рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определение 1: Коэффициенты бинома Ньютона называются биномиальными коэффициентами.

Определение 1: Коэффициенты бинома Ньютона называются биномиальными коэффициентами. - раздел Математика, КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ Числовые Значения Биномиальных Коэффициентов Вычисляются По Формуле Числа Соч...

Числовые значения биномиальных коэффициентов вычисляются по формуле числа сочетаний: . Готовые значения этих коэффициентов располагаются в строках треугольника Паскаля.

 

1 n = 0

1 1 n = 1

1 2 1 n = 2

1 3 3 1 n = 3

1 4 6 4 1 n = 4

1 5 10 10 5 1 n = 5

. . . . . . . . . . . . . . . . . . . . . . . . .

Треугольник Паскаля строится следующим образом. Боковые стороны состоят из единиц. Числа, находящиеся внутри, являются суммой вышестоящих чисел. Каждая строка треугольника соответствует некоторой степени для суммы и содержит соответствующие биномиальные коэффициенты. Таким образом, для того, чтобы раскрыть степень суммы , нужно из треугольника Паскаля взять строку, соответствующую данной степени . Эта строка будет содержать нужные коэффициенты , к которым приписываются соответствующие буквенные выражения. Можно заметить, что строки треугольника Паскаля симметричны, поэтому достаточно взять только половину биномиальных коэффициентов и, если нужно, средний элемент.

Формула бинома Ньютона применяется, когда нужно возвести в целую степень сумму двух слагаемых. Если же это требуется произвести для суммы трёх и более слагаемых, тогда применяют полиномиальную формулу:

Сумма в правой части формулы строится по аналогии с формулой бинома. Она представляет собой сумму слагаемых, состоящих из коэффициента и буквенной части . Сумма этих слагаемых берется по всевозможным разбиениям числа на целых неотрицательных слагаемых , при этом коэффициент находится по формуле числа перестановок с повторениями:

.

Если числа получаются перестановкой из чисел , то считается, что

.

Пример: Возвести в пятую степень сумму трёх слагаемых.

Здесь учитывается, что 5 можно разбить на 3 слагаемых пятью способами:

; ; ; ; .

Тогда для каждого такого разбиения известны числа , . Значит, все коэффициенты можно для каждого случая найти по формуле:

.

Полученные коэффициенты: , , , , . Буквенная часть также формируется в связи с разложениями числа 5 на 3 слагаемых. Таким образом, получается разложение, приведённое выше.

Замечание: Сумма полиномиальных коэффициентов может быть найдена по формуле:

.

Для коэффициентов из рассмотренного примера можно проверить:

,

.

Рассмотрим - сочетания с повторениями, составленные из элементов типа, например из буквы . Число таких сочетаний равно: . Разобьём все эти сочетания на классы, отнеся к ‑ му классу сочетания, в которых раз входит буква . Остальные мест могут быть заняты оставшимися буквами , число которых равно . Поэтому в - й класс входит столько сочетаний, сколько можно составить сочетаний с повторениями из элементов типов, т.е. .

Значит общее число всех таких сочетаний равно:

, т.е.

.

Меняя теперь на и на и используя равенство , получаем зависимость между биномиальными коэффициентами:

.

Доказать эту формулу можно методом математической индукции по числу слагаемых в правой части. Используя эту зависимость, можно получить формулы для подсчёта суммы чисел натурального ряда от 1 до (при ), суммы квадратов натуральных чисел (при ), сумму кубов (при ).

Если , то искомая зависимость имеет вид:

.

Для имеем:

,

или окончательно:

.

Для получаем:

,

или после преобразований:

.

Таким образом, можно получить формулы для сумм более высоких степеней натуральных чисел.

 

– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

ВОСТОЧНОУКРАИНСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ... имени ВЛАДИМИРА ДАЛЯ... Барабаш В В...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определение 1: Коэффициенты бинома Ньютона называются биномиальными коэффициентами.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ
(2 семестр) (для студентов специальности «Прикладная математика», «Компьютерные системы и сети»)   У Т В Е Р Ж Д Е Н О на

Основные комбинаторные формулы.
  Существует два общих правила комбинаторики: правило сложения и правило умножения. Правило умножения: Пусть составляются всевозможные строки

Размещения.
  1) Размещения без повторений. Определение 2: Пусть имеется различных предметов.

Перестановки.
  1) Перестановки без повторений. Определение 3: Пусть - конечное множество из

Сочетания.
  1) Сочетания без повторений. Определение 3: Сочетания из элементов по

Свойства сочетаний. Бином Ньютона.
  Одной из наиболее распространённых комбинаторных формул является формула числа сочетаний. Для упрощения подсчётов и для доказательства некоторых утверждений удобно использовать след

Рекуррентные соотношения.
  При решении многих комбинаторных задач применяют метод сведения данной задачи к задаче касающегося меньшего числа элементов. Например, можно вывести формулу для числа перестановок:

Производящие функции.
  Метод рекуррентных соотношений позволяет решать многие комбинаторные задачи. Но в ряде случаев рекуррентные соотношения трудно составить, а иногда ещё трудней решить. Часто эти труд

Алгоритм решения.
1°. Присвоить вершине метку 0. 2°. Если

Обоснование алгоритма.
Докажем, что после конечного числа применений правила 3° для каждой дуги графа станет справедливым неравенство

Алгоритм построения Эйлерова цикла.
Обратимся к задаче об эйлеровом цикле, уже рассмотренной нами в предыдущем параграфе. Пусть — связный граф, степени всех вершин которого — ч

Обоснование алгоритма.
Пусть мы находимся в некоторой вершине . В исходном графе степень вершины

Потоки на транспортных сетях.
1. Основная задача теории транспортных сетей. Определение 1: Транспортная сеть есть совокупность

Алгоритм Форда - Фалкерсона для нахождения потока наибольшей величины.
1°. Перенумеровать произвольным образом вершины сети , отличные от входа

Обоснование алгоритма.
Прежде всего, заметим, что реализация алгоритма состоит из конечного числа шагов. В самом деле, п. 3° может применяться лишь конечное число раз, так как на каждом шаге величина пот

Теорема 1: Для заданной транспортной сети величина наибольшего потока равна наименьшей пропускной способности разрезов, т. е. .
Рис. 11 В качестве примера

Цикломатическое число графа. Деревья.
  Во многих прикладных задачах существенны свойства графов, связанные с существованием в графе замкнутых цепей (циклов). К рассмотрению этих вопросов мы и приступим. Все графы данного

Эйлерова характеристика. Плоские графы.
  Определение 1: Пусть задан набор отрезков гладких кривых на плоскости, причем выполнны следующие услов

Теорема 2: Графы и , где множество состоит из элементов вида , не допускают плоской реализации.
Доказательство: Отметим, что в графе нет циклов длины 3, так как любое ребро ведет из группы вершин

Оценка хроматического числа плоского графа.
1. Теорема о пяти красках. Теорема утверждает, что любой граф, обладающий плоской реализацией, может быть правильно раскрашен пятью красками. Вспоминая задачу, сформулированную в нача

Графы правильных многогранников.
  Теория графов позволяет решать задачи из традиционных разделов математики, например, исследовать некоторые свойства правильных многогранников. При этом, используя элементы теории гр

Автомат Мура.
  Определение:Конечным автоматом называется набор из 5 объектов , где:

Морфизмы.
  Пусть - конечный автомат. Тогда по любой входной строке длины

Эквивалентные состояния автоматов.
  В этом параграфе мы решим следующую задачу: по данному описанию автомата построить новый автомат

Теорема 1: Если , то либо , либо для подходящей строки имеем .
Доказательство: Утверждение означает, что для подходя

Машина Тьюринга.
  Понятие конечного автомата возникло из близкого понятия, введенного в 1936 г. логиком Тьюрингом. Тьюринг рассмотрел гипотетическую машину, имеющую конечное множество

Не полностью описанные автоматы.
  До сих пор мы рассматривали полностью описанные автоматы. Практически функции и

Примитивно рекурсивные функции.
  Операции над числовыми функции назовем операторами. В этом параграфе мы определим ряд операторов, обладающих тем свойством, что, применяя их к функциям, вычи

Частично рекурсивные функции.
  Оператор минимизации. Рассмотрим некоторую n - местную частичную функцию

Машины Тьюринга.
  Важный и широкий класс алгоритмов был описан Тьюрингом и Постом в 1936 - 1937 г. Алгоритмы этого класса осуществляются особыми машинами, называемыми сейчас машинами Тьюри

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги