рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Производящие функции.

Производящие функции. - раздел Математика, КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ   Метод Рекуррентных Соотношений Позволяет Решать Многие Комбин...

 

Метод рекуррентных соотношений позволяет решать многие комбинаторные задачи. Но в ряде случаев рекуррентные соотношения трудно составить, а иногда ещё трудней решить. Часто эти трудности удается обойти, используя производящие функции. Понятие производящей функции тесно связано с понятием бесконечного степенного ряда.

Здесь необходимо знать: понятие ряда, сумма ряда, степенной ряд, сходимость степенных рядов, свойства сходящихся рядов, операции над ними. Эти понятия изложены в любом учебнике по математическому анализу, и мы их опускаем.

Определение 1: Пусть дана числовая последовательность: . Образуем степенной ряд с этими коэффициентами: . Если этот ряд сходится в некоторой области к функции , то эту функцию называют производящей для последовательности чисел .

Примеры: 1) Для степенного ряда , члены которого можно рассматривать как геометрическую прогрессию, знаменатель . Значит, степенной ряд при условии сходится к своей сумме . Таким образом, получаем:

, если .

Значит, функция является производящей для последовательности чисел (коэффициенты степенного ряда).

2) Аналогично можно получить:

.

Значит, функция является производящей для последовательности чисел .

3) Из формулы бинома Ньютона следует:

,

т.е. функция является производящей для чисел вида , где .

С помощью последней производящей функции можно доказать некоторые свойства чисел , т. е. для биномиальных коэффициентов. Например:

;

;

(здесь обе суммы конечны и обрываются, когда значения и станут больше ).

Кроме того:

,

,

.

В последнем равенстве, если , то считают, что . Поэтому меняется от до наименьшего из чисел , .

Последнее равенство можно доказать следующим образом:

,

.

Отсюда следует: .

Применяя в левой части формулу биному Ньютона и раскрывая скобки в правой части, приравниваем коэффициенты при одинаковых степенях , получаем требуемую формулу.

В частном случае, когда , получаем равенство:

, .

Проиллюстрируем на примерах применение производящих функций к решению некоторых комбинаторных задач.

1) Рассмотрим разбиение числа на слагаемые, каждое из которых равно одному из чисел . При этом слагаемые не повторяются и их порядок не играет роли.

Для решения задачи рассмотрим выражение . Раскрывая скобки, получим слагаемые вида , где – некоторые из чисел . Поэтому встретится в сумме столько раз, сколькими способами можно разбить на слагаемые требуемым образом.

Например, если надо узнать, сколькими способами можно заплатить 78 копеек, беря не более одной монеты каждого достоинства, то надо составить выражение:

,

раскрыть скобки и найти коэффициент при слагаемом .

2) Если требуется разложить число на слагаемые , каждое из которых может встречаться в разложении один или несколько раз, тогда количество слагаемых в скобках увеличивается.

Например: 1) Сколькими способами можно заплатить 29 коп., используя монеты по 2 и 5 коп?

Т.е. надо найти число способов разбить число 29 на слагаемые, равные 2 и 5, причем порядок слагаемых роли не играет, и каждое слагаемое может повторяться несколько раз. Для этого составим выражение:

.

Ясно, что при раскрытии скобок выражение войдет в разложение с коэффициентом, равным числу решений уравнения . В частности, коэффициент при дает ответ на вопрос задачи.

Вместо раскрытия скобок можно поступить иначе: составить производящую функцию. Эта функция представляет собой произведение двух дробей:

.

Разделив «уголком» числитель на знаменатель, находим коэффициент при выражении .

2) Поступающий в ВУЗ должен сдать 4 экзамена, причем для поступления достаточно набрать 17 балов. Сколькими способами абитуриент может сдать экзамены, чтобы поступить в ВУЗ?

Требуется узнать, сколькими способами можно представить число 17 в виде суммы 4-х слагаемых, принимающих значения 3, 4, 5, причем здесь порядок слагаемых имеет значение.

Для решения этой задачи можно взять производящую функцию . При раскрытии скобок каждое слагаемое встретится столько раз, сколькими способами можно разбить на сумму 4-х слагаемых, принимающих значения 3, 4 и 5. При этом встречаются члены, получаемые друг из друга перестановкой слагаемых.

В выражении можно раскрыть скобки по полиномиальной теореме, а можно следующим образом:

.

Поэтому .

.

Перемножая почленно эти выражения, найдем, что коэффициент при равен 16. Значит, разложение можно сделать 16 способами.

Между производящими функциями и рекуррентными соотношениями существует тесная связь.

Пусть - производящая функция для последовательности чисел . Это означает, что является суммой степенного ряда: .

Пусть – многочлены, причем и , значит, дробь – правильная (в противном случае можно выделить целую часть). Раскладывая дробь в ряд, получим:

.

Раскрывая скобки справа и приравнивая коэффициенты при одинаковых степенях , получаем:

При считаем, что . А дальше все соотношения имеют вид: , где , т.к. не имеет членов степени , , …

Таким образом, коэффициенты ряда , ,… удовлетворяют рассмотренному рекуррентному соотношению. Коэффициенты этого соотношения зависят только от знаменателя дроби. Числитель нужен только для нахождения первых членов рекуррентной последовательности.

Обратно, если задано рекуррентное соотношение и заданы члены , то, вычисляя значения , получим производящую функцию для последовательности чисел .

Полученную алгебраическую дробь можно разлагать на элементарные дроби и производить алгебраические преобразования.


– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

ВОСТОЧНОУКРАИНСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ... имени ВЛАДИМИРА ДАЛЯ... Барабаш В В...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Производящие функции.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ
(2 семестр) (для студентов специальности «Прикладная математика», «Компьютерные системы и сети»)   У Т В Е Р Ж Д Е Н О на

Основные комбинаторные формулы.
  Существует два общих правила комбинаторики: правило сложения и правило умножения. Правило умножения: Пусть составляются всевозможные строки

Размещения.
  1) Размещения без повторений. Определение 2: Пусть имеется различных предметов.

Перестановки.
  1) Перестановки без повторений. Определение 3: Пусть - конечное множество из

Сочетания.
  1) Сочетания без повторений. Определение 3: Сочетания из элементов по

Свойства сочетаний. Бином Ньютона.
  Одной из наиболее распространённых комбинаторных формул является формула числа сочетаний. Для упрощения подсчётов и для доказательства некоторых утверждений удобно использовать след

Определение 1: Коэффициенты бинома Ньютона называются биномиальными коэффициентами.
Числовые значения биномиальных коэффициентов вычисляются по формуле числа сочетаний: . Готовые значения этих коэффициентов располагаются в с

Рекуррентные соотношения.
  При решении многих комбинаторных задач применяют метод сведения данной задачи к задаче касающегося меньшего числа элементов. Например, можно вывести формулу для числа перестановок:

Алгоритм решения.
1°. Присвоить вершине метку 0. 2°. Если

Обоснование алгоритма.
Докажем, что после конечного числа применений правила 3° для каждой дуги графа станет справедливым неравенство

Алгоритм построения Эйлерова цикла.
Обратимся к задаче об эйлеровом цикле, уже рассмотренной нами в предыдущем параграфе. Пусть — связный граф, степени всех вершин которого — ч

Обоснование алгоритма.
Пусть мы находимся в некоторой вершине . В исходном графе степень вершины

Потоки на транспортных сетях.
1. Основная задача теории транспортных сетей. Определение 1: Транспортная сеть есть совокупность

Алгоритм Форда - Фалкерсона для нахождения потока наибольшей величины.
1°. Перенумеровать произвольным образом вершины сети , отличные от входа

Обоснование алгоритма.
Прежде всего, заметим, что реализация алгоритма состоит из конечного числа шагов. В самом деле, п. 3° может применяться лишь конечное число раз, так как на каждом шаге величина пот

Теорема 1: Для заданной транспортной сети величина наибольшего потока равна наименьшей пропускной способности разрезов, т. е. .
Рис. 11 В качестве примера

Цикломатическое число графа. Деревья.
  Во многих прикладных задачах существенны свойства графов, связанные с существованием в графе замкнутых цепей (циклов). К рассмотрению этих вопросов мы и приступим. Все графы данного

Эйлерова характеристика. Плоские графы.
  Определение 1: Пусть задан набор отрезков гладких кривых на плоскости, причем выполнны следующие услов

Теорема 2: Графы и , где множество состоит из элементов вида , не допускают плоской реализации.
Доказательство: Отметим, что в графе нет циклов длины 3, так как любое ребро ведет из группы вершин

Оценка хроматического числа плоского графа.
1. Теорема о пяти красках. Теорема утверждает, что любой граф, обладающий плоской реализацией, может быть правильно раскрашен пятью красками. Вспоминая задачу, сформулированную в нача

Графы правильных многогранников.
  Теория графов позволяет решать задачи из традиционных разделов математики, например, исследовать некоторые свойства правильных многогранников. При этом, используя элементы теории гр

Автомат Мура.
  Определение:Конечным автоматом называется набор из 5 объектов , где:

Морфизмы.
  Пусть - конечный автомат. Тогда по любой входной строке длины

Эквивалентные состояния автоматов.
  В этом параграфе мы решим следующую задачу: по данному описанию автомата построить новый автомат

Теорема 1: Если , то либо , либо для подходящей строки имеем .
Доказательство: Утверждение означает, что для подходя

Машина Тьюринга.
  Понятие конечного автомата возникло из близкого понятия, введенного в 1936 г. логиком Тьюрингом. Тьюринг рассмотрел гипотетическую машину, имеющую конечное множество

Не полностью описанные автоматы.
  До сих пор мы рассматривали полностью описанные автоматы. Практически функции и

Примитивно рекурсивные функции.
  Операции над числовыми функции назовем операторами. В этом параграфе мы определим ряд операторов, обладающих тем свойством, что, применяя их к функциям, вычи

Частично рекурсивные функции.
  Оператор минимизации. Рассмотрим некоторую n - местную частичную функцию

Машины Тьюринга.
  Важный и широкий класс алгоритмов был описан Тьюрингом и Постом в 1936 - 1937 г. Алгоритмы этого класса осуществляются особыми машинами, называемыми сейчас машинами Тьюри

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги