рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Частотные критерии устойчивости. Критерий Михайлова. Критерий Найквиста

Частотные критерии устойчивости. Критерий Михайлова. Критерий Найквиста - раздел Образование, Основные понятия операционного исчисления. Преобразование Фурье и Лапласа Принцип Аргумента. В Основе Частотных Критериев Устойчивости Лежит Изв...

Принцип аргумента. В основе частотных критериев устойчивости лежит известный в теории функций комплексного переменного принцип аргумента.

Пусть дано алгебраическое уравнение с действительными коэффициентами

(2.2.1)


Многочлен можно представить в виде

(2.2.2)


где — корни уравнения .

Положим , тогда

(2.2.3)


Рассмотрим геометрическое представление комплексного числа на комплексной плоскости р. Начало вектора, изображающего это комплексное число, лежит в точке pi, а конец—на мнимой оси в точке (рисунок 2.2.1).

Рисунок 2.2.1 - Геометрическое представление комплексного числа

Найдем аргумент комплексного чис­ла

(2.2.4)


При изменении аргумента с из­менением w в пределах от -¥ до +¥

(2.2.5)


Согласно (2.2.4), для подсчета изменения аргумента необхо­димо подсчитать сумму изменений аргументов выражений вида . Это изменение аргумента зависит от того, в ка­кой (правой или в левой) полуплоскости лежит корень . Рассмотрим эти два случая.

Корень pi лежит в левой полуплоскости (рисунок 2.2.2, а). При изменении w в пределах от -¥ до +¥ конец вектора скользит вдоль мнимой оси снизу вверх, поворачи­ваясь против часовой стрелки на 180°, и, следовательно, изме­нение аргумента при этом

(2.2.6)


Рисунок 2.2.2 - Расположение корней характеристического
уравнения

Корень pi лежит в правой полуплоскости (рисунок 2.2.2, б). В этом случае получим

(2.2.7)


Допустим, что уравнение имеет m корней в пра­вой полуплоскости и l корней в левой полуплоскости. При этом . Тогда, на ос­новании (2.2.3), (2.2.6) и (2.2.7)

(2.2.8)


Уравнение (2.2.8) представляет собой выражение принципа ар­гумента, который формулиру­ется следующим образом. Из­менение аргумента при изменении w от -¥ до +¥ равно разности ме­жду числом корней l (урав­нения), лежащих в левой полуплоскости, и числом корней m, лежащих в правой полуплоскости, умноженной на p.

Критерий Михайлова. Критерий устойчивости А.В. Михайлова является по существу геометрической интерпретацией прин­ципа аргумента. Пусть дано характеристическое уравнение системы (2.2.1)

Полином в этом случае называется характеристи­ческим полиномом. Для того чтобы система была устойчива, необходимо, чтобы все корни характеристического уравнения лежали в левой полуплоскости, т.е. чтобы . В этом случае согласно (2.2.8) должно удовлетворяться уравнение

(2.2.9)


Из условия (2.2.9) следует, что все корни уравнения лежат в левой полуплоскости.

Геометрическое место конца вектора при , называется годографом вектора , или годогра­фом Михайлова. Согласно (2.2.1), уравнение годографа Михайлова

(2.2.10)


где действительная и мнимая части комплекса соответ­ственно будут:

(2.2.11)


(2.2.12)


Из (2.2.11) и (2.2.12) следует, что действительная часть является чётной функцией от w

а мнимая часть является нечетной функцией w

Следовательно,

(2.2.13)


т.е. и являются сопряженными комплексными величинами и, таким образом,

(2.2.13)


Учитывая (2.2.13), уравнение (2.2.9) можно записать в виде

(2.2.14)


Из (2.2.14) следует формулировка критерия устойчивости Михайлова. Система автоматического ре­гулирования устойчива, если при изменении w от 0 до +¥ вектор поворачивается на угол , где n — степень ха­рактеристического уравнения ; или, иначе, если годо­граф c ростом w от 0 до +¥, начинаясь на действительной оси, обходит последовательно в положительном направлении (против часовой, стрелки) n квадрантов.

На рисунке 2.2.3, а показаны годографы устойчивых систем для разных значений n. Все они охватывают соответствующее число квадрантов в положительном направлении.

Рисунок 2.2.3 - Годографы устойчивых (а) и неустойчивых (б)
по критерию Михайлова систем

На рисунке 2.2.3, б показаны годографы неустойчивых систем. Все они не удовлетворяют условию обхода n квадрантов в положительном направлении.

Годограф можно построить по уравнениям (2.2.11) и (2.2.12), задаваясь значениями w и вычисляя U и V.

Критерий Найквиста. Для исследования устойчи­вости усилителей с обратной связью Найквист в 1932 г. пред­ложил критерий устойчивости, основанный на исследовании частотных характеристик системы. Этот критерий был по-новому обоснован, обобщен и применен в теории автоматиче­ского регулирования А.В. Михайловым в 1938 г. Для исследо­вания устойчивости замкнутой системы регулирования согласно этому критерию необходимо знать частотный годограф разомк­нутой системы. Эту характеристику можно получить как аналитически, так и экспериментально. Последнее обстоятельство выгодно отличает рассматриваемый критерий устойчивости от ранее изложенных.

Критерий устойчивости, основанный на пост­роении частотного годографа разомкнутой си­стемы. Пусть передаточная функция разомкнутой системы регулирования . Образуем функцию

(2.2.15)


Числитель этой функции представляет собой характеристи­ческий полином замкнутой системы, знаменатель — характери­стический полином разомкнутой системы. Пусть степень равна п и степень равна r. Из физических соображений следует, что

(2.2.16)


В противном случае, при из передаточной функции можно выделить слагаемые с р выше нулевой сте­пени, что соответствует дифференцирующим звеньям, которые не могут быть реализованы на практике.

Учитывая неравенство (2.2.16), можно утверждать, что сте­пень полинома также равна п.

Рассмотрим три случая состояния разомкнутой системы: устойчива, неустойчива и нейтральна.

1-й случай — система в разомкнутом состоянии устойчива.

Тогда согласно критерию устойчивости Михайлова изме­нение аргумента характеристического полинома разомкнутой системы

Если потребовать, чтобы система в замкнутом состоянии была устойчива, то должно удовлетворяться равенство

Из (2.2.15) при этом следует, что

(2.2.17)


Таким образом, система автоматического регулирования устойчива, если изменение аргумента вектора при изме­нении w от 0 до ¥, равно нулю.

На рисунке 2.2.4, а показаны два годографа ; I соответствует устойчивой системе: он не охватывает точ­ку (0, 0), II — неустойчивой: он охватывает точку (0, 0). Так как отличается от на +1, то сказанное можно сформулировать непосредственно для характеристики (см. рисунок 2.2.4, б).

Рисунок 2.2.4 - Годографы и устойчивой и неустойчивой по Найквисту систем

Замкнутая система устойчива, если годограф разомк­нутой системы не охватывает точку .

2-й случай — система в разомкнутом состоянии неустойчива.

При рассмотрении многоконтурных и одноконтурных систему содержащих неустойчивые звенья, разомкнутая система может оказаться неустойчивой.

Пусть система в разомкнутом состоянии неустойчива, при этом характеристическое уравнение разомкнутой системы имеет т корней в правой полуплоскости. Тогда согласно прин­ципу аргумента (2.2.8)

или, учитывая симметрию характеристик для +w и -w,

Если потребовать, чтобы система в замкнутом состоянии была устойчива, то должно выполняться равенство

При этом согласно (2.2.15)

(2.2.18)


Таким образом, система автоматического регулиро­вания устойчива, если при изменении w от нуля до бес­конечности годограф разомкнутой системы охватывает раз точку в положительном направлении, где т — число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости.

Кратность охвата может быть наглядно определена числом оборо­тов, совершенных вектором, прове­денным из точки в теку­щую точку годографа.

На рисунке 2.2.5 показан годограф устойчивой системы в замкнутом состоянии, которая в разомкнутом состоянии неустойчива, а число кор­ней ее . Годограф охватывает в положительном направлении точку один раз и, следовательно, согласно (2.2.18) система в замкнутом состоянии устойчива.

Рисунок 2.2.5 - Годограф устойчивой по Найквисту системы

3-й случай — система в разомкнутом состоянии нейтральна. В этом случае передаточная функция системы в разомк­нутом состоянии

(2.2.19)


где n — число интегрирующих звеньев в системе; и полиномы от р, причем не имеет нулей в правой полуплоскости и на мнимой оси.

Из (2.2.19) следует, что при стремится к ¥, и поэтому по виду годографа , имеющему разрыв при , трудно судить, охватывает ли он точку , и решать вопрос об устойчивости системы. В этом случае требуется специальное исследование годографа вблизи точки, соответствующей .

Путём предельного перехода этот случай можно получить из рассмотрения первого или второго случая. Решим задачу путем применения выводов, сделанных для системы, устойчивой в разомкнутом состоянии. Рассмотрим случай, когда .

Тогда

(2.2.20)


При значение Wр по (2.2.20) обращается в ¥, поэтому для сохранения формулировки критерия, справедливой для устойчивых в разомкнутом состоянии систем, при построении годографа либо, обходя мнимую ось от -¥ до +¥, огибают точку (0, 0) справа по полуокружности бесконечно малого радиуса (рисунок 2.2.6, а), либо рассматривают нулевой корень, как предел отрицательного вещественного корня (рисунок 2.2.6, б) при .

Воспользуемся вторым вариантом предельного перехода от устойчивой разомкнутой системы к нейтральной. В этом случае вместо функции воспользуемся функцией, которая переходит в при ,

(2.2.21)


При

(2.2.22)


где b0 и d0 — значения полиномов и при ; R ¾ значение при .

При малых частотах годограф при отличается от годо­графа , принимая вид пунктирной кривой, показанной на рисунке 2.2.6, в. По мере стремления b к нулю и годо­граф отличается от годографа только четвертью окружности бесконечно большого радиуса, дополняемой при . Будем называть такую часть окружности "допол­нением в бесконечности".

Рисунок 2.2.6 - Годографы нейтральной в разомкнутом состоянии системы

Для — это четверть окружности бесконечно большого радиуса, для — это уже половина окружности, а для произвольного значения n дополнение годографа в бесконеч­ности представляет собой дугу, состоящую из n четвертей окружности бесконечно большого радиуса, начинающуюся при частоте на действительной оси и с увеличением частоты описывающей угол в отрицательном направлении вокруг начала координат.

Таким образом, система с одним интегрирующим звеном, годограф которой с его дополнением в бесконечности показан на рисунке 2.2.6, в, не охватывает точку , является устой­чивой.

На рисунке 2.2.6, г показан годограф, соответствующий неустой­чивой системе, так как он охватывает точку .

Из сказанного следует, что система автоматического регулирования, нейтральная в разомкнутом состоянии, устойчива, если годограф разомкнутой системы с его дополнением в бесконечности не охватывает точку .

– Конец работы –

Эта тема принадлежит разделу:

Основные понятия операционного исчисления. Преобразование Фурье и Лапласа

Прямое и обратное преобразования Фурье Совокупность операций позволяющих по заданной функции находить ей соответствую щую спектральную... Интеграл в правой части равенства понимается в смысле главного значения т е...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Частотные критерии устойчивости. Критерий Михайлова. Критерий Найквиста

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Связь преобразований Фурье и Лапласа
Формула (1.3.7) прямого преобразования Лапласа может рассматриваться как результат определенным образом построенного обобщения одностороннего пре­образования Фурье. Пусть, например, функция

Прохождение регулярных сигналов через линейное звено
Любая часть системы автоматического управления может быть рассмотрена как некоторое звено системы, преобразующее сигнал входа в сигнал выхода. Если в качестве такого звена рас­сматривается объект р

Регулярные сигналы
Любой сложный сигнал может быть представлен в виде со­вокупности более простых сигналов. В качестве простейших сигналов будем пользоваться сле­дующими: а) гармонический сигнал

Характеристики линейного звена
Для количественного описания свойств линейного звена в за­висимости от постановки задачи, пользуются следующими взаим­но связанными его характеристиками: комплексным коэффици­ентом усиления; переда

Устойчивость линейных звеньев. Минимально-фазовые звенья. Преобразование произвольного сигнала линейным звеном
Из рассмотрения выраже­ния (1.5.15) можно сделать вывод о зависимости устойчивости системы от того, в какой области лежат корни . Д

Типовые динамические звенья. Простейшие звенья. Звенья первого порядка
Для исследования процессов в реальных системах пользуют­ся идеализированными схемами, которые точно описываются ма­тематически и приближенно характеризуют реальные звенья си­стем в заданном диапазо

Простейшие звенья
Пропорциональное звено. Самым простым является звено, выходная величина которого прямо пропорциональна входной величине. Уравнение такого звена

Звенья первого порядка
Инерционное звено. Одним из самых распространен­ных звеньев системы автоматического управления является инерционное звено. Оно описывается уравнением

Колебательные звенья. Особые звенья: неминимально-фазовые устойчивые звенья, неустойчивые звенья
Колебательное звено описывается уравнением второго по­рядка (1.7.48) при степени затухания

Устойчивые неминимально-фазовые звенья
В ряде устройств, например при дифференциальных или мо­стовых соединениях, встречаются звенья, описываемые диффе­ренциальными уравнениями, имеющими отрицательные коэффи­циенты в правой части уравне

Неустойчивые звенья
Наиболее общая форма уравнения неустойчивого звена пер­вого порядка может быть записана как (1.7.69) Передаточная фун

Иррациональные звенья
Звено с распределенными параметрами, описываемое одно­мерным урав­нением теплопроводности Фурье (1.7.79) где

Трансцендентные звенья
Звено с распределенными параметрами, описываемое одно­мерным телеграфным уравнением Даламбера (1.7.106) где

Последовательное соединение звеньев
При последовательном соединении звеньев выходная величина одного звена является входной величиной другого. Если последовательно соединяются звенья i и k, то

Параллельное согласное соединение звеньев
При параллельном согласном соединении на входы всех звеньев подается одна и та же величина, а выходные вели­чины суммируются (с соответствующими знаками). Если парал­лельно соединяется n

Параллельное встречное соединение звеньев
Параллельным встречным соединением двух звеньев на­зывается такое соединение, при котором выходной сигнал первого звена подается на вход второго, а выходной сиг­нал второго звена с соответ­с

Преобразование структурных схем
Рассмотрим три элемента структурной схемы: узел разветвления, суммирующий узел и звено, преобразующее сигнал. Для различных схем соединения введем понятие направле­ния ветвления, ук

Алгебраические критерии устойчивости
Раусом и Гурвицем были получены решения задачи устойчивости в несколько различных видах. Раус опубликовал свое решение в 1875 г. в виде получившей известность таблицы Рауса. Гурвицем был о

Влияние параметров системы на её устойчивость. Метод D-разбиения
Все приведённые критерии устойчивости дают воз­можность при заданных параметрах системы делать заключение о том, устойчива она или нет. С помощью этих критериев воз­можно проследить влияние некотор

Разбиение по одному (комплексному) параметру
В некоторых случаях необходимо выяснить влияние какого-либо параметра на устойчивость системы. Предположим так же, как и при построении корн

D-разбиение по двум параметрам
В ряде случаев необходимо выяснить влияние на устойчи­вость системы не одного параметра, а двух. Предположим, что эти параметры линейно входят в характеристическое уравнение и ему можно придать вид

Показатели качества процессов управления
Устойчивость системы автоматического управления — необ­ходимое, но далеко не достаточное условие рациональности ее применения. Очевидно, что устойчивая система при отработке различных воздействий м

Качество регулирования при стандартных воздействиях
Переходная функция и статическая ошибка. Общераспространенность оценки качества системы по её пере­ходной функции объясняется в основном простотой и нагляд­ностью эксперимента для получения

Косвенные методы исследования качества процессов управления. Интегральные оценки качества переходных процессов
Рассмотрим переходную составляющую процесса управления, определение которой иллюстрируется рисунке 2.6.1, (2.6.1) за

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги