рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Весовое пространство аналитических в круге функций

Весовое пространство аналитических в круге функций - раздел Математика, Представление в виде степенного ряда   Пусть ...

 

Пусть обозначим через – класс всех аналитических в функций , для которых

.

Если , мы отождествим с классом ограниченных аналитических в круге функций .

Нетрудно заметить, что условие является необходимым условием для нетривиальности класса .

Если , то определяет норму на пространстве , а если , то – квазинорму на пространстве .

Непосредственно из неравенства Гёльдера следует, что , если и если

В дальнейшем, если не оговорено противное, будем предполагать, что , причем

Следующее утверждение позволяет определить рост модуля функции из класса .

Теорема 1.Пусть , тогда справедлива оценка

(1)

Доказательство. Пусть

.

Очевидно, что В силу субгармоничности функции имеем:

(2)

или

Теперь заметим, что :

. (3)

И

Напомним, что

.

Положив , из последнего неравенства выводим:

Учитывая неравенство (2.2), получаем:

то есть

Следствие 1.Пусть , тогда справедлива оценка

(4)

Доказательство непосредственно выводится из теоремы 1. □

При , , для краткости обозначим

Следствие 2.Пусть Тогда если , то

Доказательство. Действительно, если , то, используя оценку (4), непосредственно получаем:

Теорема 2.ПустьТогда справедливо равенство

.

Доказательство очевидно, так как при всех

при этом

.

Докажем данную оценку. Имеем:

В последнем неравенстве мы использовали монотонность функции при Учитывая полученную оценку, имеем:

Поэтому из теоремы 1.7 непосредственно следует утверждение теоремы 2.2. □

 

2. Интегральное представление классов

Важную роль в изучении классов играет интегральное представление функций из этих классов.

Сначала докажем следующее утверждение:

Теорема 3.Пустьгде – класс Соболева в . Если при этом существует такое число , что и при , то при всех справедливо представление

(2.5)

где, как обычно,

Доказательство. Пусть фиксировано, положим

Тогда, записав формулу Коши-Грина для функции , имеем:

Используя условие теоремы, получаем:

Упростим подынтегральное выражение:

Следовательно, из равенства (5) имеем:

Положив , получаем:

Из теоремы 3 непосредственно следует:

Теорема 4.Пусть . Тогда если или то справедливо представление

(6)

Доказательство непосредственно следует из теоремы 2.3, если учесть, что , при этом в условиях теоремы 2.4 при .

Из интегрального представления классов вытекает:

Теорема 5. Пространство при относительно нормы

является банаховым, а при – квазибанаховым пространством.

Доказательство. Пусть . Обозначим через пространство измеримых в функций , для которых соответствующий интеграл конечен.

Хорошо известно, что пространство при банахово, а при квазибанахово. Поэтому достаточно установить, что является замкнутым подпространством пространства при всех .

Предположим, что – последовательность из , а функция такая, что при .

Докажем, что . Используя оценку (2.1), имеем:

.

Отсюда следует, что последовательность равномерно сходится внутри к некоторой функции . Учитывая теорему Ф. Рисса (см. [17]), нетрудно подобрать подпоследовательность такую, что почти всюду в . Поэтому почти всюду в , и следовательно, . □

 

– Конец работы –

Эта тема принадлежит разделу:

Представление в виде степенного ряда

Представление Пуассона для гармонических функций... Представление Пуассона для гармонических функций принадлежащих некоторым... Пусть известно лишь что функция U z гармонична в круге z lt Замечательно что часто е вс же можно...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Весовое пространство аналитических в круге функций

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Представление в виде степенного ряда
Пусть U(z) – вещественная функция, гармоническая в круге . Тогда можно построить другую веществе

Формула Пуассона
Формулу, которую мы вывели в предыдущем пункте, можно записать в замкнутом виде. Если R > 1, то мы легко находим, что при r < 1

Свойства суммируемости гармонических функций, заданных формулой Пуассона
Сначала получим некоторые грубые результаты, достаточ­ные для многих рассмотрений. Ядро Пуассона

Первоначальное изучение граничного поведения
Ядро Пуассона Рr(θ) обладает и четвертым свойством: d) Для любого σ > О Рr(θ)→0 равномерно для σ≤│θ│

Формула Коши
Теорема. Пусть D — область на комплексной плоскости с кусочно-гладкой границей , функция

Формула Коши-Грина
f(z)= ς=ξ+iμ z Є inf Г Доказательство

Интегральное представление гармонических функций
  Пусть – множество всех гармонических в

ГАРМОНИЧЕСКИ СОПРЯЖЕННАЯ ФУНКЦИЯ
Пусть дана функция U(z), гармоническая в {|r| < 1}, для которой имеет место одно из рассматриваемых представлений. Мы приступаем к исследованию граничного поточечного пове­д

Формула для гармонически спряженной функции
Предположим, что ,

Бесконечные числовые произведения комплексных чисел и их сходимость.
Бесконечное произведение есть выражение вида (1+а1)(1+а2)(1+а3) .... (1) содержащее бесконечно много сомножителей. Мы обозначаем его через

Логарифм бесконечного произведения.
Пусть верно ли, что  

Бесконечные функциональные произведения, равномерная сходимость. Бесконечные произведения Бляшке
  А. Произведение Бляшке Если .., и бесконечное произведение

Единице
Пусть так что

Аналитической в единичном круге
Теорема. Пусть функция F(z) регулярна в круге {|z|<1} и zп — её нули в этом круге, |zn| < 1. Предположим, что интегралы

ОБЛАСТИ, ОГРАНИЧЕННЫЕ СПРЯМЛЯЕМОЙ ЖОРДАНОВОИ КРИВОЙ
Рассмотрим теперь область , G ограниченную спрямляемой жордановой кривой. Пусть Ф— конформное отображение единичного круга на G — область, ограниченную жордановой спрямляемой кривой

Образы множеств меры нуль на единичной окружности
Если А — дуга кривой Г, то Ф взаимно-однозначно отображает некоторую дугу j окружности {|z|=1} на Ʌ. Само определение длины дуги теперь нам дает

Ряд Тэйлора конформного отображении абсолютно сходится вплоть до границы
Теорема (Харди). Степенной ряд функции Ф(z) абсолютно сходится вплоть до {|z|= 1}. Дoказательство. По подпункту 1° имеем

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги