определяется исходя из уровня пульсаций по приближенной формуле ,

где Iвх- среднее значение тока, потребляемого от сетевого выпрямителя;

fc - частота питающей сети;

p - число фаз выпрямления (пульсность);

- абсолютный коэффициент пульсаций

напряжения на конденсаторе.

 

Для расчётов задаются kа=0,1…0,05. Эти пульсации будут отработаны цепью обратной связи преобразователя и не должны быть большими, чтобы не уменьшать диапазон регулирования по другим дестабилизирующим воздействиям.

При малом внутреннем сопротивлении сети наличие конденсатора в схеме выпрямителя вызывает в момент включения резкий бросок тока заряда icmax (см. рисунок 9), который в десятки раз может превышать установившееся значение и привести к выходу из строя выпрямительных диодов. Для ограничения этого тока в схему вводят резистор Rогр.

Сопротивление резистора определяют для наихудшего случая, когда напряжение сети максимально и ограничивают icmax на уровне нескольких десятков ампер. Этот ток является ударным током для диодов и его величина должна соответствовать перегрузочной способности диодов при работе на емкость.

Реально Rогр составляет от 3 до 15 Ом для ИВЭП с выходной мощностью 20…200 Вт. При этом средняя мощность, рассеиваемая на резисторе, невелика и лежит в пределах долей ватта. Импульсная же мощность достигает 10…15 Вт. Поэтому во многих случаях используют проволочные резисторы (ПЭВ) или металлопленочные (ОМЛТ, С2-23), но со значительным запасом по мощности. При мощности 300 Вт и более следует предусматривать автоматическое закорачивание Rогр контактами реле или тиристором [1].

 

2.4. Порядок расчета

 

2.4.1. Исходные данные

Исходными данными для выбора и расчета схемы являются:

- номинальное значение сетевого напряжения Uф, В;

- относительное отклонение напряжения питающей сети:

- в сторону повышения амакс

- в сторону понижения амин ;

- номинальное значение выходного напряжения U0, В;

- амплитуда пульсации выходного напряжения Uвых.m, В;

- максимальное и минимальное значения тока нагрузки I0.макс, I0.мин., А;

- частота преобразования fn;

- диапазон температур окружающей среды ˚C;

- максимальная выходная мощность преобразователя P0=U0·I0 макс.

 

2.4.2. Алгоритм выбора схемы преобразователя

 

1. Определяем максимальную выходную мощность преобразователя

P0 = U0·I0 макс.

2. Определяем номинальное Uвх. максимальное и минимальное значения входного напряжения преобразователя:

 

,, ,

 

где: kа = (0,05…0,1) – абсолютный коэффициент пульсаций

на выходе сетевого выпрямителя (см. рисунок 9);

(при р = 2,3), (при р = 6).

 

3. По известным значениям P0 и Uвх с помощью графика рисунка 10 выбираем схему преобразователя с учетом рекомендаций, приведенных в п.п. 2.2.

 
 

Области обозначенные ИЛИ соответствуют равноценному применению обоих типов преобразователей.

 

Рисунок 10 - График областей предпочтительного применения

различных типов преобразователей

 

4. Для схем рисунков 4…6 задаемся максимальным значением γмакс = 0,5. Для схемы рисунка 7 задаемся γмакс = 2 · tu / T= 0,85… 0,9. Для схем рисунка 2,3 γмакс = 0,7.

5. С помощью выражений таблицы 3 определяем амплитудные значения э.д.с. первичной U1m и вторичной U2m обмоток трансформатора преобразователя в функции напряжения первичной сети Uвх и мощности нагрузки P0 (для преобразователя рисунка 7 при двухполупериодной схеме выпрямления определяется амплитудное значение э.д.с. вторичной полуобмотки). При этом задаем:

Uкэ нас.= (1…2,5) В – напряжение коллектор – эмиттер регулирующего транзистора в режиме насыщения; Uпр.VD = Uпр.VD1 = Uпр.VD2 = (0,6…1) В – падение напряжения на диоде в открытом состоянии; DU1 @ 0,02Uвх. – падение напряжения на активном сопротивлении первичной W1 обмотки трансформатора; DU2 = 0,02U0 – падение напряжения на активном сопротивлении вторичной W2 обмотки трансформатора; DUL= (0,02…0,05)U0 = DUL2; DUL1 = (0,02…0,05)Uвх – падение напряжения на активном сопротивлении дросселя L, L1, L2;

DUc1=0,1Uвх – величина изменения напряжения на конденсаторе С1 (для схемы рисунка 7) на частоте преобразования.


Таблица 3

 

 

№№ п/п Параметр Выходной выпрямитель Схемы рис. 2,3 Схемы рис. 4,5 Схема рис.6 Схема рис. 7  
g - U0/(Uвх× n21) U0/( n21 ×Uвх+ U0) 2 U0/ (n21× Uвх)  
gмин - U0/(Uвх макс× n21) U0/( n21× Uвх макс+ U0) 2 U0/ (n21× Uвх макс)  
    I1 Однополупериодный n21×I0 макс n21×I0 макс   -  
Мостовой и двухполупериодный - - - n21×I0 макс  
    I2 Однополупериодный I0 макс I0 макс I0макс -  
Мостовой - - - I0 макс  
Двухполупериодный - - - 0,5×I0 макс  
  U1m   Однополупериодный   Uвхмин–Uкэнас- DU1   Uвх мин -Uкэнас - DU1     Uвх мин –Uкэнас - DU1 - DUL1    
Мостовой и двухполупериодный     -   -   0,5×Uвхмин - DUC1 - Uкэнас - DU1  
        Продолжение таблицы 3
 
№№ п/п Параметр Выходной выпрямитель Схемы рис. 2,3 Схемы рис. 4,5 Схема рис.6 Схема рис. 7
    U2m Однополупериодный   -
  Мостовой     - - -
Двухполупериодный   -   -   -
    Sст×Sо Однополупериодный   -
  Мостовой   -   -   -
Двухполупериодный   -   -   -
n21 - U2m/U1m
W1 - gмакс×U1m/(Sст×DB×fn)
Окончание таблицы 3
№№ п/п Параметр Выходной выпрямитель Схемы рис. 2,3 Схемы рис. 4,5 Схема рис.6 Схема рис. 7
W2 - W1×n21
q1 - I1/j
q2 - I2/j
Lкр - - - U0 (1-gмин) / (2fn×I0 мин)
Lкр1 - - - Uвх(1-gмин)/ (2×n21×fn×I0 мин) -
Lкр2 - - - U0 (1-gмин) / (2fn×I0 мин) -
LW1кр   - Uвх×g2макс/ (2 fn ×n21× I0 мин) - -
                               

 

 


6. Определяем требуемый коэффициент трансформации n21 трансформатора: n21 = U2m/U1m.

7. С помощью выражений таблицы 3 для выбранной схемы преобразователя определяем γмин. Если полученное значение γмин ³ 0,15, устройство реализуемо. В противном случае следует выбрать другую схему преобразователя, обладающую более широкими пределами регулирования (например, схему рисунка 2 или рисунка 6) и повторить расчет.

8. Определяем критическую индуктивность дросселя Lкр в схемах рисунков 2,3 и рисунка 7, критическую индуктивность Lкр1 и Lкр2 в схеме рисунка 6, а также критическую индуктивность Lw1кр в схеме рисунков 4, 5. Принимаем:

L = Lкр; L1=Lкр1; L2=Lкр2; Lw1=Lw1кр.

9. Определяем значение γ. Полученные при выборе преобразователя данные, необходимые для дальнейших расчетов схемы, заносятся в таблицу 4.

 

Таблица 4

Результаты расчетов

  2.4.3. Выбор и расчет трансформатора.  

– Конец работы –

Используемые теги: Электропитание, устройств, систем, связи0.068

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ЭЛЕКТРОПИТАНИЕ УСТРОЙСТВ И СИСТЕМ СВЯЗИ

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ. СИГНАЛЫ И КАНАЛЫ ЭЛЕКТРИЧЕСКОЙ СВЯЗИ. СИСТЕМЫ СВЯЗИ С ЧАСТОТНЫМ РАЗДЕЛЕНИЕМ КАНАЛОВ. ЦИФРОВЫЕ СИСТЕМЫ ПЕРЕДАЧИ
Лабораторные работы часа... Практические занятия часа... Всего аудиторных занятий часов...

Лекция 1. Тема: Операционная система. Определение. Уровни операционной системы. Функции операционных систем. 1. Понятие операционной системы
Понятие операционной системы... Причиной появления операционных систем была необходимость создания удобных в... Операционная система ОС это программное обеспечение которое реализует связь между прикладными программами и...

Система координат действия и общая теория систем действия: культура, личнсть и место социальных систем
В центре данного исследования стоит разработка теоретической схемы. Систематическое рассмотрение ее эмпирического использования будет предпринято… Основные положения системы координат действия подробно излагались ранее, и… При помощи ее анализируются структура и процессы систем, состоящих из отношений таких элементов к их ситуациям,…

Системы электропитания предприятий связи
Основными недостатками буферной системы являются большая стоимость токораспределительной сети и потери энергии в ней, особенно при централизованной… Например, ЭПУ (рисунок 1,а) может быть построена для питания сельских… В условиях нормального электроснабжения контакты контакторов К,1 и К2 разомкнуты.

Логические операции. Базовая конфигурация PC. Внутренние устройства. Устройства, располагаемые на материнской плате. Шинные интерфейсы. Периферийные устройства PC
Логические операции... В компьютерных программах используются операции... И пересечение или конъюнкция A B В программном коде обозначается как And а в функциональных схемах как знак...

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы
При аксиоматическом построении теории по существу все утверж дения выводятся путем доказательства из аксиом Поэтому к системе аксиом предъявляются... Система аксиом называется непротиворечивой если из нее нельзя логически... Если система аксиом не обладает этим свойством она не может быть пригодной для обоснования научной теории...

Конспект лекций по дисциплине Системы и сети связи с подвижными объектами Курск 2011 Тема1: Классификация телекоммуникационных систем
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Юго Западный государственный университет... Факультет информатики и вычислительной техники...

Экспертные системы. Классификация экспертных систем. Разработка простейшей экспертной системы
Глава 2. Структура систем, основанных на знаниях. 1. Категории пользователей экспертных систем. 2.2. Подсистема приобретения знаний. 3. База… ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение ЭС на предприятиях способствует эффективности работы и повышению квалификации специалистов.

Лекция 5 Логические операции. Базовая конфигурация PC. Внутренние устройства. Устройства, располагаемые на материнской плате. Шинные интерфейсы. Периферийные устройства PC
Логические операции... В компьютерных программах используются операции... И пересечение или конъюнкция A B В программном коде обозначается как And а в функциональных схемах как знак...

0.038
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам