рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Функциональные Композиционные Конструкционные. По количеству измерений

Функциональные Композиционные Конструкционные. По количеству измерений - раздел Образование, Наноматериалы — Материалы, Созданные С Использованием Наноча...

Наноматериалы — Материалы, созданные с использованием наночастиц и/или посредством нанотехнологий, обладающие какими-либо уникальными свойствами, обусловленными присутствием этих частиц в материале. К наноматериалам относят объекты, один из характерных размеров которых лежит в интервале от 1 до 100 нм[1]. Способы получения наноматериалов можно разделить на две группы:

  • «сборка из атомов»
  • «диспергирование макроскопических материалов».

Согласно 7-ой Международной конференции по нанотехнологиям (Висбаден, 2004)[2] выделяют следующие типы наноматериалов:

  • нанопористые структуры
  • наночастицы
  • нанотрубки и нановолокна
  • нанодисперсии (коллоиды)
  • нанокристаллы и нанокластеры.

Сами наноматериалы делят по назначению[3] на:

  • Функциональные
  • Композиционные
  • Конструкционные.

По количеству измерений[4]:

  • нульмерные/ квазинульмерные (квантовые точки, сфероидные наночастицы);
  • одномерные/ квазиодномерные (квантовые проводники, нанотрубки);
  • двумерные/квазидвумерные (тонкие пленки, поверхности разделов);
  • трехмерные/квазитрехмерные (многослойные структуры с наноразмерными дислокациями, сверхрешетки, нанокластеры).

Свойства наноматериалов, как правило, отличаются от аналогичных материалов в массивном состоянии. Например, у наноматериалов можно наблюдать изменение магнитных, тепло- и электропроводных свойств. Для особо мелких материалов можно заметить изменение температуры плавления в сторону ее уменьшения.

Для наноматериалов актуальна проблема их хранения и транспортировки. Обладая развитой поверхностью, материалы очень активны и охотно взаимодействуют с окружающей средой, прежде всего это касается металлических наноматериалов. Применение наноматериалов пока не очень широко развито, поскольку подробное их изучение только началось и сейчас идет накопление знаний об этих материалах. В генной инженерии векторы на основе наноматериалов используются для доставки биологически активных веществ в клетки[5].

Нанотехноло́гия — междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

Нанотехнология, нанонаука — это наука и технология коллоидных систем, это коллоидная химия, коллоидная физика, молекулярная биология, вся микроэлектроника. Принципиальное отличие коллоидных систем, к которым относятся облака, кровь человека, молекулы ДНК и белков, транзисторы, из которых собираются микропроцессоры, в том, что поверхность таких частиц или огромных молекул чрезвычайно велика по отношению к их объёму. Такие частицы занимают промежуточное положение между истинными гомогенными растворами, сплавами, и обычными объектами макромира, такими, как стол, книга, песок. Их поведение, благодаря высокоразвитой поверхности, сильно отличается от поведения и истинных растворов и расплавов, и объектов макромира. Как правило, такие эффекты начинают играть значительную роль, когда размер частиц лежит в диапазоне 1-100 нанометров: отсюда пришло замещение слова коллоидная физика, химия, биология на нанонауку и нанотехнологии, подразумевая размер объектов, о которых идет речь.

Содержание
  • 1 Определения и терминология
  • 2 История
  • 3 Фундаментальные положения
    • 3.1 Сканирующая зондовая микроскопия
    • 3.2 Наночастицы
    • 3.3 Самоорганизация наночастиц
    • 3.4 Проблема образования агломератов
  • 4 Новейшие достижения
    • 4.1 Наноматериалы
    • 4.2 Методы исследования
    • 4.3 Наномедицина и химическая промышленность
    • 4.4 Компьютеры и микроэлектроника
    • 4.5 Робототехника
    • 4.6 Концептуальные устройства
  • 5 Индустрия нанотехнологий
  • 6 Отношение общества к нанотехнологиям
    • 6.1 Реакция мирового сообщества на развитие нанотехнологий
    • 6.2 Реакция российского общества на развитие нанотехнологий
    • 6.3 Нанотехнологии в искусстве
      • 6.3.1 Нанотехнологии в фантастике
  • 7 Форумы и выставки
  • 8 Критика нанотехнологий
  • 9 См. также
  • 10 Литература
  • 11 Примечания
  • 12 Ссылки

Править] Определения и терминология

Есть мнение, что на сегодняшний день в мире нет стандарта, описывающего, что такое нанотехнологии, что такое нанопродукция. В Еврокомиссии создана специальная группа, которой дали два года на то, чтобы разработать классификацию нанопродукции. Среди подходов к определению понятия «нанотехнологии» имеются следующие:
1.В Техническом комитете ISO/ТК 229 под нанотехнологиями подразумевается следующее:[2]

  • знание и управление процессами, как правило, в масштабе 1 нм, но не исключающее масштаб менее 100 нм в одном или более измерениях, когда ввод в действие размерного эффекта (явления) приводит к возможности новых применений;
  • использование свойств объектов и материалов в нанометровом масштабе, которые отличаются от свойств свободных атомов или молекул, а также от объемных свойств вещества, состоящего из этих атомов или молекул, для создания более совершенных материалов, приборов, систем, реализующих эти свойства.

2.Согласно «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 года» (2004 г.)[источник не указан 1041 день] нанотехнология определяется как совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, хотя бы в одном измерении, и в результате этого получившие принципиально новые качества, позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба.

Практический аспект нанотехнологий включает в себя производство устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и наночастицами. Подразумевается, что не обязательно объект должен обладать хоть одним линейным размером менее 100 нм — это могут быть макрообъекты, атомарная структура которых контролируемо создаётся с разрешением на уровне отдельных атомов, либо же содержащие в себе нанообъекты. В более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул (например, силы Ван-дер-Ваальса), квантовые эффекты.

Нанотехнология и в особенности молекулярная технология — новые, очень мало исследованные дисциплины. Основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных достижений позволяет относить её к высоким технологиям.

Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается ненамного, зато экономические затраты возрастают экспоненциально. Нанотехнология — следующий логический шаг развития электроники и других наукоёмких производств.

Править] История

 

 

Взгляд изнутри углеродных нанотрубок

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «В том мире полно места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире, будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап — полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой, собирать макровещи. Это позволит сделать вещи на порядок дешевле — таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Вот как Р. Фейнман описал предполагаемый им манипулятор:

Я думаю о создании системы с электрическим управлением, в которой используются изготовленные обычным способом «обслуживающие роботы» в виде уменьшенных в четыре раза копий «рук» оператора. Такие микромеханизмы смогут легко выполнять операции в уменьшенном масштабе. Я говорю о крошечных роботах, снабженных серводвигателями и маленькими «руками», которые могут закручивать столь же маленькие болты и гайки, сверлить очень маленькие отверстия и т. д. Короче говоря, они смогут выполнять все работы в масштабе 1:4. Для этого, конечно, сначала следует изготовить необходимые механизмы, инструменты и руки-манипуляторы в одну четвертую обычной величины (на самом деле, ясно, что это означает уменьшение всех поверхностей контакта в 16 раз). На последнем этапе эти устройства будут оборудованы серводвигателями (с уменьшенной в 16 раз мощностью) и присоединены к обычной системе электрического управления. После этого можно будет пользоваться уменьшенными в 16 раз руками-манипуляторами! Сфера применения таких микророботов, а также микромашин может быть довольно широкой — от хирургических операций до транспортирования и переработки радиоактивных материалов. Я надеюсь, что принцип предлагаемой программы, а также связанные с ней неожиданные проблемы и блестящие возможности понятны. Более того, можно задуматься о возможности дальнейшего существенного уменьшения масштабов, что, естественно, потребует дальнейших конструкционных изменений и модификаций (кстати, на определённом этапе, возможно, придется отказаться от «рук» привычной формы), но позволит изготовить новые, значительно более совершенные устройства описанного типа. Ничто не мешает продолжить этот процесс и создать сколько угодно крошечных станков, поскольку не имеется ограничений, связанных с размещением станков или их материалоёмкостью. Их объем будет всегда намного меньше объема прототипа. Легко рассчитать, что общий объем 1 млн уменьшенных в 4000 раз станков (а следовательно, и масса используемых для изготовления материалов) будет составлять менее 2 % от объема и массы обычного станка нормальных размеров. Понятно, что это сразу снимает и проблему стоимости материалов. В принципе, можно было бы организовать миллионы одинаковых миниатюрных заводиков, на которых крошечные станки непрерывно сверлили бы отверстия, штамповали детали и т. п. По мере уменьшения размеров мы будем постоянно сталкиваться с очень необычными физическими явлениями. Всё, с чем приходится встречаться в жизни, зависит от масштабных факторов. Кроме того, существует ещё и проблема «слипания» материалов под действием сил межмолекулярного взаимодействия (так называемые силы Ван-дер-Ваальса), которая может приводить к эффектам, необычным для макроскопических масштабов. Например, гайка не будет отделяться от болта после откручивания, а в некоторых случаях будет плотно «приклеиваться» к поверхности и т. д. Существует несколько физических проблем такого типа, о которых следует помнить при проектировании и создании микроскопических механизмов.[3]

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «

Области применения наноматериалов очень обширны, т.к. они являются основой всего живого и не живого мира. Наиболее перспективными и стратегически важными на сегодняшний день являются следующие направления исследований:

Военно-промышленный комплекс
Не секрет что гонка вооружений не прекращается ни на минуту. Правительства всех стран стремятся усовершенствовать свою боевую мощь. Именно нанотехнологиям уделяется особый интерес, и тратятся огромные деньги.

Производство
В производстве наноразработки играют очень важную роль, например, покрытия металлорежущих инструментов, модифицированные наноалмазами, позволяют продлить срок службы в 4-5 раз, тем самым сократить колоссальные затраты.

Медицина
В медицине позволяют решать множество важных задач, наиболее приоритетные - поиск и создание лекарственных препаратов. Это особо актуально в наше время, когда появляются такие тяжелые заболевания, как птичий и свиной грипп, и др.

Компьютерная техника
В производстве компьютеров наноисследования имеют преимущественное значение. Сюда относится создание мощных процессоров и микросхем. Для изготовления лазерных компакт-дисков так же применяют новейшие технологии, в т.ч. полирование поверхности.

Дом и быт
В быту наноматериалы используются в строительстве (различные добавки к бетону), в фильтрах для очистки воды и воздуха, в солнечных батареях. Все это делает наши дома более удобными, надежными и безопасными.

Спорт
Сегодня для достижения мировых рекордов очень важно пользоваться современным спортивным инвентарем.

Здоровье
Лекарственные препараты состоящие из нанокомпонетнов эффективно борятся с самыми тяжелыми заболеваниями. Лекарства убивают микробов и разрушают опухоли. Новейшие разработки ждут революционных достижений в борьбе с раком.

Красота
Нанокосметика придает коже не только красоту и изящество, но и оказывает лечебное воздействие, путем проникновения микроэлементов в определенные слои кожи и доставки питательных веществ.

егодня мы еще довольно далеки от описанного Фейнманом микроробота, способного через кровеносную систему проникнуть внутрь сердца и произвести там операцию на клапане. Современные приложения нанотехнологий в медицине можно разделить на несколько групп:

· Наноструктурированные материалы, в т. ч., поверхности с нанорельефом, мембраны с наноотверстиями;

· Наночастицы (в т. ч., фуллерены и дендримеры);

· Микро- и нанокапсулы;

· Нанотехнологические сенсоры и анализаторы;

· Медицинские применения сканирующих зондовых микроскопов;

· Наноинструменты и наноманипуляторы;

· Микро- и наноустройства различной степени автономности.

КЕРАМИКА (греч. keramike - гончарное искусство, от keramos - глина), неметаллич. материалы и изделия, получаемые спеканием глин или порошков неорг. в-в. По структуре керамику подразделяют на грубую, имеющую крупнозернистую неоднородную в изломе структуру (пористость 5-30%), и тонкую - с однородной мелкозернистой структурой (пористость <5%). К грубой керамике относят мн. строит. керамич. материалы, напр. лицевой кирпич, к тонкой - фарфор, пьезо- и сегнетокерамику, ферриты, керметы, нек-рые огнеупоры и др., а также фаянс, полуфарфор, майолику. В особую группу выделяют т. наз. высокопористую керамику (пористость 30-90%), к к-рой обычно относят теплоизоляц. керамич. материалы. Типы керамики. В зависимости от хим. состава различают оксидную, карбидную, нитридную, силицидную и др. керамикй. Оксидная керамика характеризуется высоким уд. электрич. сопротивлением (1011-10 Ом.см), пределом прочности на сжатие до 5 ГПа, стойкостью в окислит. средах в широком интервале т-р; нек-рые виды - высокотемпературной сверхпроводимостью, напр. иттрий-бариевая керамика (см. Иттрии), а также высокой огнеупорностью. Среди оксидной керамики наиб. распространение получили: 1. Алюмосиликатная керамика на основе SiO2-А12О3 или каждого из этих оксидов в отдельности. Кремнеземистая керамика содержит более 80% SiO2 и подразделяется на кварцевую и динасовую керамику. Первую изготовляют из кварцевого стекла или жильного кварца, вторую - спеканием кварцита в присут. Fe2O3 и Са(ОН)2. Кварцевая керамика обладает высокой термич. и радиац. стойкостью, радиопрозрачностью, высокой кислотостойкостью и огнеупорностью. По мере увеличения содержания Аl2О3 в керамич. материалах увеличивается содержание муллита 3Al2O3.2SiO2, что способствует повышению прочности и термостойкости керамики, снижению ее кислотности. К керамике, содержащей ок. 28% Аl2О3, относят "полукислые" материалы (огнеупоры, фарфор, фаянс, гончарные изделия), а также каолиновую вату, теплоизоляц. материалы на ее основе, шамотные огнеупоры и др. Корундовая керамика, содержащая >90% Аl2О3, характеризуется высоким электрич. сопротивлением при т-рах до 1500°С, высокими пределами прочности при сжатии (3-4 ГПа) и изгибе (~ 1 ГПа). Из алюмосиликатной керамики изготовляют посуду, детали и футеровку коксовых и мартеновских печей, ракет, космич. аппаратов и ядерных реакторов, носители для катализаторов, корпуса галогенных ламп, костные имплантаты, детали радиоаппаратуры и мн. др. 2. Керамика на основе SiO2 и др. оксидов. К этому типу материалов относят керамику состава SiO2-Al2O3-MgO (кордиеритовая), ZrSiO4 (цирконовая), SiO2-Al2O3-Li2O (сподуменовая), SiO2-Al2O3 BaO (цельзиановая керамика). Для изготовления такой керамики обычно используют глину, каолин, тальк, карбонаты Ва, Li и Са, MgO, минералы эвкриптит, сподумен, петалит, ашарит, трепел, известняк. Применяют в произ-ве радиотехн. деталей, теплообменников, огнеупоров, изоляторов азто- и авиасвечей и др. 3. Керамика на основе ТiO2, титанатов и цирконатов Ва, Sr, Pb, a также керамика на основе ниобатов и танталатов Рb, Ва, К и Na. Такая керамика характеризуется высоким электрич. сопротивлением, высокой диэлектрич. проницаемостью и применяется в электронике и радиотехнике. 4. Керамика на основе MgO. Получают из магнезита, доломита, известняка, хромомагнезита, синтетич. MgO; в качестве добавок используют СаО, Сr2О3, Аl2О3. Магнезиальную керамику, содержащую 80% MgO, применяют для изготовления огнеупоров. Керамика из чистого MgO используют для произ-ва изоляторов МГД генераторов, иллюминаторов летательных аппаратов, в качестве носителей для катализаторов. Магнезиально-известковую (содержит более 50% MgO, 10% СаО), магнезитохромовую (60% MgO, 5-18% Сг2О3), хромомагнезитовую (40-60% MgO, 15-30% Сг2О3) и хромитовую (40% MgO, 25% Сr2О3) керамику применяют для изготовления огнеупоров. Керамика из хромитов La и Y используют в качестве высокотемпературных электронагревателей (выдерживают нагрев до 1750 °С), работающих в окислит. среде. 5. Шпинельная керамика на основе ферритов гл. обр. Ni, Co, Мn, Са, Mg, Zn. Обладает, как правило, ферромагн. св-вами и способна образовывать твердые р-ры замещения. Применяют такую керамику для изготовления магнитопроводов, сердечников катушек и др. деталей в устройствах памяти и т. п. 6. Керамика на основе оксидов BeO, ZrO2, HfO2, Y2O3, UO2. Химически стойка и термостойка. Так, керамика из ВеО (броммеллитовая керамика), полученная спеканием ВеО с добавками др. оксидов (ок. 0,5%), напр. Аl2О3, ZrO2, обладает наиб. теплопроводностью среди керамич. материалов и способна рассеивать нейтроны. Используют ее при изготовлении электровакуумных приборов, тиглей для плавки тугоплавких металлов, напр. Pt, Be, Ti. В керамике из ZrO2 обычно вводят стабилизаторы (Y2O3, СаО, MgO), образующие с ним твердые р-ры; применяют для изготовления высокотемпературных нагревателей, защитных обмазок, для изоляции индукторов высокочастотных печей и как конструкционную керамику. К карбидной керамике относят карборундовую керамику, а также материалы на основе карбидов Ti, Nb, W. Все виды такой керамики обладают высокой электро- и теплопроводностью, огнеупорностью, устойчивостью в бескислородной среде (керамика на основе SiC, к-рая устойчива до 1500 °С в окислит. средах). Карборундовую керамику изготовляют из порошка SiC или обжигом С в Si. Она имеет высокий предел прочности при сжатии. Карбидную керамику используют в качестве конструкц. материалов, огнеупоров, для изготовления высокотемпературных нагревателей электрич. печей и инструментов в металлообрабатывающей пром-сти (керамика на основе карбидов W, Ti, Nb). К нитридной керамике относят материалы на основе BN, A1N, Si3N4, (U, Pu)N, а также керамику, получаемую спеканием соед., содержащих Si, A1, О, N (по начальным буквам элементов, входящих в керамику, ее называют "сиалон"), или соед., содержащих Y, Zr, О и N. Изготовляют такую керамику спеканием порошков в атмосфере азота при давлении до 100 МПа, горячим прессованием при 1700-1900 °С. Керамику из Si3N4 получают реакц. спеканием порошка Si в среде N2; в этом случае обычно образуется пористая керамика. Нитридная керамика характеризуется стабильностью диэлектрич. св-в, высокой мех. прочностью, термостойкостью, хим. стойкостью в разл. средах. Предел прочности при изгибе для керамики из BN составляет 75-80 МПа, для керамики из AlN-200-250 МПа, для керамики из Si3N4 - дo 1000 МПа. Керамич. нитридные материалы применяют для изготовления инструментов в металлообрабатывающей пром-сти, тиглей для плавки нек-рых полупроводниковых материалов, СВЧ изоляторов и др. Керамика из Si3N4 - конструкц. материал, заменяющий жаропрочные сплавы из Со, Ni, Cr, Fe. Среди силицидной керамики наиб. распространена керамика из дисилицида Мо. Она характеризуется малым электрич. сопротивлением (170-200 мкОм.см), стойкостью в окислит, средах (до 1650°С), расплавах металлов и солей. Изготовляется спеканием порошка MoSi2 с добавками Y2O3 и др. оксидов. Применяют для изготовления электронагревателей, работающих в окислит. средах. Из чистых фторидов, сульфидов, фосфидов, арсенидов нек-рых металлов изготовляют оптическую керамику, применяемую в ИК технике. При изготовлении керамики из глины и непластичного материала последний измельчают в шаровых мельницах, а глины с добавлением воды размалывают в стругачах или распускают в смесителях; полученные суспензии дозируют и сливают в смесительные бассейны. В зависимости от способа формования суспензию обезвоживают в фильтр-прессах или распылительных устройствах. Из порошков с влажностью до 12% по массе изделия формуют одним из видов прессования; при формовании масс с влажностью 15-25% последовательно используют раскатку, выдавливание, допрессовку, формование на гончарном круге и обточку. Из суспензий с влажностью 25-45% (литейных шликеров) изделия формуют литьем в гипсовые, пористые пластмассовые и металлич. формы. При изготовлении техн. керамики литейный шликер приготовляют из непластичных порошков, добавляя в тонкомолотую смесь исходного сырья термопластичные в-ва (напр., парафин, воск), олеиновую к-ту и нек-рые ПАВ; изделия формуют всеми упомянутыми способами, в т.ч. вибропрессованием. Отформованные изделия подвергают сушке (в случае применения водорастворимой связки) или выжиганию орг. связки. Обжиг керамики. Сформованные изделия или предварительно спрессованные порошкообразные смеси исходных в-в подвергают обжигу - сложному процессу спекания, в результате к-рого создается материал определенного фазового состава и с заданными св-вами. Обжиг до получения прочного монолита (камневидного тела) проводят в спец. камерных, кольцевых или туннельных печах непрерывного действия. Т-ры обжига колеблются от 900 °С для строит. керамики до 2000 °С для огнеупорной керамики. Для получения плотной керамики с мелкими кристаллами используют также горячее прессование в твердых или эластичных формах (газостатич. прессование) и реакц. спекание. Обычно изделия после обжига готовы к использованию; нек-рые виды керамики дополнительно подвергают мех. обработке, металлизации, декорированию. Изделия из фарфора, фаянса и др. видов тонкой керамики перед обжигом, как правило, покрывают глазурью, образующей при 1000-1400 °С стекловидный водо- и газонепроницаемый слой (см. Глазурь). Тонкостенные изделия перед глазурованием во избежание размокания в глазурной суспензии подвергают предварит. обжигу. При изготовлении теплоизоляц. керамики с высокой пористостью используют выгорающие добавки, на месте к-рых образуются поры, или керамич. волокна из алюмосиликатов, из к-рых по технологии асбестовых изделий и бумаги изготовляют пористые войлоки, шнуры, вату, ленты и т.п.

Керамика (др.-греч. κέραμος — глина) — изделия из неорганических материалов (например, глины) и их смесей с минеральными добавками, изготавливаемые под воздействием высокой температуры с последующим охлаждением.[1]

В узком смысле слово керамика обозначает глину, прошедшую обжиг.

Самая ранняя керамика использовалась как посуда из глины или из смесей её с другими материалами. В настоящее время керамика применяется как индустриальный материал (машиностроение, приборостроение, авиационная промышленность и др.), как строительный материал, художественный, как материал, широко используемый в медицине, науке. В XX столетии новые керамические материалы были созданы для использования в полупроводниковой индустрии и др. областях.

Современные высокотемпературные сверхпроводящие материалы также являются керамикой.

Содержание [убрать]
  • 1 Виды керамики
  • 2 История
  • 3 История появления керамики на Руси
    • 3.1 Керамика в России
  • 4 Прозрачная керамика
  • 5 Нанокерамика
  • 6 Технология производства керамических изделий
    • 6.1 Приготовление шликера
    • 6.2 Участок по приготовлению глазури
    • 6.3 Формование
    • 6.4 Ручная обработка изделий
  • 7 См. также
  • 8 Примечания
  • 9 Литература

Править] Виды керамики

В зависимости от строения различают тонкую керамику (черепок стекловидный или мелкозернистый) и грубую (черепок крупнозернистый). Основные виды тонкой керамики — фарфор, полуфарфор, фаянс, майолика. Основной вид грубой керамики — гончарная керамика. кроме того различают керамику карбидную, боридную, силицидную и пр.

Фарфор имеет плотный спекшийся черепок белого цвета (иногда с голубоватым оттенком) с низким водопоглощением (до 0,2 %), при постукивании издает высокий мелодичный звук, в тонких слоях может просвечивать. Глазурь не покрывает край борта или основание изделия из фарфора. Сырье для фарфора — каолин, песок, полевой шпат и другие добавки.

Фаянс имеет пористый белый черепок с желтоватым оттенком, пористость черепка 9 — 12 %. Из-за высокой пористости изделия из фаянса полностью покрываются бесцветной глазурью невысокой термостойкости. Фаянс применяется для производства столовой посуды повседневного использования. Сырье для производства фаянса — беложгущиеся глины с добавлением мела и кварцевого песка.

Полуфарфор по свойствам занимает промежуточное положение между фарфором и фаянсом, черепок белый, водопоглощение 3 — 5 %, используется в производстве посуды.

Майолика имеет пористый черепок, водопоглощение около 15 %, изделия имеют гладкую поверхность, блеск, малую толщину стенок, покрываются цветными глазурями и могут иметь декоративные рельефные украшения. Для изготовления майолики применяется литьё. Сырье — беложгущиеся глины (фаянсовая майолика) или красножгущиеся глины (гончарная майолика), плавни, мел, кварцевый песок.

Гончарная керамика имеет черепок красно-коричневого цвета (используются красножгущиеся глины), большой пористости, водопоглощение до 18 %. Изделия могут покрываться бесцветными глазурями, расписываются цветными глиняными красками — ангобами

Править] История

Керамика известна с глубокой древности и является, возможно, первым созданным человеком материалом. Время появления керамики относят к эпохе мезолита и неолита.

Отдельные виды керамики формировались постепенно по мере совершенствования производственных процессов, в зависимости от свойств сырья и получаемых условий обработки.

Исторически керамические изделия были твёрдыми, пористыми и хрупкими.

Древнейший вид керамики — это обыкновенный горшечный товар с землистым, окрашенным и пористым черепком. Эта бытовая керамика разными способами облагораживалась — наносился рельеф штампованием и гравировкой, глянцевитым слоем (греческая керамика и римские Terra sigillata[2]), цветной глазурью («Гафнеркерамика» Ренессанса).

Первоначально керамика формовалась вручную. Изобретение гончарного круга в третьем тысячелетии до нашей эры позволило изготовлять посуду с более тонкими стенками.

К концу XVI века в Европе появилась майолика (в зависимости от происхождения, также часто называется фаянсом). Обладая пористым черепком из содержащей железо и известь, но при этом белой фаянсовой массы, она была покрыта двумя глазурями: непрозрачной, с высоким содержанием олова, и прозрачной блестящей свинцовой глазурью.

Декор писали на майолике по сырой глазури, прежде чем обжечь изделие при температуре порядка 1000 °C. Краски для росписи брались того же химического состава, что и глазурь, однако их существенной частью были окислы металлов, которые выдерживали большую температуру (так называемые огнеупорные краски — синяя, зеленая, жёлтая и фиолетовая). Начиная с XVIII века стали применять так называемые муфельные краски, которые наносились на уже обожжённую глазурь. Они используются и для росписи фарфора.

В XVI веке в Германии распространилось производство каменной керамической посуды. Белый (например, в Зигбурге) или окрашенный (например, в Ререне), весьма плотный черепок состоял из глины, смешанной с полевым шпатом и другими веществами. После обжига при температуре 1200—1280 °C каменная керамика становилась твердой и практически не пористой. В Голландии производили красную каменную керамику по образцу Китайской керамики, и ту же особенность обнаруживает керамика Бёттгера.

Каменная керамика также изготовлялась Веджвудом в Англии. Тонкий фаянс как особый сорт керамики с белым пористым черепком, покрытым белой же глазурью, появился в Англии в первой половине XVIII века. Фаянс в зависимости от крепости черепка делится на мягкий тонкий фаянс с высоким содержанием извести, средний — с более низким ее содержанием и твердый — совсем без извести. Этот последний по составу и крепости черепка часто напоминает каменную керамику или фарфор.

Править] История появления керамики на Руси

Править] Керамика в России

Археологические находки во многих древнерусских городах свидетельствуют о широком развитии на Руси гончарного ремесла. В Древней Руси применяли большей частью двухъярусные (нижний, топочный ярус зарывали в землю), гончарные горны, но были и одноярусные.

Монголо-татарское нашествие повлияло на развитие древнерусской культуры. История одной из ее ветвей — керамики сместилась из южных регионов в северные и западные пограничные города, в московские земли, поэтому не случайно возрождение изразцового искусства в Древней Руси было связано с Псковом и Москвой. Было уничтожено множество произведений русских гончаров IX—XII веков. Например, исчезли двуручные корчаги-амфоры, вертикальные светильники, более простым стал орнамент, искусство перегородчатой эмали, глазурь (самая простая — жёлтая, уцелела только в Новгороде).

В XIII—XIV столетиях в Пскове получила распространение муравленная черепица, применяемая для головного убора православных храмов. Она, вероятно, породила простые облицовочные плитки, а затем изразцы с узором и румпой для крепления в кладке стен.

На территории Псково-Печерского Свято-Успенского монастыря сохранились уникальные памятники глазурованной керамики — более ста древних надгробных монашеских плит (керамид), вмурованных в стены подземных галерей. Достигающие в среднем высоты 45-60 см и имеющие ширину 30-40 см, они выполнены из обожженной глины с темно-зеленой поливой. Количество и высокое художественное качество изделий свидетельствует о том, что в монастыре издревле процветало керамическое производство. Керамиды впервые на Руси начали изготавливать именно на Псковщине в XVI веке. В монастыре была специальная гончарная мастерская.

Псковские гончарные изделия, такие как посуда, узнаваемы по своим формам. Искусство псковских мастеров ярко проявилось в изготовлении декоративной керамики.[3]

Прозрачная керамика

Исторически керамические материалы непрозрачны из-за особенностей их структуры. Однако спекание частиц нанометровых размеров позволило создать прозрачные керамические материалы, обладающие свойствами (диапазоном рабочих длин волн излучения, дисперсией, показателем преломления), лежащими за пределами стандартного диапазона значений для оптических стёкол.

Нанокерамика

 

Технология производства керамических изделий

Сырьё для керамических масс подразделяется на пластичное (глины и каолины) и непластичное. Добавки шамота и кварца уменьшают усадку изделий и…

Править] Приготовление шликера

Приготовление шликера идёт в три фазы:

  1. Первая фаза: помол полевого шпата и песка (помол ведётся от 10 до 12 часов);
  2. В первую фазу добавляется глина;
  3. Во вторую фазу добавляется каолин. Готовый шликер сливается в ёмкости и выдерживается.

Транспортировка из сырьевого склада производится при помощи погрузчика в приёмные бункера. Откуда по конвейеру отправляется либо в шаровую мельницу (для помола), либо в турборастворители (для роспуска глины и каолина)

Править] Участок по приготовлению глазури

Глазури — глянцевидные сплавы, расплавляющиеся на керамическом черепке слоем толщиной 0,12 — 0,40 мм. Глазурь наносится, чтобы прикрыть черепок изделия плотным и гладким слоем, а также для придания изделию с плотным черепком повышенной прочности и привлекательного внешнего вида, для гарантии диэлектрических свойств и защиты декора от механических и химических воздействий.

В состав глазури входит тонко измельчённый циркон, мел, белила. В одну из определяемых технологом ёмкостей загружается готовая глазурь. Её пропускают несколько раз через вибросита и магнитноуловители для извлечения металлических примесей, наличие которых в глазури может повлечь за собой образование дефектов в ходе производства. В состав добавляется клей, и глазурь отправляется на линию.

Править] Формование

Перед формовкой шликер загружается в одну из ёмкостей. Три ёмкости используются поочерёдно (меняясь примерно раз в сутки) для определённого стенда. Форму предварительно отчищают от остатков шликера после предыдущей формовки, обрабатывают шликерной водой и просушивают.

Шликер заливают в просушенные формы. Формы рассчитаны на 80 заливок. При формовании используется наливной способ. Форма впитывает в себя часть воды, и объём шликера уменьшается. В форму доливают шликер для поддержания требуемого объема.

После затвердевания изделия просушиваются, производится первичная отбраковка изделий (трещины, деформации).

Править] Ручная обработка изделий

После формования изделия поступают в цех ручной обработки.

После нанесения глазури изделие отправляется на обжиг в печь. Печь укомплектована модулем предварительной сушки, камерами обеспыливания и обдува. Термическая обработка ведётся при температуре 1230 градусов, длина печи составляет порядка 89 метров. Цикл от погрузки до разгрузки вагонетки составляет около полутора суток. Обжиг изделий в печи проходит в продолжение суток.

После обжига проводят сортировку: разделение на группы подобных изделий, выявление дефектов. Если дефекты устранимы, то они отправляются на доработку и удаляются вручную на участке реставрации. В противном случае изделие считается бракованным.

Бетон - виды, свойства и применение

Бетон - это состав из портландцемента, мелкого и крупного наполнителя, воды, различных добавок и воздуха. Портландцемент получил свое название в Англии в начале XIX века из-за сходства… Цемент смешивают с водой и мелким наполнителем (песок). Из этого раствора после последующего присоединения к нему…

Свойства бетона

Реологические свойства бетонной смеси

Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону. Основной структурообразующей составляющей в бетонной смеси является цементное… Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей…

Технические свойства бетонной смеси

Для оценки удобоукладываемости используют три показателя: подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности … Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса… Жесткость бетонной смеси характеризуется временем (с) вибрирования, необходимым для выравнивания и уплотнения…

Удобоукладываемость бетонной смеси

Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен… Для обеспечения требуемой прочности бетона величина водоцементного отношения…

Деформативные свойства бетона

Область условно упругой работы бетона - от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с… Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения… Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона…

Есж = Ер = Еб.

Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки.

Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя - щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми.

Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести.

Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях.

Усадка и набухание бетона

Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень.… Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог…

Морозостойкость бетона

Водонепроницаемость бетона

Теплофизические свойства бетона

Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых… Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м.… Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении…

ОСНОВНЫЕ СВОЙСТВА БЕТОНА

При бетонировании ряда конструкций, например, бетонных дорожных покрытий, важно знать прочность бетона при изгибе. Для этого испытывают… Основные факторы, влияющие на прочность бетона - активность цемента и… Значительное влияние на прочность бетона оказывают степень уплотнения бетонной смеси, продолжительность и условия…

ПОДБОР СОСТАВА БЕТОНА

Состав бетона может быть выражен и в виде расхода материалов по массе на 1 мЗ уплотненной смеси, например, цемента 260, песка 660, гравия 1310…

Приготовление, транспортирование и укладка бетонной смеси

Применяемые бетоносмесители непрерывного действия состоят из цилиндрического барабана с лопастями на внутренней поверхности. За счет вращения… Однородность и прочность бетона в значительной, мере определяются качеством… Транспортирование бетонной смеси в большинстве случаев производится автосамосвалами, а на малые расстояния (в пределах…

Специальные виды тяжелых бетонов

Дорожный бетон применяют для устройства покрытий на автомагистралях, дорогах промышленных предприятий и городских улицах. В процессе эксплуатации… Декоративные бетоны используются для повышения эстетической выразительности… Жаростойкий бетон способен сохранять свои физико-механические свойства при длительном воздействии высоких температур.…

Материалы для изготовления бетона

Марку цемента назначают в зависимости от проектной марки бетона по прочности при сжатии: Марка бетона М150 М200 М250 … Если марка цемента выше той, которая рекомендуется для данного бетона, то надо…

Мелкий заполнитель

Качество песка, применяемого для изготовления бетона, определяется минеральным составом, зерновым составом и содержанием вредных примесей. Заполнитель должен состоять из зерен разного размера (разных фракций), при… Чем компактнее расположены зерна заполнителей, тем меньше объем пустот.

Классификация песков по крупности

Группа песков Полный остаток на сите с сеткой 0,63 мм, % Модуль крупности
Крупный 50-75 3,5-2,5
Средний 35-50 2,5-2
Мелкий 20-35 2-1,5

В природном песке и в гравии могут содержаться органические примеси (например, продукты разложения остатков растений), в частности, органические гумусовые кислоты, которые понижают прочность бетона и даже разрушают цемент. Наличие органических примесей определяют колориметрическим (цветовым) методом.

Крупный заполнитель

Зерна гравия имеют окатанную форму и гладкую поверхность, личного зернового состава Обычно гравий содержит в том или ином количестве песок, а также… Щебень получают дроблением изверженных, метаморфических, плотных и водостойких… Качество крупного заполнителя определяется минеральным составом и свойствами исходной породы (ее прочностью и…

Вода

Вода, применяемая для затворения бетонной смеси и поливки бетона, не должна содержать вредных примесей, препятствующих схватыванию и твердению вяжущего вещества. Для затворения бетонной смеси применяют водопроводную питьевую воду, а также природную воду (рек, естественных водоемов), имеющую водородный показатель рН не менее 4, содержащую не более 5600 мг/л минеральных солей, в том числе сульфатов не более 2700 мг/л . He допускается применять болотные, а также сточные бытовые и промышленные воды без их очистки.

Добавки для бетонов

Регулирующие свойства бетонных смесей: пластифицирующие; стабилизирующие;

Свойства бетона

Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону. Основной структурообразующей составляющей в бетонной смеси является цементное… Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей…

Удобоукладываемость бетонной смеси

Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен… Для обеспечения требуемой прочности бетона величина водоцементного отношения…

Деформативные свойства бетона

Область условно упругой работы бетона - от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с… Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения… Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона…

Есж = Ер = Еб.

Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки.

Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя - щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми.

Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести.

Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях.

Усадка и набухание бетона

Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень.… Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог…

Морозостойкость бетона

Теплофизические свойства бетона

Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых… Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м.… Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении…

Марки и классы бетона

При проектировании бетонных и железобетонных конструкций назначают требуемые характеристики бетона: класс (марку) прочности, марки морозостойкости и водонепроницаемости.

За проектную марку бетона по прочности на сжатие принимают сопротивление осевому сжатию (кгс/см2) эталонных образцов-кубов.

За проектную марку бетона по прочности на осевое растяжение принимают сопротивление осевому растяжению (кгс/см2) контрольных образцов. Эта марка назначается тогда, когда она имеет главенствующее значение.

Проектная марка бетона по морозостойкости характеризуется числом циклов попеременного замораживания и оттаивания, которое выдерживают образцы в условиях стандартного испытания. Назначается для бетона, подвергающегося многократному воздействию отрицательных температур.

Проектная марка бетона по водонепроницаемости характеризуется односторонним гидростатическим давлением (кгс/см2), при котором образцы бетона не пропускают воду в условиях стандартного испытания. Назначается для бетона, к которому предъявляются требования по плотности и водонепроницаемости.

Проектную марку бетона по прочности на сжатие контролируют путем испытания стандартных бетонных образцов: для монолитных конструкций в возрасте 28 суток, для сборных конструкций - в сроки, установленные для данного вида изделий стандартом или техническими условиями.

Проектную марку бетона монолитных конструкций разрешается устанавливать при специальном обосновании в возрасте 90 или 180 суток в зависимости от сроков загружения, что позволяет экономить цемент.

Прочность бетона определяют путем испытания образцов, которые изготовляют сериями; серия, как правило, состоит из трех образцов.

Предел прочности при растяжении возрастает при повышении марки бетона по прочности при сжатии, однако увеличение сопротивления растяжению замедляется в области высокопрочных бетонов. Поэтому прочность бетона при растяжении составляет 1/10-1/17 предела прочности при сжатии, а предел прочности при изгибе - 1/6-1/10.

Однородность прочности и класс бетона.

Бетон должен быть однородным - это важнейшее техническое и экономическое требование. Для оценки однородности бетона данной марки используют результаты контрольных испытаний бетонных образцов за определенный период времени, имеется в виду, что стандартные образцы твердели в одинаковых условиях одно и то же время. Прочность бетонных образцов будет колебаться, отклоняясь от среднего значения в большую и меньшую стороны. На прочности сказываются колебания в качестве цемента и заполнителей, точность дозирования составляющих, тщательность приготовления бетонной смеси и другие факторы.

Для повышения однородности бетона необходимо применение цемента и заполнителей гарантированного качества, повышение уровня технологической дисциплины, автоматизация производства.

Следовательно, для нормирования прочности необходимо использовать стандартную характеристику, которая гарантировала бы получение бетона заданной прочности с учетом возможных ее колебаний. Такой характеристикой является класс бетона.

Класс бетона - это числовая характеристика какого-либо его свойства, принимаемая с гарантированной обеспеченностью 0,95. Это значит, что установленное классом свойство обеспечивается не менее чем в 95 случаях из 100 и лишь в 5-ти случаях можно ожидать его не выполненным. Бетоны подразделяются на классы: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В40; В45; В50; В55; В60. Соотношение между классом и марками бетона по прочности при нормативном коэффициенте вариации v = 13,5%

Класс бетона Средняя прочность данного класса, кгс/кв.см Ближайшая марка бетона  
В3,5 В5 В7,5 В10 В12,5 В15 В20 В25 В30 В35 В40 В45 В50 В55 В60 М50 М75 М100 М150 М150 М200 М250 М350 М400 М450 М550 М600 М600 М700 М800

Твердение бетона.
Прочность бетона нарастает в результате физико-химических процессов взаимодействия цемента с водой, которые нормально проходят в теплых и влажных условиях. Взаимодействие цемента с водой прекращается, если бетон высыхает или замерзает. Раннее высыхание и замерзание бетона непоправимо ухудшает его строение и свойства.

Бетон нуждается в уходе, создающем нормальные условия твердения, в особенности в начальный период после укладки (до 15-28 суток). В теплое время года влагу в бетоне сохраняют путем поливки и укрытия. На поверхность свежеуложенного бетона наносят битумную эмульсию или его укрывают полиэтиленовыми и другими пленками.

Характер нарастания прочности бетонов, изготовленных на портландцементе и твердевших в нормальных условиях (во влажном воздухе с температурой 18-22°С). Приближенно можно считать, что прочность бетона со временем увеличивается примерно по логарифмическому закону: Rn = R28(lgn / lg28), где Rn - прочность бетона в возрасте n сут (не менее трех суток); R28 - марка бетона; n - число дней твердения бетона. Эту формулу используют при ориентировочных расчетах времени распалубки.

Более точно прочность бетона в промежуточные сроки твердения определяется по опытной кривой нарастания прочности бетона, которая может быть построена по результатам испытания образцов 3, 7, 28, 90 - суточного возраста. Бетон при нормальных условиях твердения имеет низкую начальную прочность и только через 7-14 сут приобретает 60-80% марочной прочности

За марку бетона по морозостойкости -принимают наибольшее число циклов попеременного замораживания и оттаивания, которое при испытании выдерживают образцы установленных размеров без снижения прочности на сжатие более 5% по сравнению с прочностью образцов, испытанных в эквивалентном возрасте, а для дорожного бетона, кроме того, без потери массы более 5%. Установлены марки по морозостойкости: F50, F75, F100, F150, F200, F300, F400, F500.

По водонепроницаемостибетон делят на марки W2, W4, W6, W8 и W12, причем марка обозначает давление воды (кгс/см2), при котором образец-цилиндр высотой 15 см не пропускает воду в условиях стандартного испытания.

Применение тяжелого бетона

Высокопрочный бетон

Малоподвижные и жесткие смеси приготовляют с низкими В/Ц = 0,27-0,45 в бетоносмесителях принудительного действия (например, турбинных). Для плотной… Высокопрочные бетоны являются, как правило, и быстротвердеющими. Однако для… Проектные марки тяжелого бетона по прочности на осевое растяжение: 10, 15, 20, 25, 30, 35, 40. Высокое сопротивление…

Бетоны высокой морозостойкости

Морозостойкость зависит от качества исходных материалов, состава бетона и тщательности производства работ, которые и определяют структуру бетона. … Рекомендуется применять сульфатостойкий портландцемент, являющийся… Для повышения морозостойкости и водонепроницаемости бетона применяют добавки поверхностно-активных веществ.

Мелкозернистый бетон

Мелкозернистый (цементный) бетон применяют при изготовлении тонкостенных, в том числе армоцементных конструкций. Его целесообразно использовать и для обычных железобетонных конструкций, когда на месте нет крупного заполнителя, а возить заполнитель далеко и дорого. Мелкозернистый бетон отличается от обычного большим содержанием цементного камня, поэтому его усадка и ползучесть несколько выше.

Главные недостатки тяжелого бетона - большая плотность и высокая теплопроводность.

Легкие бетоны

Бетоны на пористых заполнителях.

Материалы для изготовления легкого бетона

Неорганические пористые заполнители отличаются большим разнообразием, их разделяют на природные и искусственные. Природные пористые заполнители… Керамзитовый гравий получают путем обжига гранул, приготовленных из… Шлаковую пемзу изготовляют путем быстрого охлаждения расплава металлургических (обычно доменных) шлаков, приводящего к…

Крупнопористый бетон

Крупнопористый бетон на пористом заполнителе (керамзитовом гравии и т.п.) имеет небольшую плотность (500-700 кг/м3) и используется как…

Гипсобетон

Крупноразмерные изделия изготовляют способом непрерывного вибропроката на специальных станах. Отформованные затвердевшие изделия высушивают в… Плотность гипсобетонов в зависимости от применяемого заполнителя и… Гипсобетон широко применяют для изготовления сплошных и пустотелых плит перегородок. Плиты можно армировать…

Ячеистые бетоны

Пористость ячеистого бетона сравнительно легко регулировать в процессе изготовления, в результате получают бетоны разной плотности и назначения. Ячеистые бетоны делят на три группы: теплоизоляционные плотностью в высушенном…

Материалы для ячеистого бетона.

Бесцементные ячеистые бетоны (газо- и пеносиликат) автоклавного твердения изготовляют, применяя молотую негашеную известь. Вяжущее применяют совместно с кремнеземистым компонентом, содержащим двуоксид… Возрастает применение побочных продуктов промышленности (зола-уноса, доменных шлаков, нефелинового шлама) для…

Пенобетон и пеносиликат.

Пену приготовляют в лопастных пеновзбивателях или центробежных насосах из водного раствора пенообразователей, содержащих поверхностно-активные… Пеносиликат, как и газосиликат, изготовляют на основе…

Свойства ячеистого бетона.

Установлены следующие марки ячеистых бетонов по прочности при сжатии: М15, М25, М35, М50, М75, М100, М150. Классы по прочности на сжатие находятся в… Водопоглощение и морозостойкость зависят от величины и характера пористости… Установлены следующие марки ячеистого бетона по морозостойкости: F15, F25, F35, F50, F75, F100. Для панелей наружных…

Особые виды бетона

Гидротехнический бетон

Гидротехнический бетон должен иметь минимальную стоимость и удовлетворять требованиям по прочности, долговечности, водостойкости,… Бетон наружной зоны в зависимости от расположения в сооружении по отношению к… В самых суровых условиях бетон, расположенный в области переменного уровня воды, многократно замерзает и оттаивает,…

Бетон внутренней зоны

Марку бетона по водонепроницаемости назначают в зависимости от напорного градиента, равного отношению максимального напора к толщине конструкции или… Напорный градиент до 55-1010-1212 и более Марка бетона по водонепроницаемостиW4W6W8W12

Жаростойкий бетон

Жаростойкий бетон изготовляют на портландцементе с активной минеральной добавкой (пемзы, золы, доменного гранулированного шлака, шамота). Шлакопортландцемент уже содержит добавку доменного гранулированного шлака и… Еще большей огнеупорностью (не ниже 1580°С) обладает высокоглиноземистый цемент с содержанием глинозема 65-80%; в…

Кислотоупорный бетон

Бетон для защиты от радиоактивного воздействия

Вяжущим служит портландцемент или шлакопортландцемент, который выделяет при гидратации немного тепла и поэтому хорошо зарекомендовал себя в… В качестве заполнителей используют тяжелые природные или искусственные… Баритовые руды (или барит), содержащие около 80% сульфата бария, применяют как мелкий и крупный заполнитель.…

Серный бетон

Процесс получения серного бетона основан на свойстве серы изменять свою вязкость при различной температуре - при 1,19-122°С сера полностью переходит…

Строительные растворы

Общие сведения

Строительный раствор - это искусственный каменный материал, полученный в результате затвердевания растворной смеси, состоящей из вяжущего вещества, воды, мелкого заполнителя и добавок, улучшающих свойства смеси и растворов. Крупный заполнитель отсутствует, так как раствор применяют в виде тонких слоев (шов каменной кладки, штукатурка и т.п.). Для изготовления строительных растворов чаще используют неорганические вяжущие вещества (цементы, воздушную известь и строительный гипс).

Строительные растворы разделяют в зависимости от вида вяжущего вещества, величины плотности и назначения.

По виду вяжущего различают растворы цементные, известковые, гипсовые и смешанные (цементно-известковые, цементно-глиняные, известково-гипсовые и др.).

По плотности различают: тяжелые растворы плотностью более 1500 кг/м3, изготовляемые обычно на кварцевом песке; легкие растворы плотностью менее 1500 кг/м3, изготовляемые на пористом мелком заполнителе и с породообразующими добавками.

По назначению различают строительные растворы: кладочные - для каменной кладки стен, фундаментов, столбов, сводов и др., штукатурные для оштукатуривания внутренних стен, потолков, фасадов зданий; монтажные - для заполнения швов между крупными элементами (панелями, блоками и т.п.) при монтаже зданий и сооружений из готовых сборных конструкций и деталей; специальные растворы (декоративные, гидроизоляционные, тампонажные и др.).

Материалы для изготовления растворных смесей

Пескиприменяют природные - кварцевые, полевошпатовые, также искусственные - дробленые из плотных горных пород и пориистых пород; из искусственных… Пластифицирующие добавки. Чаще всего растворные смеси укладывают тонким слоем… Неорганические дисперсные добавки состоят из мелких частиц, хорошо удерживающих воду (известь, глина, зола ТЭС,…

Свойства растворных смесей

Подвижность растворных смесей характеризуется глубиной погружения металлического конуса (массой 300 г) стандартного прибора (рис. 10.1). Подвижность… Водоудерживающая способность - это свойство растворной смеси сохранять воду… От удобоукладываемости растворной смеси зависит качество каменной кладки. Правильно подобранная растворная смесь…

Специальные растворы

Кладочные, монтажные и штукатурные растворы

Прочность при сжатии определяют испытанием образцов-кубиков с длиной ребра 7,07 см в возрасте, установленном в стандарте или технических условиях на… Прочность смешанных растворов зависит от количества введенной в раствор… Строительные растворы по прочности в 28-суточном возрасте при сжатии делят на марки: 4, 10, 25, 50, 75, 100, 150, 200.…

Специальные растворы

Гидроизоляционные растворы для гидроизоляционных слоев и штукатурок обычно изготовляют состава 1:2,5 или 1:3,5 (цемент: песок по массе), применяя… Инъекционные цементные растворы применяют для заполнения каналов в… Тампонажные растворы предназначены для гидроизоляции скважин, шахтных стволов и туннелей путем закрытия водоносных…

Процесс производства стекла.

Пластма́ссы (пласти́ческие ма́ссы) или пла́стики — органические материалы, основой которых являются синтетические или природные… Название «пластмассы» означает, что эти материалы под действием нагревания и…

Править] История

Первая пластмасса была получена английским металлургом и изобретателем Александром Парксом в 1855 году [1]. Паркс назвал её паркезин (позже получило распространненое другое название — целлулоид). Паркезин был впервые представлен на Большой Международной выставке в Лондоне в 1862 году. Развитие пластмасс началось с использования природных пластических материалов (жевательной резинки, шеллака), затем продолжилось с использованием химически модифицированных природных материалов (резина, нитроцеллюлоза, коллаген, галалит) и, наконец, пришло к полностью синтетическим молекулам (бакелит, эпоксидная смола, поливинилхлорид, полиэтилен и другие).

Паркезин являлся торговой маркой первого искусственного пластика и был сделан из целлюлозы, обработанной азотной кислотой и растворителем. Паркезин часто называли искусственной слоновой костью. В 1866 году Паркс создал фирму Parkesine Company для массового производства материала. Однако, в 1868 году компания разорилась из-за плохого качества продукции, так как Паркс пытался сократить расходы на производство. Преемником паркезина стал ксилонит (другое название того же материала), производимый компанией Даниэля Спилла, бывшего сотрудника Паркса, и целлулоид, производимый Джоном Весли Хайатом.

Править] Типы пластмасс

В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на:

  • Термопласты (термопластичные пластмассы) — при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние;
  • Реактопласты (термореактивные пластмассы) — в начальном состоянии имеют линейную структуру макромолекул, а при некоторой температуре отверждения приобретают сетчатую. После отверждения не могут переходить в вязкотекучее состояние. Рабочие температуры выше, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.

Также газонаполненные пластмассы — вспененные пластические массы, обладающие малой плотностью.

Править] Свойства

Основные механические характеристики пластмасс те же, что и для металлов.
Пластмассы характеризуются малой плотностью (0,85—1,8 г/см³), чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований, отношение к органическим растворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др., а также варьированием сырья, например использование соответствующих полиолов и диизоцианатов при получении полиуретанов.

Твёрдость пластмасс определяется по Бринеллю при нагрузках 50—250 кгс на шарик диаметром 5 мм.

Теплостойкость по Мартенсу — температура, при которой пластмассовый брусок с размерами 120 × 15 × 10 мм, изгибаемый при постоянном моменте, создающем наибольшее напряжение изгиба на гранях 120 × 15 мм, равное 50 кгс/см², разрушится или изогнётся так, что укреплённый на конце образца рычаг длиной 210 мм переместится на 6 мм.

Теплостойкость по Вика — температура, при которой цилиндрический стержень диаметром 1,13 мм под действием груза массой 5 кг (для мягких пластмасс 1 кг) углубится в пластмассу на 1 мм.

Температура хрупкости (морозостойкость) — температура, при которой пластичный или эластичный материал при ударе может разрушиться хрупко.

Для придания особых свойств пластмассе в нее добавляют пластификаторы (силикон, дибутилфталат, ПЭГ и т. п.), антипирены (дифенилбутансульфокислота), антиоксиданты (трифенилфосфит, непредельные углеводороды)

Править] Получение

Производство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля, нефти или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много», например этилен-полиэтилен).

Править] Методы обработки

  • Литьё/литьё под давлением
  • Экструзия
  • Прессование
  • Виброформование
  • Вспенивание
  • Отливка
  • Сварка
  • Вакуумная формовка и пр.

Править] Механическая обработка

Пластические массы, по сравнению с металлами, обладают повышенной упругой деформацией, вследствие чего при обработке пластмасс применяют более высокие давления, чем при обработке металлов. Применять какую-либо смазку, как правило, не рекомендуют; только в некоторых случаях при окончательной обработке допускают применение минерального масла. Охлаждать изделие и инструмент следует струей воздуха.

Пластические массы более хрупки, чем металлы, поэтому при обработке пластмасс режущими инструментами надо применить высокие скорости резания и уменьшать подачу. Износ инструмента при обработке пластмасс значительно больше, чем при обработке металлов, почему необходимо применять инструмент из высокоуглеродистой или быстрорежущей стали или же из твердых сплавов. Лезвия режущих инструментов надо затачивать, по возможности, более остро, пользуясь для этого мелкозернистыми кругами.

Пластмасса может быть обработана на токарном станке, может фрезероваться. Для распиливания может применяться ленточные пилы, дисковые пилы и карборундовые круги.

Править] Сварка

Соединение пластмасс между собой может осуществляться механическим путем с помощью болтов, заклепок, склеиванием, растворением с последующим высыханием, а также при помощи сварки. Из перечисленных способов соединения только при помощи сварки можно получить соединение без инородных материалов, а также соединение, которое по свойствам и составу будет максимально приближено к основному материалу. Поэтому сварка пластмасс нашла применение при изготовлении конструкций, к которым предъявляются повышенные требования к герметичности, прочности и другим свойствам.

Процесс сварки пластмасс состоит в образовании соединения за счет контакта нагретых соединяемых поверхностей. Он может происходить при определенных условиях:

  1. Повышенная температура. Ее величина должна достигать температуры вязкотекучего состояния.
  2. Плотный контакт свариваемых поверхностей.
  3. Оптимальное время сварки — время выдержки.

Также следует отметить, что температурный коэффициент линейного расширения пластмасс в несколько раз больше, чем у металлов, поэтому в процессе сварки и охлаждения возникают остаточные напряжения и деформации, которые снижают прочность сварных соединений пластмасс.

На прочность сварных соединений пластмасс большое влияние оказывают химический состав, ориентация макромолекул, температура окружающей среды и другие факторы.

Применяются различные виды сварки пластмасс:

  1. Сварка газовым теплоносителем с присадкой и без присадки
  2. Сварка экструдируемой присадкой
  3. Контактно-тепловая сварка оплавлением
  4. Контактно-тепловая сварка проплавлением
  5. Сварка в электрическом поле высокой частоты
  6. Сварка термопластов ультразвуком
  7. Сварка пластмасс трением
  8. Сварка пластмасс излучением
  9. Химическая сварка пластмасс

Как и при сварке металлов, при сварке пластмасс следует стремиться к тому, чтобы материал сварного шва и околошовной зоны по механическим и физическим свойствам мало отличался от основного материала. Сварка термопластов плавлением, как и другие методы их переработки, основана на переводе полимера сначала в высокоэластическое, а затем в вязкотекучее состояние и возможна лишь в том случае, если свариваемые поверхности материалов (или деталей) могут быть переведены в состояние вязкого расплава. При этом переход полимера в вязкотекучее состояние не должен сопровождаться разложением материала термодеструкцией.

При сварке многих пластмасс выделяются вредные пары и газы. Для каждого газа имеется строго определенная предельно доступная его концентрация в воздухе (ПДК). Например, для диоксида углерода ПДК равна 20, для ацетона — 200, а для этилового спирта — 1000 мг/м³.

Править] Материалы на основе пластмасс

  • Гетинакс
  • Текстолит

Править] Мебельные пластмассы

Пластик, который используют для производства мебели, получают путем пропитки бумаги термореактивными смолами. Производство бумаги является наиболее энерго- и капиталлоемким этапом во всем процессе производства пластика. Используется 2 типа бумаг: основой пластика является крафт-бумага (плотная и небеленая) и декоративная (для придания пластику рисунка). Смолы подразделяются на фенолформальдегидные, которые используются для пропитки крафт-бумаги, и меламиноформальдегидные, которые используются для пропитки декоративной бумаги. Меламиноформальдегидные смолы производят из меламина, поэтому они стоят дороже.

Мебельный пластик состоит из нескольких слоёв. Защитный слой — оверлей — практический прозрачный. Изготавливается из бумаги высокого качества, пропитывается меламиноформальдегидной смолой. Следующий слой — декоративный. Затем несколько слоев крафт-бумаги, которая является основой пластика. И последний слой — компенсирующий (крафт-бумага, пропитанная меламиноформальдегидными смолами). Этот слой присутствует только у американского мебельного пластика.

Готовый мебельный пластик представляет из себя прочные тонированные листы толщиной 1-3 мм. По свойствам он близок к гетинаксу. В частности, он не плавится от прикосновения жалом паяльника, и, строго говоря, не является пластической массой, так как не может быть отлит в горячем состоянии, хотя и поддается изменению формы листа при нагреве. Мебельный пластик широко использовался в XX веке для отделки салонов вагонов метро.

Править] Система маркировки пластика

Для обеспечения утилизации одноразовых предметов в 1988 году Обществом Пластмассовой Промышленности была разработана система маркировки для всех видов пластика и идентификационные коды. Маркировка пластика состоит из 3-х стрелок в форме треугольника, внутри которых находится число, обозначающая тип пластика. Часто при маркировке изделий под треугольником указывается буквенная маркировка (в скобках указана маркировка русскими буквами):

Международные универсальные коды переработки пластмасс
Значок Англоязычное название Русское название Примечание
  PET или PETE ПЭТ, ПЭТФ Полиэтилентерефталат Обычно используется для производства тары для минеральной воды, безалкогольных напитков и фруктовых соков, упаковки, блистеров, обивки. Такие пластики являются потенциально опасными для пищевого использования[источник не указан 291 день].
  PEHD или HDPE ПЭНД Полиэтилен высокой плотности, полиэтилен низкого давления Производство бутылок, фляг, полужёсткой упаковки. Считается безопасными для пищевого использования.
  PVC ПВХ Поливинилхлорид Используется для производства труб, трубок, садовой мебели, напольных покрытий, оконных профилей, жалюзи, изоленты, тары для моющих средств и клеёнки. Материал является потенциально опасным для пищевого использования, поскольку может содержать диоксины, бисфенол А, ртуть, кадмий.
  LDPE и PELD ПЭВД Полиэтилен низкой плотности, полиэтилен высокого давления Производство брезентов, мусорных мешков, пакетов, пленки и гибких ёмкостей. Считается безопасным для пищевого использования.
  PP ПП Полипропилен Используется в автомобильной промышленности (оборудование, бамперы), при изготовлении игрушек, а также в пищевой промышленности, в основном при изготовлении упаковок. Распространены полипропиленовые трубы для водопроводов. Считается безопасным для пищевого использования.
  PS ПС Полистирол Используется при изготовлении плит теплоизоляции зданий, пищевых упаковок, столовых приборов и чашек, коробок CD и прочих упаковок (пищевой плёнки и пеноматериалов), игрушек, посуды, ручек и так далее. Материал является потенциально опасным, особенно в случае горения, поскольку содержит стирол.
  OTHER или О Прочие К этой группе относится любой другой пластик, который не может быть включен в предыдущие группы. В основном это поликарбонат. Поликарбонат не является токсичным[источник не указан 710 дней] для окружающей среды, но может содержать опасный для человека бисфенол А[2]. Используется для изготовления твёрдых прозрачных изделий, как например детские рожки.

Править] Пластиковые отходы и их переработка

 

 

Останки птенца темноспинного (лайсанского) альбатроса, которому родители скармливали пластик; птенец не мог вывести его из организма, что привело к смерти либо от голода, либо от удушья

Скопления отходов из пластмасс образуют в Мировом океане под воздействием течений особые мусорные пятна. На данный момент известны пять больших скоплений мусорных пятен — по два в Тихом и Атлантическом океанах, и один — в Индийском океане. Данные мусорные круговороты в основном состоят из пластиковых отходов, образующихся в результате сбросов из густонаселённых прибрежных зон континентов. Руководитель морских исследований Кара Лавендер Ло из Ассоциации морского образования (англ. Sea Education Association; SEA) возражает против термина «пятно», поскольку по своему характеру — это разрозненные мелкие куски пластика. Пластиковый мусор опасен ещё и тем, что морские животные, зачастую, могут не разглядеть прозрачные частицы, плавающие по поверхности, и токсичные отходы попадают им в желудок, часто становясь причиной летальных исходов[3] [4].

Взвесь пластиковых частиц напоминает зоопланктон, и медузы или рыбы могут принять их за пищу. Большое количество долговечного пластика (крышки и кольца от бутылок, одноразовые зажигалки) оказывается в желудках морских птиц и животных[5], в частности, морских черепах и черноногих альбатросов[6]. Помимо прямого причинения вреда животным[7], плавающие отходы могут впитывать из воды органические загрязнители, включая ПХБ (полихлорированные бифенилы), ДДТ (дихлордифенилтрихлорметилметан) и ПАУ (полиароматические углеводороды). Некоторые из этих веществ не только токсичны[8] — их структура сходна с гормоном эстрадиолом, что приводит к гормональному сбою у отравленного животного[6].

Пластиковые отходы должны перерабатываться, поскольку при сжигании пластика выделяются токсичные вещества, а разлагается пластик за 100—200 лет.

Способы переработки пластика:

• Пиролиз • Гидролиз • Гликолиз • Метанолиз

В декабре 2010 года Ян Байенс и его коллеги из университета Уорика предложили новую технологию переработки практически всех пластмассовых отходов. Машина с помощью пиролиза в реакторе с кипящим слоем при температуре около 500° С и без доступа кислорода разлагает куски пластмассового мусора, при этом многие полимеры распадаются на исходные мономеры. Далее смесь разделяется перегонкой. Конечным продуктом переработки являются воск, стирол, терефталевая кислота, метилметакрилат и углерод, которые являются сырьём для лёгкой промышленности. Применение этой технологии позволяет сэкономить средства, отказавшись от захоронения отходов, а с учётом получения сырья (в случае промышленного использования) является быстро окупаемым и коммерчески привлекательным способом утилизировать пластмассовые отходы[9].

Пластики на основе фенольных смол, а также полистирол и полихлорированный бифенил могут разлагаться грибками белой гнили. Однако для утилизации отходов этот способ коммерчески неэффективен - процесс разрушения пластика на основе фенольных смол может длиться многие месяцы[10].

Общие сведения о полимерах и их классификация. Синтез полимеров.

С.Ю. Елисеев

Общие сведения о полимерах и материалах на их основе. Использование полимеров и их пожарная опасность.

Классификация полимеров (по составу основной цепи макромолекул, по структуре макромолекул, по поведению при нагревании, по горючести, по способу получения).

Классификация реакций синтеза полимеров (полимеризация, поликонденсация).

Физико-химические, пожароопасные и токсикологические свойства полимеров.

Основные реакции термического разложения и горения полимеров

(основные виды деструкции, термическое и термоокислительное

разложение).

Общие сведения о полимерах и материалах на их основе. Использование полимеров на объектах хозяйствования, их пожарная опасность

Полимером называют химическое вещество, имеющее большую молекулярную массу и состоящее из большого числа периодически повторяющихся фрагментов, связанных химическими связями. Указанные фрагменты называются элементарными звеньями.

Таким образом, признаки полимеров следующие: 1. очень большая молекулярная масса (десятки и сотни тысяч). 2. цепное строение молекул (чаще простые связи).

Следует отметить, что полимеры уже сегодня успешно конкурируют со всеми другими материалами, используемыми человечеством с древности.

Применение полимеров:

полимеры биологического и медицинского назначения

ионно - и электронно-обменные материалы

тепло- и термостойкие пластики

изоляторы

строительные и конструкционные материалы

ПАВы и материалы, стойкие к агрессивной среде.

Быстрое расширение производства полимеров привело к тому, что их пожароопасность (а все они горят лучше, чем дерево) стала национальным бедствием для многих стран. При их горении и разложении образуются различные вещества, в основном токсичные для человека. Знать опасные свойства образующихся веществ необходимо для успешной борьбы с ними.

Классификация полимеров

Классификация полимеров по составу основной цепи макромолекул (наиболее распространенная):

I. Карбоцепные ВМС - основные полимерные цепи построены только из углеродных атомов

II. Гетероцепные ВМС - основные полимерные цепи, помимо атомов углерода, содержат гетероатомы (кислород, азот, фосфор, серу и т.д.)

III. Элементоорганические полимерные соединения - основные цепи макромолекул содержат элементы, не входящие в состав природных органических соединений (Si, Al, Ti, B, Pb, Sb, Sn и др.)

Каждый класс подразделяется на отдельные группы в зависимости от строения цепи, наличия связей, количества и природы заместителей, боковых цепей. Гетероцепные соединения классифицируются, кроме того, с учетом природы и количества гетероатомов, а элементоорганические полимеры - в зависимости от сочетания углеводородных звеньев с атомами кремния, титана, алюминия и т.д.

I

а) полимеры с насыщенными цепями: полипропилен - [-CH2-CH-]n,

I

полиэтилен - [-CH2-CH2-]n; CH3

б) полимеры с ненасыщенными цепями: полибутадиен - [-CH2-CH=CH-CH2-]n;

в) галоген замещенные полимеры: тефлон - [-CF2-CF2-]n, ПВХ - [-CH2-CHCl-]n;

OH

I

г) полимерные спирты: поливиниловый спирт - [-CH2-CH-]n;

д) полимеры производных спиртов: поливинилацетат - [-CH2-CH-]n;

I

OCOCH3

е) полимерные альдегиды и кетоны: полиакролеин - [-СН2-СН-]n;

I

Н-С=О

ж) полимеры карбоновых кислот: полиакриловая кислота - [-СН2-СН-]n;

I

СООН

з) полимерные нитрилы: ПАН - [-СН2-СН-]n;

I

CN

и) полимеры ароматических углеводородов: полистирол - [-СН2-СН-]n.

I

II

Полимеры, содержащие в основной цепи атомы кислорода:

а) простые полиэфиры: полигликоли - [-СН2-СН2-О-]n;

б) сложные полиэфиры: полиэтиленгликольтерефталат -

[-О-СН2-СН2-О-С-С6Н4-С-]n;

II II

O O

в) полимерные перекиси: полимерная перекись стирола - [-СН2-СН-О-О-]n;

I

2. Полимеры, содержащие в основной цепи атомы азота:

а) полимерные амины: полиэтилендиамин - [-СН2-СН2-NН-]n;

б) полимерные амиды: поликапролактам - [-NН-(СH2)5-С-]n;

II капрон

O

3.Полимеры, содержащие в основной цепи одновременно атомы азота и кислорода - полиуретаны: [-С-NН-R-NН-С-О-R-О-]n;

II II

O О

4.Полимеры, содержащие в основной цепи атомы серы:

а) простые политиоэфиры [-(СН2)4- S-]n;

б) политетрасульфиды [-(СН2)4-S - S-]n;

II II

S S

5.Полимеры, содержащие в основной цепи атомы фосфора,

например : O

II

[- P - O-CH2-CH2-O-]n;

I

O-

III

1.Кремнийорганические полимерные соединения

а) полисилановые соединения R R

I I

[-Si-Si-]n;

I I

R R

б) полисилоксановые соединения

R R

I I

[-Si-O-Si-O-]n;

I I

R R

в) поликарбосилановые соединения

I I

[-Si-(-C-)n -Si-(-C-)n-]n;

I I

г) поликарбосилоксановые соединения

I I

[-O-Si-O-(-C-)n-]n;

I I

2. Титанорганические полимерные соединения, например:

OC4H9 OC4H9

I I

[-O - Ti - O - Ti-]n;

I I

OC4H9 OC4H9

3. Алюминийорганические полимерные соединения, например:

[-O - Al - O - Al-]n;

I I

OCOR OCOR

Классификация полимеров по структуре макромолекул

Макромолекулы могут иметь линейную, разветвленную и пространственную трехмерную структуру.

Линейные полимеры состоят из макромолекул линейной структуры; такие макромолекулы представляют собой совокупность мономерных звеньев (-А-) , соединённых в длинные неразветвлённые цепи:

nA (…-A - A-…)m + (…- A - A -…)R + …., где (…- А - А -…) - макромолекулы полимера с различным молекулярным весом.

Разветвлённые полимеры характеризуются наличием основных цепях макромолекул боковых ответвлений, более коротких, чем основная цепь, но также состоящих из повторяющихся мономерных звеньев:

A - A- …

…- A - A - A - A - A - A - A- …

A - A - …

Пространственные полимеры с трёхмерной структурой характеризуются наличием цепей макромолекул, связанных между собой силами основных валентностей при помощи поперечных мостиков, образованных атомами (-В-) или группами атомов, например мономерными звеньями (-А-)

-A - A - A - A - A - A - A -

I I

A B

I I

-A - A - A - A - A - A -

I I

B A

I I

- A - A - A - A - A - A -

Пространственными полимерами с частым расположением поперечных связей называют - сетчатые полимеры. Для трёхмерных полимеров понятие молекула теряет смысл, так как в них отдельные молекулы соединены между собой во всех направлениях, образуя огромные макромолекулы.

Классификация по поведению при нагревании

термопластичные - полимеры линейной или разветвлённой структуры, свойства которых обратимы при многократном нагревании и охлаждении;

термореактивные - некоторые линейные и разветвлённые полимеры, макромолекулы которых при нагревании в результате происходящих между ними химических взаимодействий соединяются друг с другом; при этом образуются пространственные сетчатые структуры за счёт прочных химических связей. После прогрева, термореактивные полимеры обычно становятся неплавкими и нерастворимыми - происходит процесс их необратимого отверждения.

Классификация по горючести

Эта классификация весьма приближенная, так как воспламенение и горение материалов зависят не только от природы материала, но и от температуры источника зажигания, условий воспламенения, формы изделия или конструкций и т.д.

Согласно этой классификации полимерные материалы делят на горючие, трудногорючие и негорючие. Из сгораемых материалов выделяют трудновоспламеняемые, а из них и трудносгораемые - самозатухающие.

Примеры сгораемых полимеров: полиэтилен, полистирол, полиметилметакрилат, поливинилацетат, эпоксидные смолы, целлюлоза и т.д.

Примеры трудносгораемых полимеров: ПВХ, тефлон, фенолформальдегидные смолы, мочевиноформальдегидные смолы.

Классификация по способу получения (происхождения)

- природные (белки, нуклеиновые кислоты, природные смолы) (животного и

растительного происхождения);

- синтетические (полиэтилен, полипропилен и т. д.);

- искусственные (химическая модификация природных полимеров - эфиры

целлюлозы).

Органические и неорганические полимеры

Неорганические: кварц, силикаты, алмаз, графит, корунд, карбин, карбид бора и т. д.

Органические: каучуки, целлюлоза, крахмал, органическое стекло и

т. д.

Физико-химические свойства полимеров

1. Степень полимеризации - величина средняя (смесь молекул).

2. Труднорастворимы (растворимость падает с увеличением молекулярной

массы).

3. Нелетучесть.

4. Нет точной Тпл. (усредненная).

5. Полимеры, содержащие в своём составе галогены, устойчивы к кислотам и

щелочам (тефлон, ПВХ).

Полимеры, содержащие CN-группы, устойчивы к действию света, масла,

бензинов (нитрон).

Смачиваемость зависит от наличия гидрофильных групп (-NH-, -COOH,

-ОН …).

8. Существует только два агрегатных соединения - твёрдое и жидкое.

9. Вязкость полимерных материалов очень большая.

10. Отдельные звенья макромолекул могут самостоятельно вступать

в химические реакции, т.е. вести себя как самостоятельные единицы.

11. Свойства полимера зависят от геометрической формы макромолекул.

12. Появление водородных связей между макромолекулами значительно

повышает прочность полимера:

I I

C=O HN

I I

HN (CH2)5

I I

(CH2)5 O=C

I I

…O=C NH…

I I

NH (CH2)5

I I

(CH2)5 C=O

I I

C=O HN

I I

13. Кратные связи обусловливают жёсткость и высокую термическую

стойкость, (-CH=CH-)4 - полиены устойчивы до 800 оС, -CC- полиины

(карбин -СС- ) - до 2300 оC.

Основные реакции термического разложения и горения полимеров

Виды деструкции:

химическая (+Н2О, + кислоты, + щёлочи и т. д.);

механическая (необратимая деформация под действием нагрузки);

окислительная (О2 + нагрев);

термическая;

фотохимическая (h);

радиационные (n, , , - излучения);

биологическая (нитраты целлюлозы, ряд каучуков разлагаются под действием микроорганизмов).

При разложении полимеров образуется твердый (коксовый остаток), жидкие и газообразные вещества. Жидкие и газообразные вещества называются, "летучими". Выделение "летучих" веществ - признак разложения полимеров.

Температура, при которой начинают выделяться "летучие" вещества - температура начала разложения.

Конечными продуктами разложения сложного вещества (полимеров) является простые вещества (C2H2 - C, H2 , капрон - C, H2, O2, N2). Распад на простые вещества возможен при Т - 3000 оС.

На пожаре Т 1500 оС и состав выделяющихся веществ сложный - (H2, CO, C2H4, C2H6, СН4, СО2, НСN, NН3 и т.д.)

Молекулы с более высокой молекулярной массой составляют сложные вещества. Таким образом, при воздействии сравнительно низких температур (до 500-600 оС) на полимер, летучие вещества в своём составе будут содержать больше смолистых и меньше газообразных веществ. С повышением температуры образование газообразных веществ увеличивается.

В зависимости от того, разложение полимеров идёт в присутствии или отсутствии О2 воздуха, различают термическое и термоокислительное разложение.

Под термическим разложением понимают распад полимерного материала под действием температуры в отсутствии окислителя (относительное движение составляющих приводит к разрушению связей). Термическая деструкция обычно идёт по радикальному механизму. При этом происходит деполимеризация, т.е. отщепление мономеров.

При 300 оС полистирол деполимеризуется на 60-70%, органическое стекло - на 90-95 % :

CH3 CH3 CH3 CH3 CH3 CH3

I I I I I I

-CH2 - C-CH2-C-CH=C -CH2-C-CH2 + C-CH==C

I I I I I I

COOCH3 COOCH3 COOCH3 COOCH3 COOCH3 COOCH3

Термоокислительная деструкция - процесс разрушения макромолекул под действием высоких температур в присутствии кислорода. Этот процесс может идти при более низких температурах, чем термическая деструкция.

Первичные продукты - перекиси, при распаде которых образуются свободные радикалы.

-CH=CH- + O2 -CH-CH- -CH-CH- -CH + CH-

I I I I II II

O - O O O O O

OOH O

O2 I I

-CH2-CH- -CH2-C- -CH2-C- + ОН

I I I

O O

I II

-CH2-C-CH2-CH- -CH2-C + CH2-CH-

I I I I

Образуется вода, альдегиды, кетоны, спирты и т.д.

R + -CH2-CH-CH2-CH- RH + -CH2-C-CH2-CH- + O2

I I I I

Cl Cl Cl Cl

O-O O-OH

I I

-CH2-C-CH2-CH- + RH -CH2-C-CH2-CH- + R

I I I I

Cl Cl Cl Cl

O O

I II

-CH2-C-CH2-CH- + OH -CH2-C + -CH2-CH-

I I I I

Cl Cl Cl Cl

Особенности горения полимеров

Для сгорания единицы веса полимера требуются большие объёмы воздуха (в 1.5 - 2 раза больше, чем для древесины - 4.5 м3/кг);

Образуются большие объемы продуктов горения;

Значительный недожог - образуется дым;

Содержится много токсичных продуктов недожога (CO, NO2, HCl, HCN, C и т.д.);

Плавление и растекание - распространение пожара;

Высокая температура горения - 1100 - 1300 оC;

Высокая излучательная способность у пламени.

Состав продуктов разложения и горения полимеров

Древесина состоит из целлюлозы (52 - 59 %), лигнина (21 - 28 %), гемицеллюлозы, смолы, терпены и т.д.

Лигнин обуславливает одеревенение растительных тканей, заполняет пространство древесными клетками, где накапливается до 70 %. Аморфная масса желто-коричневого цвета. Нерастворим в крепкой H2SO4. Молекулярный вес 10 тысяч и выше.

Гемицеллюлоза - ряд сложных полисахаридов, служащих материалов для стенок клеток и запасными веществами для получения сахара. Неоднородна. Нерастворима в воде, не обладает восстановительными свойствами.

Целлюлоза - углевод, из которого строится состав растений (клетчатка). При полном гидролизе она целиком распадается на глюкозу. Её очень много в хлопке, льне. Минеральные кислоты ее осахаривают:

H OH CH2OH

O

H H H

- O OH H O

H H O H H

O H

CH2OH H OH

….. (C6H10O5)n + 3ОН- ….

В древесине 49,5% С, 6,3% Н, 44,2% О.

До 110 оС удаляется влага, 150-200 оС - продукты разложения состоят в основном из СО2 и Н2О. При температуре свыше 200 оС образуются газообразные горючие вещества: СО, углеводороды, Н2 и т.д.

В лабораторных условиях в первую очередь разлагается гемицеллюлоза - 220-250 оС, затем целлюлоза - 280-350 оС, затем лигнин - 280-500 оС.

Максимальный выход летучих веществ наблюдается при 270-450 оС (до 80 %).

При 400-500 оС - в остатке почти нет летучих веществ - тление. В состав смолистых веществ входят вода, фенолы, этиленгликоль, углеводороды, спирты, кислоты, воск, и т.д.

Оргстекло

Деполимеризация: при 300 оС - на 90-95 %.

CH3 CH3

I I

-C-CH2- C=CH2

I I

COOCH3 n COOCH3

Могут образовываться и другие продукты при термоокислительной деструкции. При пламенном горении в основном образуется СО2 и Н2О.

Полистирол

До 400 оС деполимеризация

-СН-СН2- СН=СН2 n

I I

n

При пожаре - пеплообразование, растекание, чёрный дым.

ПВХ материалы

Распад начинается уже при температуре 160-180 оС. Образуется HCI (до 95 % хлора переходит в него).

Хлоропреновый каучук и резина

Повышенная термическая устойчивость (такое строение, наличие галогена). Выделение НСI начинается при 200-250 оС и заканчивается при 400 оС.

Тефлон

Устойчив термически до 400 оС. Способен к горению только в среде, обогащенной кислородом. В условиях пожара разлагается до мономера С2F4.

Капрон, нитрон, шерсть

Продукты горения: СО, СО2, Н2О, СnН2n+2, HCN, NO, NO2, NH3 и другие (для шерсти - SO2, H2S, S - в виде жёлтого дыма). Комбинированное действие.

Полиэтиле́н — термопластичный полимер этилена. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода. Самый распространённый в мире пластик[1].

Представляет собой воскообразную массу белого цвета (тонкие листы прозрачны и бесцветны). Химически- и морозостоек, изолятор, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), при охлаждении застывает, адгезия (прилипание) — чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном — похожим материалом растительного происхождения.

Содержание [убрать]
  • 1 История
  • 2 Получение
    • 2.1 Получение полиэтилена высокого давления
    • 2.2 Получение полиэтилена среднего давления
    • 2.3 Получение полиэтилена низкого давления
    • 2.4 Другие способы получения полиэтилена
    • 2.5 Модификации полиэтилена
  • 3 Молекулярное строение
    • 3.1 Полиэтилен HDPE (Hight Density PE - высокая плотность)
    • 3.2 Полиэтилен высокого давления LDPE (Low Density PE - низкая плотность)
  • 4 Химические свойства
    • 4.1 Общие свойства
  • 5 Переработка
  • 6 Применение
  • 7 См. также
  • 8 Примечание
  • 9 Ссылки

Править] История

Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка[2].

Править] Получение

На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:

Править] Получение полиэтилена высокого давления

Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП) образуется при следующих условиях:

  • температура 200—260 °C;
  • давление 150—300 МПа;
  • присутствие инициатора (кислород или органический пероксид);

в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.

Править] Получение полиэтилена среднего давления

Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:

  • температура 100—120 °C;
  • давление 3—4 МПа;
  • присутствие катализатора (катализаторы Циглера — Натта, например, смесь TiCl4 и AlR3);

продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80-90 %.

Править] Получение полиэтилена низкого давления

Полиэтилен низкого давления (ПЭНД) или Полиэтилен высокой плотности (ПЭВП) образуется при следующих условиях:

  • температура 120—150 °C;
  • давление ниже 0.1 — 2 МПа;
  • присутствие катализатора (катализаторы Циглера—Натта, например, смесь TiCl4 и AlR3);

Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—3 000 000, степень кристалличности 75-85 %.

Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2- и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.

Править] Другие способы получения полиэтилена

Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.

Править] Модификации полиэтилена

Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.

На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.

Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.

Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.

Править] Молекулярное строение

  В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка стоит на статье с 12 мая 2011  

Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена среднего давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена низкого давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкая кристалличность и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.

Показатели, характеризующие строение полимерной цепи различных видов полиэтилена:
Показатель ПЭВД ПЭСД ПЭНД
Общее число групп СН3 на 1000 атомов углерода: 21,6 1,5
Число концевых групп СН3 на 1000 атомов углерода: 4,5 1,5
Этильные ответвления 14,4
Общее количество двойных связей на 1000 атомов углерода 0,4—0,6 0,4—0,7 1,1-1,5
в том числе:      
винильных двойных связей (R-CH=CH2), %
винилиденовых двойных связей ( ), %
транс-виниленовых двойных связей (R-CH=CH-R'), %
Степень кристалличности, % 50-65 75-85 80-90
Плотность, г/см³ 0,91-0,93 0,93-0,94 0,94-0,96

[править] Полиэтилен HDPE (Hight Density PE - высокая плотность)

Физико-химические свойства ПЭНД при 20°C:
Параметр Значение
Плотность, г/см³ 0,94-0,96
Разрушающее напряжение, кгс/см²  
при растяжении 100—170
при статическом изгибе 120—170
при срезе 140—170
относительное удлинение при разрыве, % 500—600
модуль упругости при изгибе, кгс/см² 1200—2600
предел текучести при растяжении, кгс/см² 90-160
относительное удлинение в начале течения, % 15-20
твёрдость по Бринеллю, кгс/мм² 1,4-2,5

С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.

С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться

Изменение разрушающего напряжения при сжатии, статическом изгибе и срезе в зависимости от температуры (определено при скорости деформации 500 мм/мин и толщине образца 2 мм):  
Разрушающее напряжение, кгс/см² Температура, ºС  
 
при сжатии -  
при статическом изгибе -  
при срезе  

 

Зависимость модуля упругости при изгибе ПЭВД от температуры:
Температура, °С -120 -100 -80 -60 -40 -20
Модуль упругости при изгибе, кгс/см²

Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).

[править] Полиэтилен высокого давления LDPE (Low Density PE - низкая плотность)

Править] Химические свойства

Править] Общие свойства

Устойчив к действию воды, не реагирует с щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже концентрированной серной кислоты, но разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора.

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80 °C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180 °C воде.

Со временем, деструктурирует с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Полиэтилен низкого давления (HDPE) применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.[3]

Править] Переработка

Полиэтилен (кроме сверхмолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.

Править] Применение

  • Полиэтиленовая плёнка (особенно упаковочная, например, пузырчатая упаковка или скотч),
  • Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады)
  • Полимерные трубы для канализации, дренажа, водо-, газоснабжения.
  • Электроизоляционный материал.
  • Полиэтиленовый порошок используется как термоклей[4].
  • Броня (бронепанели в бронежилетах)[5]
  • Корпуса для лодок[6], вездеходов

Деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.; Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только литьём.

Полиэтилен - это термопластичный прозрачный полимер с высокой химической стойкостью. Сырьем для него служит простейший олефин - газ этилен. Полиэтилен получают путем полимеризации этилена при низком и высоком давлениях в виде гранул от 2 до 5 мм.

Существует четыре основных вида полиэтилена:

  • полиэтилен высокого давления - ПВД
  • полиэтилен среднего давления - ПСД
  • полиэтилен низкого давления - ПНД
  • линейный полиэтилен высокого давления - ЛПВД

По мимо выше перечисленных существуют специальные виды полиэтилена, которые используются для создания специальных строительных материалов. К таким видам относятся:

  • сшитый полиэтилен - PEX
  • вспененный полиэтилен - ПП
  • хлорсульфированный полиэтилен - ХСП
  • сверхвысокомолекулярный полиэтилен - СВМП

Сшитый полиэтилен (PEX)

Сшитый полиэтилен (PEX) - полиэтилен с большим молекулярным весом, получаемый из обычного ПНД путем сшивания его линейных молекул при помощи ионизирующего излучения (PE-Xc), органсилоксанов (PE-Хb) или пероксидов (РE-Xa) с помощью повышенного давления, которое вызывает образование поперечных дополнительных связей. Сохраняя все преимущества обычного полиэтилена, сшитый полиэтилен имеет большую прочность и теплостойкость, не течет при нагреве. Применяется PEX для систем водоснабжения, трубопроводов, отопления.

Вспененный полиэтилен (ПП - пенополиэтилен)

Вспененный полиэтилен (ПП - пенополиэтилен) – экологически чистый, безопасный полиэтилен, получаемый путем вспенивания его бутан пропановой смесью. Пенополиэтилен имеет гладкую внешнюю поверхность, мелкопористую структуру, высокую упругость, эластичность, высокую химическую, биологическую стойкость и долговечность. Так как вспененный полиэтилен состоит из замкнутых воздушных пор, он имеет низкое влагопоглощение и низкую теплопроводность, поэтому успешно используется в строительстве и из него изготавливают теплоизоляционные материалы самого разного применения.

Хлорсульфированный полиэтилен (ХСП)

Хлорсульфированный полиэтилен (ХСП) - каучукоподобный полиэтилен, получаемый при его взаимодействии с сернистым ангидридом и хлором. Такой полиэтилен имеет способность к вулканизации. Хлорсульфированный полиэтилен прекрасно растворяется в хлорированных углеводородах и ароматических растворителях (ксилоле, толуоле), плохо - в ацетоне и совсем ни как - в алифатических углеводородах. ХСП обладает высокой термостойкостью, атмосферной и химической стойкостью; не поддается действию щелочей, кислот и сильных отвердителей, но разрушается под действием уксусной кислоты, ароматических и хлорированных углеводородов. Используется хлорсульфированный полиэтилен для получения износостойких и коррозионностойких покрытий полов, а также клеев и герметиков. На основе ХСП получают атмосферостойкие и коррозионностойкие краски и лаки для защиты бетона, металла и других материалов от химически агрессивных и атмосферных воздействий.

Сверхвысокомолекулярный полиэтилен (СВМП)

Сверхвысокомолекулярный полиэтилен (СВМП) — высокопрочный полиэтиленом для экстремальных условий, получаемый при низком давлении с достаточно высокой степенью полимеризации. СВМП – конструкционный полимер с универсальными физико-механическими свойствами для применения в самых разных областях. Сверхвысокомолекулярный полиэтилен обладает высокой морозостойкостью, коррозионной стойкостью, ударопрочностью, стойкостью к абразивному воздействию, низким коэффициентом трения, физиологической инертностью. СВМП образует высокопрочные нити, которые используются для изготовления сверхпрочных волокон, ударопрочных, маслобензостойких резинотехнических композиционных материалов, защитных полимерных покрытий, удлиняющих эксплуатационный срок изделий в два раза. Сверхвысокомолекулярный полиэтилен широко используется для изготовления защитных покрытий горно-обогатительного оборудования, деталей и элементов конструкций, подвергающихся ударной нагрузке, фильтров для пищевой и химической промышленности, сверхпрочных тканей и нитей для производства средств бронезащиты, а также изготовления спортивного инвентаря (скользящие поверхности лыж, катки и т.д.).

Все виды полиэтилена — это совершенно разные материалы, отличающиеся друг от друга так же, как и от других полимеров, при этом получают их из одного и того же соединения — мономера. Самые популярные в производстве - это полиэтилен ПВД и ПНД.

Бето́н (от фр. béton) — строительный материал, искусственный каменный материал, получаемый в результате формования и затвердевания рационально подобранной и уплотненной смеси состоящей из вяжущего вещества (цемент или др.), крупных и мелких заполнителей, воды. В ряде случаев может содержать специальные добавки, а также отсутствовать вода (например в асфальтобетоне).

Содержание [убрать]
  • 1 История
  • 2 Изготовление
  • 3 Виды бетона
  • 4 Эксплуатационные свойства
    • 4.1 Прочность на сжатие
    • 4.2 Удобоукладываемость
    • 4.3 Другие важные показатели
    • 4.4 Обозначение бетонной смеси
  • 5 Защита бетона
  • 6 См. также
  • 7 Ссылки
  • 8 Примечания

Править] История

Основная статья: Римский бетон

Известен более 6000 лет (Междуречье), широко использовался в Древнем Риме[1] . После падения Римской империи рецепт изготовления бетона был забыт на тысячу лет. Современный бетон на цементном вяжущем веществе известен с 1844 года (И. Джонсон), (патент на портландцемент получил в 1824 году Joseph Aspdin, патент на «римский цемент» получил в 1796 году Джеймс Паркер).

Мировыми лидерами в производстве бетона являются Китай (430 млн кубических метров в 2006 г.)[2] и США (345 млн кубических метров в 2005 г.[3] и 270 млн кубических метров в 2008 г.)[2] В России в 2008 г. было произведено 52 млн кубических метров бетона.

Править] Изготовление

Бетон производится смешиванием цемента, песка, щебня и воды (соотношение их зависит от марки цемента, фракции и влажности песка и щебня), а также небольших количеств добавок (пластификаторы, гидрофобизаторы, и т.д.). Например, при применении цемента марки 400 для производства бетона марки 200 используется соотношение 1:3:5:0,5. Соотношение вода/цемент (обозначается также В/Ц, водоцементное соотношение, иногда также применяется термин водоцементный модуль) -- очень важная характеристика бетона. От этого соотношения напрямую зависит прочность бетона: чем меньше В/Ц, тем прочнее бетон. Теоретически, для гидратации цемента достаточно В/Ц=0,2, однако, у такого бетона слишком низкая пластичность, поэтому на практике используются В/Ц 0,3-0,5. Очень распространенной ошибкой при кустарном производстве бетона является чрезмерное добавление воды, которое увеличивает подвижность бетона, но в несколько раз снижает прочность бетона.

Править] Виды бетона

Согласно п.1 ГОСТ 25192-82, классификация бетонов производится по основному назначению, виду вяжущего, виду заполнителей, структуре и условиям твердения.

  • По назначению различают бетоны
    • обычные (для промышленных и гражданских зданий)
    • специальные — гидротехнические, дорожные, теплоизоляционные, декоративные, а также бетоны специального назначения (химически стойкие, жаростойкие, звукопоглощающие, для защиты от ядерных излучений и др.).
  • По виду вяжущего вещества подразделяют на цементные, силикатные, гипсовые, шлакощелочные, асфальтобетон, пластобетон (полимербетон) и др.
  • По виду заполнителей бетоны могут быть на плотных, пористых или специальных заполнителях.
  • По структуре бетоны могут быть плотной, поризованной, ячеистой или крупнопористой структуры.
  • По условиям твердения бетоны подразделяют на твердевшие:
    • в естественных условиях;
    • в условиях тепловлажностной обработки при атмосферном давлении;
    • в условиях тепловлажностной обработки при давлении выше атмосферного (автоклавного твердения).

Дополнительно к классификации ГОСТ 25192-82 используется классификация:

  • По объёмной массе бетоны подразделяют на
    • особо тяжёлый (плотность свыше 2500 кг/м³) — баритовый, магнетитовый, лимонитовый
    • тяжёлый (плотность от 1800 до 2500 кг/м³) — гравийный, щебёночный (базальтовый, известняковый, гранитный)
    • легкий (плотность от 500 до 1800 кг/м³) — керамзитобетон, пенобетон, газобетон, арболит, вермикулитовый, перлитовый
    • особо лёгкий (плотность менее 500 кг/м³)
  • По содержанию вяжущего вещества и заполнителей различают бетоны
    • тощие (с пониженным содержанием вяжущего вещества и повышенным содержанием крупного заполнителя),
    • жирные (с повышенным содержанием вяжущего вещества и пониженным содержанием крупного заполнителя),
    • товарные (c соотношением заполнителей и вяжущего вещества по стандартной рецептуре).

Править] Эксплуатационные свойства

Править] Прочность на сжатие

Основной показатель, которым характеризуется бетон — прочность на сжатие, по которому устанавливается класс бетона. Согласно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции», класс обозначается латинской буквой «B» и цифрами, показывающими выдерживаемое давление в мегапаскалях (МПа). Например, обозначение В25 означает, что бетон данного класса в 95 % случаев выдерживает давление 25 МПа (СНиП 2.03.01-84*). Но для расчёта показателя прочности необходимо учитывать коэффициенты, например для класса В25 нормативная прочность на сжатие, применяемая в расчетах — 18,5 МПа (табл. 12 СНиП 2.03.01-84*). Возраст бетона, отвечающий его классу по прочности на сжатие и осевое растяжение, назначается при проектировании исходя из возможных реальных сроков загрузки конструкции проектными нагрузками, способа возведения, условий твердения бетона. При отсутствии этих данных класс бетона устанавливается в возрасте 28 суток (СНиП 2.03.01-84*).

Наряду с классами прочность бетона также задается марками, обозначаемыми латинской буквой «М» и цифрами 50-1000, означающими предел прочности на сжатие в кгс/см². Приложение 1 ГОСТ 26633-91 «Бетоны тяжёлые и мелкозернистые. Технические условия» устанавливает следующее соответствие между марками и классами:

Класс бетона по прочности Ближайшая марка бетона по прочности
B3,5 М50
B5 М75
B7,5 М100
B10 М150
B12,5 М150
B15 М200
B20 М250
B22,5 М300
B25 М350
B27,5 М350
B30 М400
B35 М450
B40 М550
B45 М600
B50 М700
B55 М750
B60 М800
B65 М900
B70 М900
B75 М1000
B80 М2000

Для проверки прочности незатвердевшей смеси используются камеры нормального твердения, проверка прочности готовой конструкции осуществляется с помощью Молотка Кашкарова, Молотка Физделя или Молотка Шмидта.

Править] Удобоукладываемость

По удобоукладываемости, согласно ГОСТ 7473-94 «Смеси бетонные. Технические условия», различают бетоны

  • сверхжесткие (жесткость более 50 секунд),
  • жесткие (жесткость от 5 до 50 секунд),
  • подвижные (жесткость менее 4 секунд, подразделяются по осадке конуса).

Таблица 1 в п. 4.5. ГОСТ 7473-94 «Смеси бетонные. Технические условия» устанавливает следующие обозначения бетонных смесей по удобоукладываемости:

Марка по удобоукладываемости Норма по жесткости, с Осадка конуса, см
Сверхжесткие смеси    
СЖ3 Более 100 -
СЖ2 51-100 -
СЖ1 менее 50 -
Жесткие смеси    
Ж4 31-60 -
Ж3 21-30 -
Ж2 11-20 -
Ж1 5-10 -
Подвижные смеси    
П1 4 и менее 1-4
П2 - 5-9
П3 - 10-15
П4 - 16-20
П5 - 21 и более

Показатель удобоукладываемости имеет решающее значение при бетонировании с помощью бетононасоса. Для прокачки насосом используют смеси с показателем не ниже П4.

Править] Другие важные показатели

  • прочность на изгиб,
  • морозостойкость — обозначается латинской букой «F» и цифрами 50-1000, означающими количество циклов замерзания-оттаивания, которые способен выдержать бетон (см. п. 1.3.3. ГОСТ 26633-91),
  • водонепроницаемость — обозначается латинской буквой «W» и цифрами от 2 до 20, обозначающими давление воды, которое должен выдержать образец-цилиндр данной марки (см. п. 1.3.4. ГОСТ 26633-91),
  • удобоукладываемость (подвижность, осадка конуса) — обозначается буквой «П»

Для испытаний бетона на морозостойкость и водонепроницаемость используются испытательные климатические камеры.

Править] Обозначение бетонной смеси

Согласно п. 3.3. ГОСТ 7473-94 «Смеси бетонные. Технические условия», обозначение бетонной смеси должно содержать:

  • степень готовности,
  • класс по прочности,
  • марки по удобоукладываемости, морозостойкости, водонепроницаемости, средней плотности (для легкого бетона)
  • обозначение стандарта.

Например, готовая к употреблению бетонная смесь тяжелого бетона класса по прочности на сжатие В25, марок по удобоукладываемости П3, морозостойкости F200 и водонепроницаемости W6 должна обозначаться: БСГ В25 П3 F200 W6 ГОСТ 7473-94

Править] Защита бетона

Гидроизоляционную защиту подразделяют на первичную и вторичную. К первичной относят мероприятия, обеспечивающие непроницаемость конструкционного материала сооружения. К вторичной — дополнительное покрытие поверхностей конструкций гидроизоляционными материалами (мембранами) со стороны непосредственного воздействия агрессивной среды[4].

Меры первичной защиты включают в себя использование для изготовления бетона и железобетона материалов, имеющих повышенную коррозионную стойкость, выбор составов и технологических режимов, обеспечивающих повышенную коррозионную стойкость бетона в агрессивной среде, его низкую проницаемость и обеспечивающих дальнейшее развитие прочностных и деформативных его свойств[5]. К мерам первичной защиты относятся также вопросы выбора рациональных геометрических очертаний и форм конструкций, назначение категорий трещиностойкости и предельно допустимой ширине раскрытия трещин, рассмотрение сочетания нагрузок и определение непродолжительного раскрытия трещин, назначение толщины защитного слоя бетона с учетом его непроницаемости. Так же можно отнести к первичной защите применение интегральных капиллярных материалов, которые, по сути, химически модифицируют существующий бетон — гидроизоляция строительными смесями проникающего действия. При этом уплотняется структура бетона и происходит увеличение водонепроницаемости, морозостойкости, прочности на сжатие и коррозионной стойкости на весь срок службы.

Задача вторичной защиты — не допустить или ограничить возможность контакта агрессивной среды и железобетона. В качестве вторичной защиты используют обеспыливающие пропитки, тонкослойные покрытия, наливные полы и высоконаполненные покрытия. Чаще всего, в качестве связующего материала, при производстве полимерных составов, применяются эпоксидные, полиуретановые и полиэфирные компоненты. Механизм защиты бетонного основания заключается в уплотнении поверхностного слоя и изоляции минеральной поверхности от негативных разрушающих факторов.

Классификация марок бетона по однородности прочности.

Самым важным фактором в марках бетона, является его однородность. Эти критерии предъявляются как с экономической точки зрения, так и с технической. Однородность бетона, определяется путём сравнения результатов тестов образцов высочайшего качества, которые производились в одинаковых условиях на протяжении отведённого срока. На основные показатели прочности влияют следующие факторы - процесс производства, тип цемента применяемого при его изготовлении, качество пластификатора и точность дозировки примесей.

Для того чтобы показатели однородности товарного бетона были высокими, производство должно проходить автоматизированным путём, с использованием исключительно качественных ингредиентов при этом повышая технологический лимит. Для нормирования прочности бетонных марок, применяются стандартные характеристики - класс. Классификация бетонного раствора, характеризуясь численным выражением, обеспечена гарантиями качества на 95 процентов.

Разновидность товарного бетона, подразделяется на следующие типы - B-1 I B-2 I B-2,5 I В-3,5 I B-5 I B-7,5 I B-10 I B12,5 I B-15 I B-20 I B-25 I B-30 I B-40 I B-45 I B-50 I B-55 I B-60 I .

Классификация и маркировка соотносятся по прочности с учетом коэффициента вариации - V=13,5%:

· Для товарного бетона классификации В60 используется марка м-800, средняя прочность, подходящая для данного класса составит 786 (кгс/см2);

· Для товарного бетона классификации В55 используется марка м-700, средняя прочность, подходящая для данного класса составит 720 (кгс/см2);

· Для товарного бетона классификации В50 используется марка м-600, средняя прочность, подходящая для данного класса составит 655 (кгс/см2);

· Для товарного бетона классификации В45 используется марка м-600, средняя прочность, подходящая для данного класса составит 589 (кгс/см2).

· Для товарного бетона классификации В40 используется марка м-550, средняя прочность, подходящая для данного класса составит 524 (кгс/см2);

· Для товарного бетона классификации В35 используется марка м-450, средняя прочность, подходящая для данного класса составит 458 (кгс/см2);

· Для товарного бетона классификации В30 используется марка м-400, средняя прочность, подходящая для данного класса составит 393 (кгс/см2);

· Для товарного бетона классификации В25 используется марка м-350, средняя прочность, подходящая для данного класса составит 327 (кгс/см2).

· Для товарного бетона классификации В20 используется марка м-250 средняя прочность, подходящая для данного класса составит 262 (кгс/см2);

· Для товарного бетона классификации В15 используется марка м-200, средняя прочность, подходящая для данного класса составит 196 (кгс/см2);

· Для товарного бетона классификации В12,5 используется марка м-250 средняя прочность, подходящая для данного класса составит 262 (кгс/см2)

· Для товарного бетона классификации В15 используется марка м-200, средняя прочность, подходящая для данного класса составит 196 (кгс/см2);

· Для товарного бетона классификации В12,5 используется бетон марки м 150 средняя прочность, подходящая для данного класса составит 164 (кгс/см2);

· Для товарного бетона классификации В10 используется марка м-150, средняя прочность, подходящая для данного класса составит 131 (кгс/см2);

· Для товарного бетона классификации В7,5 используется марка м-100, средняя прочность, подходящая для данного класса составит 98 (кгс/см2);

· Для товарного бетона классификации В5 используется марка м-75, средняя прочность, подходящая для данного класса составит 65 (кгс/см2);

· Для товарного бетона классификации В3,5 используется марка м-50, средняя прочность, подходящая для данного класса составит 46 (кгс/см2);

· Для товарного бетона классификации В10 используется марка м-150, средняя прочность, подходящая для данного класса составит 131 (кгс/см2);

· Для товарного бетона классификации В7,5 используется марка м-100, средняя прочность, подходящая для данного класса составит 98 (кгс/см2);

· Для товарного бетона классификации В5 используется марка м-75, средняя прочность, подходящая для данного класса составит 65 (кгс/см2);

· Для товарного бетона классификации В3,5 используется марка м-50, средняя прочность, подходящая для данного класса составит 46 (кгс/см2).

Каучук и резина

 

Каучук и резина

Путем коагуляции органическими кислотами млечного сока каучуконосных растений, получают натуральный каучукНатуральный каучук: полимер растительного… - латексные - каучук находится в млечном соке; - паренхимные - каучук находится в стеблях и корнях;

Источники натурального каучука

Характеристики каучука

Углеводород каучука – это полиизопрен, углеводородное полимерное химическое соединение, имеющее общую формулу (C5H8)n. Как конкретно в дереве… Каучук относится к классу ненасыщенных органических соединений, которые… Каучук не растворяется в воде, спирте либо ацетоне, но набухает и растворяется в бензоле, толуоле, бензине,…

Обработка каучука и создание резины

внедрение грануляторов – машин, которые разрезают каучук на мелкие гранулы либо пластинки одинаковых размеров и формы, – упрощает операции по дозе и… Приготовление резиновой смеси. Химическое соединение лишь из каучука и серы… Ускорители и активаторы. Некие химически активные вещества, называемые ускорителями, при использовании совместно с…

Жесткая резина

Синтетический каучук

Синтез аналога натурального каучука (1,4-цис-полиизопрена и 1,4-цис-полибутадиена). Натуральный каучук, получаемый из гевеи бразильской, имеет… Синтез 1,4-цис-полиизопрена проводился несколькими различными способами с… Полибутадиен, на 90–95% состоящий из 1,4-цис-изомера, также был синтезирован посредством регулирующих стереоструктуру…

Править] Состав

Металлическая фаза металлокерамических материалов может содержать Cr, Ni, Al, Fe, Со, Ti, Zr и их сплавы. К керамической фазе относят оксиды (Al2O3, Cr2O3, SiO, SiO2, ZrO2), карбиды (SiC, Cr3C2, TiC), бориды (Cr2B2, TiB2, ZrB2), силициды (MoSi), нитриды (TiN) и углерод (алмаз, графит). Содержание керамической составляющей в металлокерамике в зависимости от ее типа изменяется в широких пределах от 15 до 85% (по объёму).

Править] Способы получения и применение

Чаще всего понятие металлокерамика связывают с порошковой металлургией. Здесь металлокерамику получают прессованием заготовок из порошков (металлов и керамики) с последующим их спеканием. Так производят твердые металлокерамические материалы (цементированные карбиды), используемые для обработки металлов резанием и для бурения горных пород. Другим примером металлокерамики, полученной спеканием порошков смеси железа и графита, могут служить пористые самосмазывающиеся подшипники, материал которых после спекания пропитывают маслом.

Методом газотермического напыления частиц порошка получают металлокерамические покрытия для защиты поверхностей деталей от износа и коррозии при производстве деталей. Этот же метод формирования металлокерамического покрытия используется для ремонта при восстановлении размеров изношенных деталей.

Металлокерамическое покрытие также получают на смазываемых металлических деталях при ревитализации механизмов. В масло, используемое в механизме, например в трансмиссионное масло редуктора, вносят специальное вещество – ревитализант. Ревитализант под действием контактных нагрузок, формирует на поверхностях зубчатых колес, подшипников металлокерамическое покрытие. Покрытие одновременно упрочняет и восстанавливает изношенные трущиеся поверхности, увеличивает ресурс.

Тонкопленочную металлокерамику получают методом термического испарения металла или сплава в вакууме и конденсации его паров на поверхности пластинки (подложки). Примером может служить микрокомпозиция Cr — SiO, используемая при изготовлении тонкопленочных резисторов.

Для большинства пациентов, которым требуется протезирование, на первом месте стоит внешний вид зубного протеза и только потом – его технические свойства. Металлокерамика как раз и объединяет в себе безукоризненный внешний вид и надежность конструкции при относительно невысокой стоимости. Благодаря этому металлокерамика стала на сегодняшний день самым популярным методом протезирования.

Металлокерамику можно устанавливать на отдельный зуб или изготавливать мост при отсутствии одного или нескольких зубов подряд. Легкий и в то же время прочный металлический каркас протеза может устанавливаться на передние и задние зубы, а также на имплантанты. Он полностью берет на себя жевательные функции и выдерживает интенсивные нагрузки. Современные технологии и оборудование позволяют подобрать керамическое покрытие, точно соответствующее по цвету и блеску эмали натуральных зубов.

Зубной протез из металлокерамики состоит из металлического каркаса и нескольких слоев керамического покрытия. Каркас представляет собой коронку из сплавов благородных металлов (золото, платина, палладий) или из титановых сплавов. Срок службы металлокерамики на титановых сплавах – 10 -12 лет, на сплавах благородных металлов – больше 15. Поскольку это самая важная часть зубного протеза, к изготовлению каркаса нужно подходить особо тщательно. Зубной техник должен сделать точные замеры подготовленного к протезированию зуба и на соответствующем оборудовании изготовить протез. После примерки каркаса и подбора оттенка будущего покрытия, на каркас наносится керамическое покрытие и производится его обжиг.

Если протезы некачественно изготовлены, могут возникнуть некоторые проблемы: воспаление, кровоточивость или посинение десен. Это происходит при несоблюдении технологий изготовления протеза, когда коронку устанавливают без предварительной примерки. Иногда после установки металлокерамики можно видеть темную полоску на десне. Это происходит в тех случаях, если при изготовлении коронки использовались недрагоценные металлы плохого качества.

В клинике «Д. Вита. Дент» имеется высокоточное импортное оборудование и опытные зубные техники, которые профессионально и быстро изготовят любые, даже самые сложные протезы из металлокерамики. Для этого наши техники вначале делают специальную разборную модель, на которой воссоздаются все мельчайшие детали: фиссуры, бугорки и т.д. Современные слепочные материалы, которые используются в нашей клинике, дают возможность воссоздать точный слепок, чтобы исключить малейшую возможность ошибки. При изготовлении протезов мы также учитываем нагрузку на протезируемый зуб. Особое внимание уделяется фарфоровому краю коронки, чтобы она обеспечивала полную герметичность. Если прилегание коронки не будет идеально точным, то находящийся под ней зуб со временем разрушится. Благодаря комплексному подходу и современному высокоточному оборудованию наши протезы из металлокерамики по внешнему виду ничем не отличаются от настоящих зубов пациента. Мы гарантируем высокое качество и долговечность протезов при сравнительно невысоких ценах.

Преимущества металлокерамики:

- Отличная эстетика. Используя металлокерамику можно добиться полного соответствия искусственных зубов натуральным.

- Совершенная функция. Металлокерамическими искусственными зубами (при условии их правильного изготовления) можно отлично пережевывать пищу, так же как и своими зубами, а в некоторых случаях даже лучше.

- Хорошая гигиена. На металлокерамике в несколько раз меньше оседает микробный налет, чем на своих зубах или на металле. Следовательно, металлокерамические зубы более "гигиеничные". Это особенно важно пациентам с пародонтитом.

- Долговечность. Металлокерамика очень точно одевается на зуб. Следовательно, между коронкой и зубом пища и слюна не попадают, кариес под коронкой не развивается. В результате коронка служит дольше. На сегодняшний день металлокерамика - самая долговечная конструкция из возможных, в стоматологии. Средний срок службы металлокерамике на неблагородном сплаве 10-12 лет. На золотоплатиновом сплаве 15 лет и более. Такой срок службы металлокерамической коронки возможен, только если она сделана особым методом с применением современных материалов и методик.

- Универсальность. С помощью металлокерамики, возможно протезировать от простых до самых сложных деформаций зубочелюстной системы с одинаковым успехом и долгосрочным благоприятным прогнозом.

- Хорошее отношение к десне. Правильно сделанная металлокерамическая коронка никогда не вызовет изменений в десне. Десна не будет кровоточить, не изменит свой цвет, не изменит контур. Если у Вас была металлокерамика, которая привела к посинению десны и к ее кровоточивости, то это значит, что при изготовлении Вашей металлокерамики не были учтены современные подходы к такому протезированию.

Как уже отмечено выше, современные металлокерамические твердые сплавы представляют собой сплав карбидов ту-гоплавких металлов с металлами железной группы — кобальтом или никелем. Свойства металлокерамических твердых сплавов условно могут быть разделены на три основные категории: физико-механические, физико-химические и эксплуатационные. Под физико-механическими свойствами подразумеваются показатели, характеризующие главным образом прочность сплавов. К этой категории относятся твердость, вязкость, плотность и износостойкость. Под физико-химическими свойствами подразумеваются свойства, характеризующие физическую природу сплавов и их взаимодействие с различными реагентами. К ним относятся теплопроводность, жаропрочность, слипаемость с об-рабатываемым материалом, коэрцитивная сила, магнитная проницаемость, коррозионная стойкость и др. Третья категория охватывает показатели, характеризующие поведение сплавов в рабочем процессе. Примером могут служить режущие свойства. Основным фактором, который влияет на эту категорию свойств, является количественное соотношение карбидной и вспомогательной составляющей, а также дисперсность карбидов. С увеличением количества карбидов и их дисперсности растет твердость и износостойкость, но уменьшается вязкость. Плотность сплавов зависит в основном от плотности входящих в сплав компонентов. Металлокерамические твердые сплавы обладают весьма низкой пластичностью. Степень обжатия некоторых твердых сплавов приведена в табл. 4. Физико-химические свойства а) Теплопроводность металло-керамических твердых сплавов, в особенности тех, которые применяются в резании, имеет большое значение. Основным фактором, влияющим на теплопроводность твердых сплавов, является химический состав. Теплопроводность сплава тем выше, чем больше содержание компонента с максимальной теплопроводностью. Из трех компонентов, входящих в состав советских металлокерамических твердых сплавов — карбида титана, карбида вольфрама и кобальта, максимальной теплопроводностью обладает последний, а минимальной — карбид титана. Низкая теплопроводность сплава является неблагоприятным фактором для обработки резанием; чем ниже тепло-проводность, тем хуже отвод тепла от стружки обрабатываемого металла и режущей кромки инструмента.

5-4. ПРИМЕНЕНИЕ МЕТАЛЛОКЕРАМИКИ ПРИ ПРОИЗВОДСТВЕ ЭЛЕКТРОАППАРАТОВ
а) ОБЩИЕ ПОЛОЖЕНИЯ. ОСНОВНЫЕ ПРЕИМУЩЕСТВА
В металлокерамическом производстве изготовление деталей машины, электроаппаратов, инструментальной оснастки и т. д. осуществляется путем прессования металлических порошков или их смесей с последующим спеканием и термообработкой. Основным экономическим преимуществом металлокерамики является значительное сокращение или полное устранение механической обработки, в результате чего отходы металла в стружку резко сокращаются. Так, технология металлокерамического производства позволяет в 10 — 15 раз сократить отходы металла.
Этот фактор имеет огромное значение, так как существующая в настоящее время технология механической обработки металлов вызывает большие отходы.
Огромное достоинство порошковой металлургии состоит в том, что она использует в качестве одного из основных источников сырья отходы промышленности — стружку машиностроительных заводов, окалину металлургических заводов. В условиях крупносерийного и массового производства применение порошков для производства ряда деталей электроаппаратов экономически наиболее оправдано по сравнению с такими методами, как литье, штамповка и механическая обработка. При этом в большинстве случаев детали считаются готовыми к эксплуатации, а в необходимых случаях могут быть подвергнуты дополнительной обработке резанием или давлением, пропитке маслом и т. д.
По сравнению с другими методами обработки порошковая металлургия имеет кроме уже указанных выше еще ряд преимуществ. Она обладает следующими возможностями: организации массового выпуска деталей сложной формы; замены дорогостоящих металлов и сплавов (бронза, латунь, цинк и т. д), в первую очередь цветных, более дешевыми металлическими порошками или их смесями; устранения потерь металла; изготовления деталей из металлических компонентов, не поддающихся смешению (магнитные сплавы); точного регулирования химического состава материала деталей; производства деталей из металлов с резко отличными температурами плавления.
б) ОСНОВНЫЕ ТИПЫ ИЗДЕЛИЙ. КРАТКАЯ ХАРАКТЕРИСТИКА ПРИМЕНЕНИЯ МЕТАЛЛОКЕРАМИКИ
Порошковая металлургия получила широкое распространение в электротехнике, в том числе и в электроаппаратостроении. В табл. 5-1 приведены классификация некоторых металлокерамических изделий и области применения в электроаппаратостроении.
в) ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ ИЗ МЕТАЛЛОКЕРАМИКИ
Технология металлокерамического производства является металлургическим процессом и не является технологией электроаппаратостроения, поэтому в данной книге подробно не рассматривается.
В настоящее время электроаппаратные производства используют металлокерамику, в основном изготовленную на специальных заводах. Например, на московском заводе «Динамо» для конечных выключателей применяют подшипники скольжения, ролики, для командоконтроллеров — стойку и ряд других деталей, которые подвергаются незначительной механической обработке на металлорежущих станках.
Некоторые предприятия в электротехнической отрасли промышленности организовали участки по изготовлению металлокерамических деталей, например на Рижском электромашиностроительном заводе изготавливают металлокерамические контакты для аппаратов.
Рассмотрим типовую технологию изготовления металлокерамических деталей электроаппаратов:
1-я операция — приготовление шихты (просев порошка на сите с ячейкой 0,5 — 0,3 мм и дозировка);
2-я операция — 1-е прессование (на гидравлическом прессе);
3-я операция — 1-е спекание (производится в электрической печи);
4-я операция — 2-е прессование (на гидравлическом прессе);
5-я операция — окончательное спекание (производится в электрической печи);
6-я операция — химико-термическая обработка (процессы цементации, закалки и отпуска производятся в электрических печах);
7-я операция — механическая обработка (получение окончательных размеров и форм на металлорежущих станках).
Следует отметить, что применение металлокерамики имеет широкое распространение также во вспомогательном производстве (инструментальное хозяйство) электроаппаратостроения.

 

Преимущества металлокерамики из титана

Металлокерамика из титана имеет следующие неоспоримые преимущества: Высокая эстетичность зубного протеза Минимальная обточка зубов при…

Производство и применение металлокерамики из титана

Относительным недостатком металлокерамики из титана можно считать то, что при изготовлении металлокерамики из титана применяется особая… Крепление металлокерамики из титана осуществляется с помощью бондинга –… Несомненно, металлокерамика на основе титана относится к элитному зубопротезированию. Но популярность титано-керамики…

Металлокерамика: показания к применению, преимущества перед другими материалами

В современной стоматологии металлокерамика обладает множеством преимуществ. Этот материал позволяет сымитировать человеческий зуб как с… Технология металлокерамики помогает полностью восстановить разрушенный зуб.…

Технология изготовления металлокерамики

Суть технологии металлокерамики состоит в изготовлении металлического основания (каркаса) и послойного нанесения на него керамической массы. Готовое… Преимущество металлокерамики заключается в использовании легкого и прочного… Наиболее оптимальный материал для изготовления каркаса – сплав золота и палладия, а также других благородных металлов…

– Конец работы –

Используемые теги: Функциональные, Композиционные, Конструкционные, количеству, измерений0.074

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Функциональные Композиционные Конструкционные. По количеству измерений

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Измерение постоянного тока, расчет сопротивления шунта и определение погрешности измерения .
Описать способы крепления подвижной системы на полуосях в подпятниках или на упругих немагнитных растяжках и отметить достоинства каждого из них. 2.… Отсчитать ток полного отклонения In по показанию образцового микроампеметра… Паралелльно прибору И включить магазин резисторов R0 и подбирать его сопротивление так, чтобы покозания уменьшились в…

Измерение. Погрешности измерений
Лабораторный практикум содержит описание лабораторных работ подготовленных в... Для облегчения усвоения учебного материала в практикуме к каждой лабораторной работе изложен теоретический материал в...

Численное значение физической величины получают в результате измерений. Измерения физических величин подразделяют на
Цель лабораторного практикума экспериментально проверить теоретические выводы законы и соотношения между физическими величинами... Численное значение физической величины получают в результате измерений Измерения физических величин подразделяют...

Измерение переменного электрического напряжения
Измерение переменного электрического напряжения... ЦЕЛЬ РАБОТЫ Получение навыков измерения переменного электрического напряжения... СВЕДЕНИЯ НЕОБХОДИМЫЕ ДЛЯ ВЫПОЛНЕНИЯ РАБОТЫ Действующее значение...

Измерение угла фазового сдвига
Измерение угла фазового сдвига... ЦЕЛЬ РАБОТЫ Получение навыков измерения угла фазового сдвига знакомство с... СВЕДЕНИЯ НЕОБХОДИМЫЕ ДЛЯ ВЫПОЛНЕНИЯ РАБОТЫ Если и...

Измерение параметров гармонического напряжения с помощью осциллографа
Измерение параметров гармонического напряжения с помощью осциллографа... ЦЕЛЬ РАБОТЫ Приобретение навыков измерения параметров гармонического напряжения с помощью осциллографа Получение...

Измерение частоты и периода электрических сигналов
Измерение частоты и периода электрических сигналов... ЦЕЛЬ РАБОТЫ Получение навыков измерения частоты и периода электрических сигналов Знакомство с устройством и...

Нормирование погрешностей средств измерения
Класс точности КТ это обобщенная характеристика средства измерений выражаемая пределами его допускаемых основной и дополнительных погрешностей... Возможно несколько случаев обозначения класса точности... Часто КТ выражается привед нной погрешностью...

Измерение переменных напряжений
На сайте allrefs.net читайте: Измерение переменных напряжений. квадраторы...

Измерение мощности
Измерение мощности на СВ Колориметрический метод Измерители поглощаемой К lt lt... Термопреобразовательный метод...

0.031
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам