рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Примитивно рекурсивные функции.

Примитивно рекурсивные функции. - раздел Математика, КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ   Операции Над Числовыми Функции Назовем Операторами...

 

Операции над числовыми функции назовем операторами. В этом параграфе мы определим ряд операторов, обладающих тем свойством, что, применяя их к функциям, вычислимым в интуитивном смысле, мы получим функции, также вычислимые в интуитивном смысле.

Частичные функции, которые можно получить при помощи этих операторов из простейших функций , , , называются частично рекурсивными.

Основная гипотеза Черча состоит в том, что класс частично рекурсивных функций совпадает с классом функций, допускающих машинное или алгоритмическое вычисление.

 

Суперпозиция частичных функций.

Пусть заданы n частичных функций от одного и того же числа m переменных, определенных на множестве Х со значениями во множестве Y, и пусть на множестве Y определена частичная функция f от n переменных со значениями во множестве Z. Введем частичную функцию g от m переменных на множестве X со значениями во множестве Z, полагая по определению, что выполняется равенство: для произвольных переменных .

Говорят, что функция g получается операцией суперпозиции или подстановки из функций . Оператор подстановки будем далее обозначать символом . В качестве множеств X, Y, Z далее всюду будет браться множество натуральных чисел N.

Например, значение терма не определено, а значение терма , где - символы простейших функций, определенных в предыдущем параграфе.

 

Оператор примитивной рекурсии.

Пусть заданы числовые частичные функции: n-местная g и (n+2)–местная функция h. Тогда (n+1)–местная частичная функция f получается из функций g и h примитивной рекурсией, если для всех натуральных значений имеем следующие соотношения:

,

.

(Напомним, что N = 0, 1, 2, 3, …, поэтому это определение верно и для случая, когда ).

Например, одноместная частичная функция f получена примитивной рекурсией из постоянной одноместной функции, равной числу а и двуместной частичной функции h, если

,

.

Теорема 1: Для любых частичных n–местной функции g и (n+2)–местной функции h (n=0,1,2,…) существует одна и только одна частичная (n+1)–местная функция f, получаемая из g и h примитивной рекурсией.

Доказательство: Действительно, если функция f существует, то по определению последовательно находим:

,

,

……………………………………

,

и поэтому f определена однозначно. Из этих соотношений видно, что если для некоторых значение неопределенное, то и для всех значения будут также неопределенные.

Если функции g и h заданы, то приведенные равенства можно принять за определение функции f. Теорема доказана.

Из доказательства предыдущей теоремы видно, что если мы каким-то образом «умеем» находить значения функций g и h, то значения функции f можно вычислить при помощи процедуры механического характера. Для нахождения значения достаточно последовательно найти числа:

,

,

,

…………………,

.

Полученное на (m+1)-м «шаге» число и будет искомым значением функции f в точке .

Изложенный процесс вычисления будет продолжаться неограниченно только в том случае, когда неограниченным окажется процесс вычисления одного из выражений , ,…, , т.е. когда хотя бы одно из этих выражений будет иметь неопределенное значение. В этом случае и значение будет неопределенным.

Определение: Пусть задана система G каких-то частичных функций. Частичная функция f называется примитивно рекурсивнойотносительно G, если f можно получить из функций системы G и простейших функций конечным числом операций подстановки и примитивной рекурсии.

Функция f называется просто примитивно рекурсивной, если ее можно получить конечным числом операций подстановки и примитивной рекурсии, исходя лишь из простейших функций .

Операции подстановки и примитивной рекурсии, применяемые к всюду определенным функциям, дают в результате снова всюду определенные функции. Поэтому, в частности, все примитивно рекурсивные функции всюду определены.

Из определения также следует, что примитивно рекурсивные функции будут примитивно рекурсивны относительно любой системы функций.

Наконец, из определения также следует, что операции подстановки и примитивной рекурсии, примененные к частичным функциям, примитивно рекурсивным относительно какой-нибудь системы функций G, дают в результате снова функции, примитивно рекурсивные относительно G.

Согласно определению одноместные функции и многоместные функции примитивно рекурсивны.

Для n-местной функции имеем представление и поэтому - примитивно рекурсивна.

Произвольная n-местная постоянная функции допускает представление в виде терма , записанного при помощи символов примитивно рекурсивных функций и предметных переменных.

Двуместная функция удовлетворяет соотношениям:

,

.

Следовательно, функция возникает из примитивно рекурсивных функций , операцией примитивной рекурсии и поэтому функция примитивно рекурсивна.

Двуместная функция xy удовлетворяет примитивной рекурсии:

,

с начальными примитивно рекурсивными функциями

,

поэтому функция xy примитивно рекурсивна.

Рассмотрим функцию , причем будем считать, что . Соотношения , представляют собой рекурсивную схему с начальными примитивно рекурсивными функциями . Поэтому функция также примитивно рекурсивна.

В математическом анализе иногда встречается функция (сигнум или знак числа х), равная (+1) для положительных вещественных чисел х, (-1) - для отрицательных х, и 0 для чисел . Мы рассмотрим эту функцию для натуральных значений х. По определению:

Введем противоположную функцию:

Эта функция совпадает с разностью . Функции и удовлетворяют примитивным рекурсивным схемам:

Поэтому они примитивно рекурсивны.

В области натуральных чисел разность естественно считать частичной двуместной функцией от переменных , определённой лишь для , т. к. отрицательные числа не входят в рассматриваемую область. Но примитивно рекурсивные функции всюду определённые. Поэтому вместо обычной разности вводят усеченную разность, определяемую следующим образом:

В отличие от обычной разности усеченная разность в области натуральных чисел всюду определена. Функция удовлетворяет примитивно рекурсивной схеме:

с примитивно рекурсивными начальными функциями и . Поэтому функция примитивно рекурсивна. С другой стороны, из определения усечённой разности следует, что для любых имеем:

.

Это означает, что двуместная функция получается примитивной рекурсией из функций и . Обе последние функции примитивно рекурсивны. Поэтому и функция примитивно рекурсивна.

Наконец из примитивной рекурсивности функций и вытекает примитивная рекурсивность функции . Можно доказать примитивную рекурсивность ряда арифметических и других числовых функций.

 

 

– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

ВОСТОЧНОУКРАИНСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ... имени ВЛАДИМИРА ДАЛЯ... Барабаш В В...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Примитивно рекурсивные функции.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ
(2 семестр) (для студентов специальности «Прикладная математика», «Компьютерные системы и сети»)   У Т В Е Р Ж Д Е Н О на

Основные комбинаторные формулы.
  Существует два общих правила комбинаторики: правило сложения и правило умножения. Правило умножения: Пусть составляются всевозможные строки

Размещения.
  1) Размещения без повторений. Определение 2: Пусть имеется различных предметов.

Перестановки.
  1) Перестановки без повторений. Определение 3: Пусть - конечное множество из

Сочетания.
  1) Сочетания без повторений. Определение 3: Сочетания из элементов по

Свойства сочетаний. Бином Ньютона.
  Одной из наиболее распространённых комбинаторных формул является формула числа сочетаний. Для упрощения подсчётов и для доказательства некоторых утверждений удобно использовать след

Определение 1: Коэффициенты бинома Ньютона называются биномиальными коэффициентами.
Числовые значения биномиальных коэффициентов вычисляются по формуле числа сочетаний: . Готовые значения этих коэффициентов располагаются в с

Рекуррентные соотношения.
  При решении многих комбинаторных задач применяют метод сведения данной задачи к задаче касающегося меньшего числа элементов. Например, можно вывести формулу для числа перестановок:

Производящие функции.
  Метод рекуррентных соотношений позволяет решать многие комбинаторные задачи. Но в ряде случаев рекуррентные соотношения трудно составить, а иногда ещё трудней решить. Часто эти труд

Алгоритм решения.
1°. Присвоить вершине метку 0. 2°. Если

Обоснование алгоритма.
Докажем, что после конечного числа применений правила 3° для каждой дуги графа станет справедливым неравенство

Алгоритм построения Эйлерова цикла.
Обратимся к задаче об эйлеровом цикле, уже рассмотренной нами в предыдущем параграфе. Пусть — связный граф, степени всех вершин которого — ч

Обоснование алгоритма.
Пусть мы находимся в некоторой вершине . В исходном графе степень вершины

Потоки на транспортных сетях.
1. Основная задача теории транспортных сетей. Определение 1: Транспортная сеть есть совокупность

Алгоритм Форда - Фалкерсона для нахождения потока наибольшей величины.
1°. Перенумеровать произвольным образом вершины сети , отличные от входа

Обоснование алгоритма.
Прежде всего, заметим, что реализация алгоритма состоит из конечного числа шагов. В самом деле, п. 3° может применяться лишь конечное число раз, так как на каждом шаге величина пот

Теорема 1: Для заданной транспортной сети величина наибольшего потока равна наименьшей пропускной способности разрезов, т. е. .
Рис. 11 В качестве примера

Цикломатическое число графа. Деревья.
  Во многих прикладных задачах существенны свойства графов, связанные с существованием в графе замкнутых цепей (циклов). К рассмотрению этих вопросов мы и приступим. Все графы данного

Эйлерова характеристика. Плоские графы.
  Определение 1: Пусть задан набор отрезков гладких кривых на плоскости, причем выполнны следующие услов

Теорема 2: Графы и , где множество состоит из элементов вида , не допускают плоской реализации.
Доказательство: Отметим, что в графе нет циклов длины 3, так как любое ребро ведет из группы вершин

Оценка хроматического числа плоского графа.
1. Теорема о пяти красках. Теорема утверждает, что любой граф, обладающий плоской реализацией, может быть правильно раскрашен пятью красками. Вспоминая задачу, сформулированную в нача

Графы правильных многогранников.
  Теория графов позволяет решать задачи из традиционных разделов математики, например, исследовать некоторые свойства правильных многогранников. При этом, используя элементы теории гр

Автомат Мура.
  Определение:Конечным автоматом называется набор из 5 объектов , где:

Морфизмы.
  Пусть - конечный автомат. Тогда по любой входной строке длины

Эквивалентные состояния автоматов.
  В этом параграфе мы решим следующую задачу: по данному описанию автомата построить новый автомат

Теорема 1: Если , то либо , либо для подходящей строки имеем .
Доказательство: Утверждение означает, что для подходя

Машина Тьюринга.
  Понятие конечного автомата возникло из близкого понятия, введенного в 1936 г. логиком Тьюрингом. Тьюринг рассмотрел гипотетическую машину, имеющую конечное множество

Не полностью описанные автоматы.
  До сих пор мы рассматривали полностью описанные автоматы. Практически функции и

Частично рекурсивные функции.
  Оператор минимизации. Рассмотрим некоторую n - местную частичную функцию

Машины Тьюринга.
  Важный и широкий класс алгоритмов был описан Тьюрингом и Постом в 1936 - 1937 г. Алгоритмы этого класса осуществляются особыми машинами, называемыми сейчас машинами Тьюри

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги