Реферат Курсовая Конспект
ИЗБРАННЫЕ СХЕМЫ ЭЛЕКТРОНИКИ - раздел Электроника, Матью Мэндл ...
|
Матью Мэндл
ИЗБРАННЫХ СХЕМ ЭЛЕКТРОНИКИ
Редакция литературы по информатике и электронике
© 1978 Prentice-Hall, Inc.
© перевод на русский язык, «Мир», 1985, 1980
ПРЕДИСЛОВИЕ РЕДАКТОРА ПЕРЕВОДА
Данное пособие, в котором содержатся все основные схемы электроники, рассчитано на весьма многочисленную читательскую аудиторию. Круг потенциальных читателей книги не ограничивается студентами, техниками и инженерами, работающими в областях радиотехники, электроники, автоматики и смежных областях. Ввиду глубокого и широкого проникновения методов и средств современной радиотехники и электроники практически во все сферы человеческой деятельности книга будет пользоваться спросом у специалистов, занятых в самых различных областях науки и техники, у студентов разных специальностей и огромной армии радиолюбителей.
Такая направленность издания и определила ряд его отличительных особенностей. Так, изложение принципов построения схем и описание их работы базируются главным образом на чисто качественных представлениях, иллюстрируемых в некоторых случаях временными или векторными диаграммами. Приводимые в книге формульные соотношения даются без выводов, но с пояснением их использования на практике. Описание схем является в большинстве случаев весьма кратким. Благодаря этому в книге небольшого объема удалось собрать не только основные (базовые) схемы, но и их разновидности.
Автор стремился возможно проще, с ориентацией на практическое использование преподнести основные свойства и характеристики схем. Рассмотрение схем проводится обычно в следующем порядке: назначение схемы, принципы ее построения и работы, основные характеристики и соотношения параметров схемы и отличительные особенности последних. Большое количество иллюстративного материала относится к узлам аппаратуры цветного и черно-белого телевидения.
Условные изображения некоторых элементов и схем в книге отличаются от принятых в советской литературе. Однако знакомство наших читателей с символикой, применяемой в иностранной литературе, полезно. Интерес представляют приводимые в книге аббревиатуры (мы старались их отразить в указателе терминов), а также словарь терминов по радиоэлектронике. При переводе книги и толковании некоторых понятий внесены изменения с учетом принятых у нас представлений. Подробно составленное оглавление и предметный указатель облегчают нахождение нужного материала в книге.
Перевод книги выполнен В. И. Ворониным и Н. Я. Щербаком.
Я. С. Ицхоки
ПРЕДИСЛОВИЕ
Книга дает возможность читателю получить сведения о 200 базовых схемах, применяемых во всех областях электроники. Необходимые данные по определенному типу схемы (например, усилители, генераторы) можно найти, обратившись к предметному указателю. Приводятся принципы построения каждой схемы, поясняются выполняемые ею функции. Рассматриваются разновидности многих схем и особенности их применения в различных устройствах. В тех случаях, когда несколько схем выполняют схожие функции или характеристики схем частично совпадают, в тексте даются перекрестные ссылки.
Излагаются принципы модуляции и демодуляции сигналов и формирования колебаний специальной формы. Обсуждаются особенности построения схем как на биполярных, так и на полевых транзисторах (с затвором на р — n-переходе и с изолированным затвором). Описываются интегральные схемы, схемы типа металл — окисел — полупроводник на дополняющих транзисторах, схемы инжекционного типа и др.
В настоящем, дополненном и исправленном издании приведено значительно большее количество схем на полупроводниковых приборах, чем в предыдущем, изменены некоторые иллюстрации и добавлены новые. В соответствии с принятыми международными стандартами изменены некоторые символы, термины и аббревиатуры. Расширен словарь, содержащий термины и выражения, наиболее употребительные в области радиоэлектроники.
Таким образом, студенты, техники и инженеры могут найти в книге дополнительные сведения об электронных схемах, которые будут полезны при изучении и анализе схем, а также справочные данные, необходимые в практике проектирования и монтажа схем. Если в процессе проектирования, анализа или модификации схемы требуется определить величины различных параметров, можно воспользоваться приведенными в книге уравнениями, выражающими основные зависимости между параметрами схемы.
М. Мэндл
Глава 1
УСИЛИТЕЛИ ЗВУКОВОЙ ЧАСТОТЫ И ВИДЕОУСИЛИТЕЛИ
Рис. 1.1. Схемы с общим эмиттером.
Таким образом, р равно отношению приращения коллекторного тока к соответствующему приращению базового тока прк постоянном коллекторном напряжении. Коэффициент усиление сигнального тока также называют коэффициентом прямой передачи тока [При достаточно большой величине сопротивления R2 переменная составляющая сигнального тока практически равна переменной составляющей тока базы. — Прим. ред.]
Резистор R3 (рис. 1.1,5) оказывает стабилизирующее действие на ток транзистора при изменении температуры. Падение напряжения на R3 создает обратное (запирающее) смещение эмиттерного перехода транзистора, так как оно повышает потенциал эмиттера. Следовательно, оно уменьшает положительное прямое смещение базы на величину этого падения напряжения. Присутствие переменной составляющей напряжения на Rз вызвало бы уменьшение выходного сигнала и, следовательно, коэффициента усиления усилителя (см. разд. 1.8). Для устранения этого эффекта резистор Rз шунтируют конденсатором С2.
При нагреве транзистора постоянная составляющая тока коллектора возрастает. Соответственно возрастает и падение напряжения на Rz, что приводит к уменьшению прямого смещения базы, а также тока коллектора. В результате осуществляется частичная компенсация температурного дрейфа тока.
Рис. 1.2. Схемы с общим истоком
На рис. 1.2 показана схема усилителя на полевом транзисторе, эквивалентная схеме с ОЭ, которая называется схемой с общим истоком. В этой схеме затвор соответствует базе биполярного транзистора, исток — эмиттеру, а сток — коллектору. На схеме 1.2, а показан ПТ с каналом n-типа. Для транзистора с каналом р-типа стрелка на затворе будет направлена в противоположную сторону. На рис. 1.2, б также показан транзистор с каналом д-типа, а на рис. 1.2, в — с каналом р-типа.
Цепи смещения ПТ отличаются от цепей смещения биполярных транзисторов вследствие существенного различия характеристик этих приборов. Биполярные транзисторы являются усилителями сигнального тока и воспроизводят на выходе усиленный входной сигнальный ток, в то время как в полевых транзисторах выходным сигнальным током управляет приложенное ко входу напряжение сигнала.
Существуют два типа ПТ: с управляющим р — n-переходом и металл — окисел — полупроводник (МОП). (МОП-транзисторы называют также полевыми транзисторами с изолированным затвором.) Полевые транзисторы обоих типов изготовляют с n- и р-каналами.
В схеме на рис. 1.2, а используется ПТ с управляющим р — я-переходом, а в схеме на рис. 1.2, б — МОП-транзистор, работающий в режиме обогащения. На рис. 1.2, в изображен МОП-транзистор, работающий в режиме обеднения. У МОП-транзисторов затвор изображается как бы в виде обкладки конденсатора, что символизирует емкость, возникающую в результате формирования очень тонкого слоя окисла, изолирующего металлический контакт вывода затвора от канала. (От этого способа производства и произошел термин «МОП-транзистор».)
Поскольку ПТ управляются напряжением входного сигнала, а не током, как биполярные транзисторы, параметр «коэффициент усиления» сигнального тока заменяется передаточной проводимостью gm. Передаточная проводимость является мерой качества полевого транзистора и характеризует способность напряжения затвора управлять током стока. Выражение для передаточной проводимости выглядит следующим образом:
(1.2)
Единица измерения gm, называемая сименсом, есть величина, обратная единице измерения сопротивления (1 См=1/Ом). Как следует из выражения (1.2), параметр gm для ПТ есть отношение приращения тока стока к приращению напряжения затвора при постоянной величине напряжения между истоком и стоком.
В полевом транзисторе с управляющим р — n-переходом и каналом n-типа (рис. 1.2,а) при поступлении отрицательного напряжения на затвор происходит обеднение канала носителями зарядов и проводимость канала уменьшается. (Для ПТ с каналом р-типа проводимость уменьшается при действии положительного напряжения на затвор.) Поскольку однопереходный полевой транзистор имеет только две зоны с разными типами проводимости (выводы истока и стока подключены к одной зоне, а вывод затвора — к другой), проводимость между истоком и стоком того же типа, что и проводимость канала. Следовательно, в отличие от биполярного транзистора, у которого при UQ3 = 0 ток коллектора равен 0, ток канала может протекать даже при нулевом напряжении затвор — исток. Поскольку ток канала это функция напряжения Uзи, канал полевого транзистора с управляющим р — n-переходом может проводить ток в обоих направлениях: от истока к стоку и в обратном направлении (у биполярного транзистора ток коллектора в рабочем режиме имеет всегда одно направление). При этом рабочая точка (например, для схем класса А) для таких транзисторов устанавливается путем подачи напряжения обратного смещения затвора в отличие от прямого смещения базового перехода в биполярных транзисторах [В транзисторе с управляющим р — n-переходом обычно подается запирающее напряжение U8и на переход (отрицательное для n-канала) и максимальный ток в канале получается при U3и = 0. Направление тока в канале зависит от полярности источника питания, подключенного к каналу; при изменении полярности источника питания вывод, бывший стоком, становится истоком и наоборот. — Прим. ред.].
Как было отмечено выше, затвор в МОП-транзисторах изолирован от канала диэлектриком, например двуокисью кремния (SiO2). При этом затвор имеет очень высокое входное сопротивление и на него может подаваться как прямое смещение для обогащения канала носителями (что будет увеличивать проходящий ток), так и обратное смещение для обеднения канала носителями (что уменьшает ток канал а). Поэтому возможно изготовление двух различных типов МОП-транзисторов: для работы в обогащенном и обедненном режимах (здесь имеются в виду МОП-транзисторы с встроенным каналом).
В МОП-транзисторе обедненного типа имеется ток стока при нулевом смещении на входе. Напряжением обратного смещения ток стока уменьшают до некоторой величины, зависящей от требуемого динамического диапазона входного сигнала. Как показано на рис. 1.2,6, у транзисторов обедненного типа линия, изображающая канал, непрерывная, что означает наличие замкнутой цепи и протекание тока в канале (тока стока) при нулевом смещении затвора.
В МОП-транзисторах обогащенного типа ток стока при нулевом смещении мал. Напряжением смещения ток стока увеличивают до некоторой величины, зависящей от динамического диапазона входного сигнала. У МОП-транзисторов обогащенного типа линия, изображающая канал, прерывистая, что символизирует как бы разрыв цепи при нулевом смещении. Для того чтобы увеличить ток до величины, необходимой для нормальной работы такой схемы, как усилитель, нужно использовать соответствующее смещение.
Рабочие характеристики схем, изображенных на рис. 1.Д аналогичны характеристикам схем, представленных на рис. 1.11. Схема на рис. 1.2, в наиболее пригодна для практического использования. Как и в ранее рассмотренном случае, имеет место инверсия фазы между входным и выходным сигналами. Напряжение источника питания обычно обозначают Ес. Для того чтобы уменьшить падение напряжения сигнала на внутреннем сопротивлении источников питания и смещения, их шунтируют емкостями соответствующей величины (рис. 11.2, а). Через эти емкости замыкаются токи сигнала цепей затвора и стока.
Рис. 1.3. Схемы с общей базой и общим затвором.
Коэффициент усиления сигнального тока для схемы с общей базой можно получить, если приращение выходного сигнального тока разделить на приращение входного сигнального тока. Коэффициент усиления по току для схемы с общей базой а определяется выражением
(1.3)
где АIк — приращение коллекторного тока и ДIэ — приращение эмиттерного тока.
Коэффициент a называется коэффициентом прямой передачи тока.
В схемах, показанных на рис. 11.3, не происходит поворота фазы сигнала на 180°, как это имело место в схемах с заземленным эмиттером или истоком. Например, в схеме, приведенной на рис. 1.3, а, положительная полуволна входного сигнала уменьшает прямое смещение эмиттерного перехода, что приводит к уменьшению тока коллектора. Поэтому падение напряжения на Ru уменьшится Так как это падение напряжения приложено минусом к выводу коллектора и плюсом к источнику питания, то напряжение коллектора станет менее отрицательным. Следовательно, положительной полуволне входного напряжения соответствует положительная полуволна выходного напряжения.
Рис. 1.4. Схемы эмиттерного и истокового повторителей.
Аналогично вывод резистора R1 (рис. 1.4, а — в), подключаемый к источнику смещающего напряжения, заземлен либо емкостью фильтра источника, либо дополнительной шунтирующей емкостью. Так как сопротивление цепи затвора МОП-транзистора очень высоко, входное сопротивление истокового повторителя на таком транзисторе практически равно Rь
В эмиттерных и истоковых повторителях коэффициент усиления по напряжению всегда меньше единицы, хотя при этом коэффициент усиления по току, как правило, значительно больше единицы. Эти схемы в основном применяются для согласования входных и выходных импедансов в цепях передачи сигналов, а также для развязки между каскадами. В последнем случае повторители используются как буферные каскады.
Классификация усилителей
Усилители в электронике предназначаются для усиления напряжения или мощности сигнала до уровня, который требуется для нормальной работы подключенного к усилителю устройства: следующего каскада усилителя, громкоговорителя, записывающей головки и т. п. Усилители подразделяются на усилители, напряжения и усилители мощности, а также на усилители малых и больших сигналов. В зависимости от частоты усиливаемых сигналов и выполняемой функции их называют усилителями низкой частоты (УНЧ), усилителями промежуточной частоты (УПЧ), усилителями радио- или высокой частоты (УВЧ) и т. д.
Усилители также различают по их рабочим характеристикам, зависящим от режима работы, — от соотношения между уровнем установленного напряжения смещения и амплитудой входного сигнала. В этом смысле различные классы усилителей обозначают символами А, АВЬ АВ2) В и С. В ламповых усилителях эти символы указывали режимы работы с сеточными токами и без них. Так, символ ABi означал, что потенциал сетки в процессе работы всегда отрицателен по отношению к катоду, а символ АВ2 указывал на то, что при максимальном; входном сигнале потенциал сетки мог быть умеренно положительным. В основном эта классификация сохранена и для транзисторных усилителей, но здесь определяющим признаком является относительная величина амплитуды входного сигнала.
Усилители низкой частоты класса А могут быть однотакт-ными (на одном транзисторе) или двухтактными (на двух транзисторах). Усилители НЧ класса ABi предпочтительнее собирать по двухтактной схеме. Что касается усилителей классов-АВ2 и В, то их необходимо выполнять по двухтактной схеме для снижения нелинейных искажений до допустимого уровня.
Усилители высокой частоты всех классов могут быть как одно-, так и двухтактными, поскольку резонансные цепи таких усилителей хорошо подавляют гармонические составляющие, лежащие вне полосы пропускания усилителей.
В усилителях класса А рабочая точка транзистора устанавливается примерно в середине линейной части линеаризованных выходных характеристик транзистора. (Рабочая точка определяет ток транзистора при отсутствии сигнала. — Прим.. ред.) Амплитуда входного сигнала не должна превышать уровня, при котором изображающая точка усилителя заходит в нелинейные (искривленные) области выходных характеристик транзистора. В этом случае нелинейные искажения минимальны и форма выходного сигнала наиболее близка к форме сигнала на входе. Усилитель класса А потребляет ток даже при отсутствии входного сигнала. Поэтому к. п. д. усилителя (отношение мощности выходного сигнала к потребляемой мощности) низок и в большинстве случаев составляет 20 — 25% при максимальном сигнале. Таким образом, по сравнению с другими типами усилителей усилители класса А имеют малые нелинейные искажения и небольшую выходную мощность.
Если амплитуда входного сигнала настолько велика, что изображающая точка усилителя достигает границ областей отсечки и насыщения, полагают, что усилитель работает в режиме класса АВ,. К. п. д. усилителя класса ABt достигает 35% (он зависит от величины напряжения смещения, амплитуды входного сигнала и усилительных свойств транзистора). Если же при наибольшей амплитуде входного сигнала изображающая точка незначительно заходит в области отсечки и насыщения, то такой режим работы соответствует режиму работы усилителя класса АВ2. В усилителях класса АВ2 (обычно также и класса ABi) напряжение смещения устанавливают таким, что-бы рабочая точка на выходных характеристиках транзистора находилась посредине между напряжениями отсечки и насыщения транзистора. К. п. д. усилителя класса АВ2 колеблется от 35 до 50%, причем, как и в усилителях класса АВ1, к. п. д. зависит от величины напряжения смещения, характеристик выбранного транзистора и амплитуды сигнала. Нелинейные искажения в усилителях класса ABj, и особенно класса АВ2, выше, чем в усилителях класса А, поскольку в них в процессе работы изображающая точка заходит в нелинейные участки характеристик транзисторов.
В усилителях класса В напряжение смещения устанавливается равным или почти равным напряжению отсечки. Следовательно, в однотактном усилителе такого типа усиливается только одна (отпирающая) полуволна переменного входного сигнала, так как при другой (запирающей) полуволне изображающая точка попадает в зону отсечки; при отпирающей полуволне сигнала эмиттерный переход находится в состоянии проводимости. Поэтому для усиления всего входного сигнала необходимо использовать двухтактную схему построения усилителя. В усилителях же высокой частоты запирающая полуволна сигнала воспроизводится благодаря колебательным свойствам резонансных цепей. Следовательно, в этом случае можно применять и однотактные усилители, хотя предпочтение отдается двухтактным каскадам (см. разд. 1.11).
В хорошо сбалансированном двухтактном усилителе класса В нелинейные искажения могут быть снижены до уровня, сравнимого с уровнем искажений в усилителе класса АВ2. При максимальном входном сигнале к.п. д. усилителя класса В составляет 60 — 70%; при этом достигается также хороший коэффициент усиления по мощности.
Характеристики усилителей класса С таковы, что их применяют только в ВЧ-усилителях мощности, преимущественно в каскадах передатчиков. Надлежащим смещением рабочая точка устанавливается ниже уровня отсечки тока транзистора. Так как напряжение смещения может быть в два или три раза больше напряжения отсечки, то на вход усилителя следует подавать сигнал большой амплитуды. Поскольку напряжение смещения больше напряжения отсечки, коллекторный ток течет лишь в течение части полупериода входного сигнала.
Поэтому к.п.д. такого усилителя высок и может достигать 90%. Величина к.п.д. зависит от типа используемого мощного транзистора, величины управляющего сигнала и постоянных напряжений, определяющих режим работы усилителя.
В ВЧ-усилителях класса С обычно применяются резонансные LC-цепи. При максимальном токе сопротивление коллекторного перехода транзистора мало, в то время как сопротивление параллельного колебательного контура при резонансе велико. Поэтому большая часть энергии выделяется в колебательном контуре, а потери энергии малы, что обеспечивает высокий к.п.д. усилителя класса С.
Рис. 1.6. Усилитель постоянного тока на транзисторах с проводимостью разного типа.
Емкость конденсатора С5 должна быть достаточно большой, чтобы этот элемент представлял собой малое реактивное сопротивление для передаваемого сигнала. Так как реактивное сопротивление конденсатора с понижением частоты сигнала возрастает, емкостная связь вызывает неравномерность усиления в тех случаях, когда передаваемый сигнал содержит широкий спектр частот (спектр звуковых частот лежит в диапазоне примерно 30 Гц — 15 кГц). Желательно, чтобы реактивное сопротивление конденсатора Сз было в два (или более) раза меньше сопротивления резистора R4. Заметим, что конденсатор С5 соединен последовательно с резистором R4, другой вывод которого заземлен для сигнала через конденсатор С4. Таким образом, выходной сигнал транзистора Т1 передается на базу транзистора Т2 через цепочку, составленную из конденсатора С5 и резистора R4, причем на базу поступает только часть передаваемого напряжения, которая падает на R4. Следовательно, чем меньше реактивное сопротивление конденсатора Сз по сравнению с сопротивлением R4, тем большая часть сигнала поступает на вход транзистора Т2.
В усилителях с непосредственной связью вспомогательные элементы (разделительные конденсаторы или трансформаторы) не используются. В таких усилителях выход одного каскада непосредственно присоединяется к входу следующего каскада. По этой причине исключаются недостатки RС-связи и частотная характеристика усилителя расширяется в область низких частот вплоть до постоянного тока.
На рис. 1.6 показан усилитель с непосредственной связью, в котором используются транзисторы разных типов проводимости: n — р — n и р — n — р; коллектор первого транзистора присоединен непосредственно к базе второго. Требуемые прямое и обратное смещения для обоих транзисторов обеспечиваются юдним источником питания. Отрицательный потенциал, необходимый для эмиттера n — р — n-транзистора, поступает от отрица тельного вывода источника через общую землю. Положительный вывод источника присоединен к делителю напряжения на резисторах R1 и R2. Выходное напряжение этого делителя положительно относительно земли, и поскольку оно поступает на базу транзистора Т1, потенциал базы положителен относительно эмиттера. Коллектор n — р — n-транзистора положителен относительно эмиттера, так как подключен к положительному выводу источника через резистор R3.
Рис. 1.7. Усилитель мощности с трансформаторным выходом.
Для получения нужного прямого смещения во входной цепи транзистора Т2 его эмиттер присоединен к положительному выводу источника. База второго транзистора также положительна, так как соединена с положительным выводом источника через делитель напряжения, образуемый резистором Rz и внутренним сопротивлением транзистора Т1. Следовательно, потенциал коллектора транзистора Т1 и базы Т2 отрицателен относительно положительного вывода источника. Поэтому потенциал базы второго транзистора отрицательнее потенциала эмиттера на величину падения напряжения на R3. Необходимый отрицательный потенциал коллектора второго транзистора создается путем подсоединения коллектора к отрицательному выводу источника питания через резистор R±. Таким образом, обеспечивается требуемое обратное смещение коллекторного перехода р — n — р-транзистора.
Трансформаторные выходные каскады и трансформаторная связь между каскадами иногда используются в низкокачественных недорогих радиоприемниках. В высококачественных устройствах трансформаторы обычно не применяются. Для сигналов разных частот индуктивности обмоток трансформаторов имеют разные сопротивления, что приводит к увеличению неравномерности амплитудно-частотных характеристик. Кроме этого, первичные и вторичные обмотки трансформаторов имеют распределенные емкости, которые понижают коэффициент трансформации для ВЧ-составляющих сигнала.
Типичная схема усилителя звуковых частот с емкостной связью на входе и трансформаторной на выходе показана на рис. 1.7. Такой усилитель называется однотактным в отличие от двухтактных, которые будут описаны ниже.
Входной сигнал поступает на вход транзистора с регулятора усиления через цепочку связи, состоящую из конденсатора C1 и резисторов R2 и R5. Собственно сигнал прикладывается между базой и эмиттером транзистора, так как цепь R3C3 служит для температурной стабилизации рабочей точки транзистора. Переменный ток, появляющийся при этом в коллекторной цепи транзистора, создает усиленный по мощности сигнал. Здесь использован выходной трансформатор звуковой частоты, хотя, как будет показано далее в этом разделе, без этого элемента вполне можно обойтись. Трансформатор обеспечивает согласование между импедансом катушки громкоговорителя Z2 и выходным импедансом коллекторной цепи транзистора Z1. Коэффициент трансформации n выходного трансформатора можно записать как
(1.4)
Таким образом, если, например, необходимо согласовать импеданс катушки громкоговорителя Zz = 8 Ом с выходным импедансом усилителя Zi = 8000OM, то отношение числа витков первичной обмотки трансформатора к вторичной должно быть равно примерно 32, так как
Это отношение можно реализовать, если, например, число витков первичной обмотки будет составлять 320, а вторичной — 10 (или первичной 640 витков, а вторичной — 20).
При низком качестве трансформаторов, кроме упомянутых выше потерь сигнала из-за распределенных емкостей, возникают также потери из-за действия вихревых токов. При прочих равных условиях трансформатор с сердечником большего сечения имеет меньшее число витков в обмотках, поэтому сопротивление обмоток постоянному току у такого трансформатора получается меньшим. Так как при увеличении площади сечения сердечника увеличивается магнитная проводимость, то число витков, необходимое для получения той же индуктивности, уменьшается. На омическом сопротивлении любой обмотки трансформатора будет теряться звуковая мощность, поэтому сопротивления обмоток постоянному току стараются сводить к разумному минимуму.
Рис. 1.8. Схема развязки по питанию.
В НЧ-усилителе (рис. 1.8) в качестве развязывающей цепочки используются резистор R3 и конденсатор С3. Конденсатор имеет малое реактивное сопротивление для сигнала (особенно на высоких частотах) и поэтому уменьшает паразитную связь через источник питания.
Резистор R2 является нагрузкой, на которой выделяется сигнал, передаваемый на следующий каскад. Конденсатор С3 шунтирует резистор R3 и таким образом заземляет сигнал, поскольку имеет для него малое реактивное сопротивление. Реактивное сопротивление конденсатора различно на разных частотах — для высокочастотных составляющих сигнала оно меньше. По этой причине развязывающая цепь действует как схема частотной коррекции, которая при изменении частоты сигнала меняет сопротивление нагрузки транзистора. На высоких частотах, где реактивное сопротивление конденсатора мало, конденсатор С3 в сильной степени шунтирует резистор R3, поэтому почти все напряжение сигнала выделяется на резисторе R2. Поскольку разделительный конденсатор С2 также имеет малое реактивное сопротивление на высоких частотах, большая часть сигнала поступает на следующий каскад. Однако на низких частотах реактивное сопротивление С2 возрастает, поэтому амплитуда сигнала, поступающего на следующий каскад, уменьшается, т. е. низкочастотные сигналы ослабляются. Цепочка R3C3 осуществляет развязку до тех пор, пока на низких частотах не ослабляется шунтирующее действие конденсатора С3. В этом случае сигнал выделяется как на R2, так и на Rз и общая величина сопротивления нагрузки увеличивается, так же как возрастает и падение на нем напряжения сигнала. Это увеличение амплитуды сигнала компенсирует ослабление, вызываемое разделительным конденсатором С2. Таким образом, развязывающая цепочка имеет разные параметры для разных частотных составляющих сигнала.
На практике величину сопротивления R3 выбирают из условия Rз = 0,2R2, и Rз должно быть примерно в 10 раз больше реактивного сопротивления С3 на самой низкой частоте, которую должен пропускать усилительный каскад. На рис. 1.8 приведена часть схемы усилителя с типичными значениями элементов. В усилителях радиочастоты величина емкости может быть значительно меньше, так как для ВЧ-сигналов реактивное сопротивление емкости существенно ниже.
Рис. 1.9. Схемы регулирования тембра.
Типичная схема регулирования уровня низких частот показана на рис. 1.9, а. В этой схеме к обычной разделительной цепочке C1R2 добавлена цепочка, состоящая из переменного резистора R1 и последовательно включенного конденсатора С2. Когда движок переменного резистора находится в верхнем положении, конденсатор С2 оказывается подключенным между выводом базы и землей и поэтому шунтирует вывод базы. Это приводит к ослаблению ВЧ-составляющих сигнала, и относительное содержание низких частот возрастает. Аналогично, когда движок резистора находится в нижнем положении, то сопротивление R1 большой величины уменьшает шунтирующее действие С2 уровень ВЧ-составляющих сигнала возрастает и относительное содержание низких частот уменьшается. Регулируя величину сопротивления резистора R1, можно устанавливать желаемый тембр усилителя.
Схема регулирования уровня высоких частот приведена на рис. 1.9,6. Когда движок переменного резистора R1 находится в крайнем левом положении, конденсатор С2 закорачивается и входной сигнал, поступающий на базу через конденсатор С3 большой емкости, получает нормальное усиление. Однако, если движок резистора находится в крайнем правом положении, конденсатор С3 закорачивается и входной сигнал поступает на базу через конденсатор Cz. Малая величина емкости последнего конденсатора приводит к относительному ослаблению НЧ-состав-ляющих сигнала и, следовательно, к увеличению содержания ВЧ-составляющих. При других положениях движка переменного резистора устанавливаются промежуточные уровни высоких частот.
Рис. 1.10. Цепи обратной связи по напряжению.
Во многих высококачественных устройствах устанавливают так называемый переключатель громкости, который в положении «Тихо» обеспечивает высокое содержание низких частот (особенно при малых уровнях громкости, что необходимо для компенсации пониженной чувствительности человеческого уха к НЧ-сигналам). На рис. 1.9, в показана соответствующая схема в сочетании с регулятором громкости, выполненным на переменном резисторе R2. В положении «Выключено» кнопка переключателя закорачивает конденсатор С2, а также отключает конденсатор С1. В этом случае обеспечивается нормальный тембр. В положении «Включено» переключатель присоединяет нижний вывод конденсатора С1 к верхнему выводу конденсатора Сч, соединенному с нижней частью переменного резистора. Теперь, поскольку конденсатор Ci шунтирует на высоких частотах часть резистора R4, уровень высоких частот понижается и, следовательно, относительное содержание низких частот возрастает. По мере того как движок регулятора громкости перемещается вниз, он приближается к точке подключения конденсатора Сч, в которой наблюдается максимальное относительное ослабление высоких частот и, следовательно, максимальное относительное содержание низких частот.
Рис. 1.11. Цепи обратной связи по току.
На рис. 1.10 показаны типичные цепи отрицательной обратной связи по напряжению. В схеме на рис. 11.10, а сигнал обратной связи снимается с выхода усилителя и подается в цепь эмиттера входного усилителя. Глубина обратной связи регулируется величинами резисторов и конденсаторов в цепи обратной связи. Сигнал обратной связи, выделяемый на резисторе в цепи эмиттера (500 Ом) входного каскада, вычитается из входного сигнала. Таким образом при положительной полуволне входного сигнала в цепи коллектора появится отрицательная полуволна определенной амплитуды; при этом сигнал обратной связи, который меняет прямое смещение между базой и эмиттером, будет уменьшать амплитуду этой отрицательной полуволны. Аналогично для отрицательной полуволны входного сигнала положительная полуволна, появляющаяся в цепи коллектора, меньше той, которая была бы без обратной связи. (Необходимо помнить, что сигнал, приложенный к базе, и усиленный сигнал в цепи коллектора изменяются в противофазе.)
Конденсатор емкостью 30 мкФ, включенный последовательно в цепь обратной связи, не пропускает постоянной составляющей с выхода выходного усилителя на резистор 500 Ом в цепи входного усилителя. Сопротивление 9 кОм и шунтирующая его емкость определяют глубину обратной связи.
При использовании полевых транзисторов (которые имеют более высокое входное сопротивление, чем биполярные) используются элементы другой величины. На рис. 1.10,6 показана схема подключения цепи обратной связи к резистору в цепи истока ПТ. Здесь часть напряжения со вторичной обмотки выходного трансформатора поступает на резистор в цепи истока ПТ предыдущего каскада. Если знак обратной связи отличается от требуемого (отрицательного), то его можно изменить, поменяв местами выводы вторичной обмотки трансформатора.
Амплитуда напряжения обратной связи регулируется величиной резистора, последовательно включаемого в цепь обратной связи. На глубину обратной связи влияет также величина резистора в цепи истока. Иногда обходятся без разделительного конденсатора в цепи обратной связи, хотя он предотвращает шунтирование резистора в цепи истока по постоянному току малым сопротивлением вторичной обмотки выходного трансформатора.
Так как напряжение обратной связи и напряжение входного сигнала находятся в противофазе, то они вычитаются и происходит ослабление выходного сигнала пропорционально величине напряжения обратной связи. Заметим, что в сигнале обратной
Связи могут содержаться составляющие, искажающие основной сигнал. Эти составляющие поступают на вход усилителя, усиливаются и вновь появляются на выходе, но уже в противофазе с исходными. В результате происходит ослабление искажений сигнала, величина которого определяется глубиной обратной связи. (Дополнительные сведения об обратной связи приводятся в разд. 2.2.)
На рис. 1.11 показан другой тип схем с отрицательной обратной связью. В схеме на рис. 1.11, а для получения отрицательной обратной связи по току исключен конденсатор, которым обычно шунтируют резистор R2 в цепи эмиттера. В результате устанавливается отрицательная обратная связь, при которой напряжение обратной связи пропорционально току сигнала, протекающему через R2. Поскольку здесь используется транзистор р — n — р-типа, для создания прямого смещения необходимо, чтобы эмиттер был положительным относительно базы. Для получения обратного смещения коллекторного перехода на коллектор подается отрицательное напряжение. В результате ток, протекающий по резистору в цепи эмиттера, создает падение напряжения указанной на рисунке полярности. Поскольку это падение напряжения на резисторе сопротивлением 330 Ом устанавливает потенциал эмиттера отрицательным: относительно потенциала базы, имеет место отрицательная обратная связь. Входной сигнал вызывает появление напряжения на резисторе R2. Такой резистор улучшает также температурную стабильность каскада, так как препятствует возрастанию тока транзистора с температурой. В сочетании с охлаждающими радиаторами, которые используются в мощных транзисторах, резистор R2 способствует ослаблению температурных эффектов, в результате чего опасность температурного дрейфа снижается.
На рис. 11.11,6 приведена аналогичная схема на транзисторе n — р — n-типа. Как и в предыдущем случае, падение напряжения на резисторе в цепи эмиттера оказывает действие, противоположное прямому смещению (прямое смещение в транзисторе n — р — n-типа имеет место, когда потенциал эмиттера отрицателен относительно потенциала базы).
Схемы, изображенные на рис. 1.11, а и б, имеют лучшие частотные характеристики по сравнению с характеристиками схем, в которых резистор R2 зашунтирован конденсатором. Реактивное сопротивление конденсатора, шунтирующего резистор Rz, возрастает на низких частотах, поэтому низкие частоты усиливаются меньше высоких. Это происходит вследствие того, что при большой величине реактивного сопротивления конденсатора возрастает падение напряжения на R2 и уменьшается усиление. Если шунтирующий конденсатор исключить, то общее усиление каскада понизится, зато уменьшатся вредные эф-фекты, связанные с действием указанного элемента. Этой возможностью часто пользуются в видеоусилителях, где сигналы имеют широкий спектр, а также в других усилителях, для которых уменьшение усиления не является существенным.
В схеме, изображенной на рис. 1.11, в, напряжение сигнала падает на резисторе R2, так как он не зашунтирован конденсатором. Резистор R1 включен параллельно с конденсатором С2, поэтому на R1 выделяется только постоянная составляющая, величина которой зависит от тока коллектора. Только резистор R2 создает отрицательную обратную связь по току, а последовательно соединенные резисторы R1 и R2 влияют на температурную стабильность схемы благодаря изменению смещения при изменении температуры.
Рис. 1.12. Видеоусилитель.
При смешении в детекторе сигналов изображения и звука, имеющих фиксированные несущие частоты, образуется стандартный сигнал ПЧ звукового сопровождения частотой 4,5 МГц, который является сигналом ПЧ звукового сопровождения с наинизшей частотой преобразования, получаемой на выходе переключателя телевизионных программ (каналов). Транзистор Т1 имеет два выхода. Детектированные видеосигналы выделяются на резисторе R1 эмиттерного повторителя и подаются далее на базу транзистора 72 (см. также разд. 1.3). Сигнал звукового сопровождения выделяется в параллельном резонансном контуре коллекторной цепи, настроенном на резонансную частоту 4,5 МГц. С катушки индуктивности L2, составляющей вместе с li трансформатор, сигнал поступает на УПЧ звука и далее на детектор звуковых сигналов.
Сигнал звукового сопровождения частотой 4,5 МГц присутствует как в коллекторной, так и в эмиттерной цепи. Поэтому на резисторе Ri выделяются как сигналы изображения, так и звука. Для подавления сигнала звукового сопровождения между базой транзистора Г2 и землей включен последовательный резонансный контур C2L3, который закорачивает сигнал часто-той 4,5 МГц на землю, так как контур настраивается именно на эту частоту подстроечным сердечником катушки индуктивности L3. Если звуковой сигнал проникает в канал изображения, то на экране возникают интерференционные полосы.
Переменный резистор Rz в цепи эмиттера Т2 используется для регулирования напряжения смещения путем изменения падения напряжения на R3. Таким образом меняется усиление транзистора Т2 и зритель может установить желаемую контрастность изображения. Резистор R4 предотвращает закорачивание цепи эмиттера в крайнем верхнем положении движка потенциометра R5.
Яркость изображения регулируется потенциометром rq. Так как потенциал катода кинескопа положителен по отношению к потенциалу первой (управляющей) сетки, то при перемещении .движка вверх сетка становится более отрицательной и, следовательно, сильнее задерживает электроны, вылетающие из катода, в результате чего интенсивность электронного луча падает. При снижении потенциала катода смещение сетки уменьшается, поэтому большее число электронов оставляет катод и яркость увеличивается.
Рис. 1.13. Фазоинверторы.
Если транзисторы имеют одинаковые характеристики, то не требуется шунтировать резистор в цепи эмиттера конденсатором. Это следует из того, что в симметричной схеме на общем резисторе в цепи эмиттера отсутствует напряжение сигнала, поскольку уменьшение тока в одном транзисторе компенсируется таким же увеличением тока в другом.
Фазоинвертор на транзисторах может быть построен и без применения межкаскадного трансформатора (рис. 1.13,6). Сопротивления в цепях коллектора и эмиттера транзистора Т1 имеют одинаковую величину, что необходимо для того, чтобы сигналы фазоинвертора были одинаковой амплитуды. Сдвиг фаз между сигналами, подаваемыми на базы транзисторов Т2 и Т3, обусловлен тем, что в транзисторе Т1 (типа n — р — n) сигнальный ток через оба резистора il кОм протекает в одном и том же направлении, например от вывода источника к земле, создавая на них одинаковые падения напряжения. Поэтому сигнальное напряжение, действующее между эмиттером и землей, положительно, в то время как сигнальное напряжение, снимаемое с коллектора Т1, оказывается в этом случае отрицательным. Таким образом создается нужный для работы двухтактного усилителя сдвиг фаз двух сигналов.
Рис. 1.14. Двухтактная схема с бестрансформаторным выходом.
Как уже обсуждалось в разд. 1ЛО, на входы двухтактного усилителя, собранного на одинаковых транзисторах, необходимо подавать сигналы, сдвинутые по фазе на 180°. Поэтому при работе в классе С или В транзисторы попеременно открываются в каждом периоде входного сигнала; полный выходной сигнал получается при сложении сигналов каждой половины в выходном трансформаторе. При работе в классе А проводимости транзисторов усилителя в каждом полупериоде входного сигнала различны. Поэтому, когда ток первого транзистора увеличивается, ток второго транзистора уменьшается. Таким образом, на вторичной обмотке трансформатора выделяется суммарная мощность выходных сигналов двух транзисторов.
Рис 1.15. Бестрансформаторный двухтактный усилитель низкой частоты на транзисторах с проводимостью разного типа.
Два варианта построения схем двухтактных усилителей были рассмотрены в разд. 1.10 (рис. 1.13). На рис. 1.14 показан еще один тип схемы двухтактного усилителя низкой частоты. Здесь используется входной трансформатор с двумя вторичными обмотками, а выходной трансформатор отсутствует. Как и в других транзисторных усилителях, транзисторы n — р — n-типа, изображенные на рис. 1.14, а можно заменить транзисторами р — n — р-типа, изменив соответствующим образом полярность источников питания. Как можно видеть из рис. 1.14, отрицательное напряжение, поступающее от источника питания В2 через катушку громкоговорителя, создает необходимое прямое смещение эмиттерного перехода транзистора Т2. Так как нижний вывод источника питания В2 и коллектор Т2 заземлены, то потенциал коллектора Т2 выше потенциала эмиттера, что необходимо для создания обратного смещения коллекторного пеое-хода. Требуемый положительный потенциал базы транзистора Т2 относительно эмиттера обеспечивается при помощи делителя напряжения на резисторах R1 и R2; делитель связан с источником питания В2 через заземленный коллектор транзистора Т2. Полярность падений напряжений на резисторах указана на рисунке; как можно видеть, потенциал базы Т2 положителен относительно эмиттера.
Прямое смещение для транзистора Т3 также создается делителем напряжения на резисторах Rз и R4, подключенных к батарее В1. Падение напряжения на резисторе R4 обеспечивает положительный потенциал базы транзистора T3 и отрицательный потенциал эмиттера. Отрицательный вывод батареи В1 соединен непосредственно с эмиттером транзистора T3, а необходимое обратное смещение коллекторного перехода этого транзистора создается подключением коллектора к положительному выводу батареи В1 через катушку громкоговорителя.
Как показано на рисунке, входной трансформатор имеет две вторичные обмотки, что обеспечивает поступление входных напряжений на двухтактный усилитель в противофазе, т. е. сигнал, приложенный к базе одного транзистора, находится в противофазе с сигналом базы другого транзистора.
Коллекторно-эмиттерные цепи транзисторов Т2 и Tz как бы включены последовательно с источниками питания. Оба транзистора соединены с катушкой индуктивности громкоговорителя так, что указанные элементы образуют мост, эквивалентная схема которого приведена на рис. 1.14, б. Если транзисторы хорошо подобраны, то падения напряжений на них будут равны. А если напряжения источников питания одинаковы и равны их внутренние сопротивления, то мост окажется сбалансированным и постоянный ток через катушку громкоговорителя будет равен нулю. Когда на вторичных обмотках входного трансформатора появится звуковой сигнал, то на базу одного транзистора поступит положительная полуволна, а на базу другого — отрицательная. В связи с этим проводимость одного транзистора возрастет, а другого уменьшится, через транзисторы потекут разные токи и мост разбалансируется. Разбаланс моста приведет к появлению сигнального напряжения на катушке громкоговорителя, и, следовательно, через нее потечет ток сигнала, а в громкоговорителе появится звук.
Сопротивление катушки громкоговорителя, необходимое для согласования с транзисторным двухтактным усилителем, намного меньше сопротивления, требуемого для согласования с двухтактным усилителем на лампах. Так как транзисторные схемы имеют малое выходное сопротивление, они хорошо согласуются с низкоомными громкоговорителями.
На рис. 1.15 показана схема двухтактного усилителя на двух транзисторах с проводимостью разного типа. В этой схеме транзистор ti не является фазоинвертором, поскольку с его выхода на базовые входы транзисторов Т2 и Tz (подаются сигналы одной и той же фазы и полярности. Предположим, что на входы транзисторов поступает положительная полуволна сигнала. Положительный входной сигнал увеличивает прямое смещение транзистора Т2 n — р — n-типа, а следовательно, и его проводимость. Прямое же смещение транзистора 7з и его проводимость при этом уменьшаются, поскольку это транзистор с другим типом проводимости. Таким образом, действие входного сигнала на транзистор Т5 обратно действию на транзистор Т2.
При отрицательном входном сигнале прямое (Смещение транзистора Т2 уменьшается, а транзистор а Т3 увеличивается. Теперь проводимость Т2 уменьшилась, а проводимость Т3 увеличилась, т. е. схема, собранная на транзисторах с проводимостью разного типа, обеспечивает такие же выходные параметры, как схема двухтактного усилителя на транзисторах одного типа с фа-зоинвертором или трансформатором. Таким образом, в последней схеме также реализуется двухтактный режим работы, при котором в одни моменты времени на резистор R& поступает положительный сигнал через R6, а в другие моменты — отрицательный через R7. Следовательно, в положительные полупериоды сигнал на громкоговоритель поступает через резистор R&, а в отрицательные через резистор R? Цепочка R4C4 обеспечивает отрицательную обратную связь в схеме (см. разд. 1.8). В качестве резистора R5 служит термистор, сопротивление которого меняется при изменениях температуры. Этим достигается стабилизация токов и напряжений транзисторов.
При работе громкоговорителя резистор rq отключен. Если же в гнездо вставить штекер телефона, то громкоговоритель отключается, а последовательно с телефоном для предохранения его от перегрузок включается резистор сопротивлением 120 Ом. Это стандартный способ подключения телефона, причем величина сопротивления резистора может достигать 330 Ом. Иногда в схемах такого типа исключают разделительный конденсатор Cs, а нижний вывод громкоговорителя присоединяют непосредственно к земле. Конденсатор Cs (220 мкФ) представляет собой малое реактивное сопротивление для сигналов звуковых частот и поэтому заземляет их. Так как выводы транзистора Т2 имеют более высокие потенциалы относительно земли, чем выводы транзистора Г3 (коллектор которого заземлен), то для симметрирования схемы и выравнивания токов выходных транзисторов иногда используют дополнительные резисторы и конденсаторы.
Гл ава 2
УСИЛИТЕЛИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ
Схема Дарлингтона
Обозначение составного транзистора, выполненного !из двух отдельных транзисторов, соединенных по схеме Дарлингтона, указано на рис. 2Л,а. Первый из упомянутых транзисторов включен по схеме эмиттерного повторителя, сигнал с эмиттера первого транзистора поступает на базу второго транзистора. Достоинством этой схемы является исключительно высокий коэффициент усиления. Общий коэффициент усиления по току р для этой схемы равен произведению коэффициентов усиления по току отдельных транзисторов: р = ргр2. Например, если входной транзистор пары Дарлингтона имеет коэффициент усиления, равный 120, а коэффициент усиления второго транзистора равен 50, то общее р составляет 6000. В действительности усиление будет даже несколько большим, так как общий коллекторный ток составного транзистора равен сумме коллекторных токов пары входящих в него транзисторов.
Полная схема составного транзистора показана на рис. 2.1,6. В этой схеме резисторы R1 и R2 составляют делитель напряжения, создающий смещение на базе первого транзистора. Резистор Rн, подключенный к эмиттеру составного транзистора, образует выходную цепь. Такой прибор широко .применяется на практике, особенно в тех случаях, когда требуется большой коэффициент усиления по току. Схема имеет высокую чувствительность к входному сигналу и отличается высоким уровнем выходного коллекторного тока, что позволяет использовать этот ток в качестве управляющего (особенно при низком напряжении питания). Применение схемы Дарлингтона способствует уменьшению числа компонентов в схемах.
Рис. 2.1. Схема Дарлингтона.
Схему Дарлингтона используют в усилителях низкой частоты, в генераторах и переключающих устройствах. Выходное сопротивление схемы Дарлингтона во много раз ниже входного. В этом смысле ее характеристики подобны характеристикам понижающего трансформатора. Однако в отличие от транформа-тора схема Дарлингтона позволяет получить большое усиление по мощности. Входное сопротивление схемы примерно равно $2Rn, а ее выходное сопротивление обычно меньше Rн. В переключающих устройствах схема Дарлингтона применяется в области частот до 25 кГц.
Схема стробирования цветовой вспышки
При цветной телевизионной передаче на заднем уступе строчного гасящего импульса передается сигнал цветовой синхронизации, называемый также сигналом цветовой вспышки, в виде 9 периодов колебаний поднесущей частотой 3,58 МГц. Этот опорный сигнал служит для синхронизации генератора поднесущей той же частоты в телевизионном приемнике. Генератор воспроизводит в приемнике цветовую по дне сущую, которая была подавлена в передатчике. Восстановленная в приемнике поднесущая добавляется к сигналу боковых полос, что необходимо для правильного детектирования сигналов цветности.
Рис. 2.7. Устройство стробирования и усиления сигнала цветовой вспышки»-
В телевизионном приемнике необходимо из полного видеосигнала выделить сигналы цветовой синхронизации, чтобы подать их в соответствующие цепи. Нежелательные сигналы устраняются схемой стробирования (рис. 2.7). Эта схема представляет собой транзисторный каскад с двумя входами и трансформаторным выходом. Транзистор Т1 открыт только в те моменты времени, когда поступает сигнал цветовой вспышки. Он производит также некоторое усиление сигнала цветовой синхронизации, однако, если требуется сигнал большей амплитуды, обычно используют дополнительный усилитель (каскад на транзисторе Т2).
В транзисторе Т1 n — р — n-типа (рис. 2.7) для создания прямого смещения эмиттерного перехода, отпирающего транзистор, потенциал базы должен быть положительным относительно эмиттера. Поскольку резистор Rz заземлен, он имеет общую точку с нижним выводом резистора Rz. Однако падение напряжения на R3 возникает практически только при открытом транзисторе Т1, поскольку специфической особенностью режима работы этой схемы является то, что основную часть времени транзистор Т1 заперт. Как видно, полный видеосигнал, поступающий с выхода видеоусилителя, подается на базовый вход устройства стробирования цветовой вспышки через конденсатор С1. Через резистор R1 на базовый вход подается включающий положительный импульс. Этот импульс поступает с отвода выходного трансформатора строчной развертки и существует в течение строчного гасящего импульса, причем амплитуда импульса включения устанавливается достаточно большой для создания прямого смещения, поддерживающего транзистор в открытом состоянии.
Так как в течение времени действия гасящего импульса передается также и цветовая вспышка, то транзистор отпирается именно на то время, когда она появляется в видеосигнале, поступающем на базу транзистора. Стробирующий импульс включения, снимаемый с коллектора, -поступает на выходной трансформатор, через который он передается на усилитель сигналов цветовой синхронизации и другие схемы. Стробирующий импульс задерживается примерно на 3 — 5 мкс для предотвращения прохождения строчного синхроимпульса, а также для того,. чтобы транзистор был открыт во время действия сигнала цветовой вспышки. Как уже отмечалось, сигнал цветовой синхронизации содержит примерно 9 периодов колебаний поднесущей.
Конденсатор С3 образует с первичной обмоткой трансформатора резонансный контур, который настраивается на частоту 3,58 МГц подстроечным сердечником, перемещающимся .между первичной и вторичной обмотками. После дополнительного усиления этот сигнал поступает на фазовый детектор и генератор поднесущей для автоматической подстройки частоты генератора.
P = EIcosФ. (2.8)
Если индуктивности обмоток L1 и L2 равны нулю, то сдвиг фаз между током в нагрузочном сопротивлении и напряжением также равен нулю. При этом cosФ = 1, и полная мощность источника выделяется в нагрузке. При индуктивности же, отличной от нуля, cosФ<l и мощность в нагрузке соответственно уменьшается.
Управляющая обмотка L3 намотана на среднем стержне сердечника, а катушки L1 и L2 расположены таким образом, что их суммарный магнитный поток в этом керне равен нулю, и поэтому они не индуцируют э. д. .с. в управляющей обмотке. Изменение направления управляющего тока в обмотке L3 не приводит к изменению напряжения на нагрузке, так как при любом направлении тока магнитный поток L3 усиливает магнитный поток одной обмотки и ослабляет магнитный поток другой. Однако сила тока управляющей обмотки регулирует напряженность магнитного поля, прикладываемого к сердечнику, и, следовательно, влияет на величину магнитной индукции в сердечнике.
Выходные усилители блоков кадровой и строчной разверток
В кинескопе электронный луч перемещается по экрану в горизонтальном и вертикальном направлениях со скоростями, устанавливаемыми релаксационными генераторами, которые синхронизируются (передаваемыми синхроимпульсами (см. разд. 4,8, 4.10 и 4.11, а также рис. 6.9).
Рис. 2.11. Выходные каскады блоков кадровой и строчной разверток.
Усилители напряжений кадровой (по вертикали) и строчной (по горизонтали) разверток, а также депи и элементы, на которые подаются эти напряжения, показаны на рис. 2.11. Усилитель напряжения кадровой развертки на транзисторе Т1 усиливает входной сигнал от задающего генератора кадровой развертки и подает этот сигнал через конденсатор С] на катушки вертикального отклонения луча. Аналогичным образом сигналы с выхода усилителя напряжения строчной развертки поступают на катушки горизонтального отклонения луча через конденсатор С3. Катушки вертикального и горизонтального отклонения расположены на горловине трубки, образуя так называемую отклоняющую систему (ОС). Магнитные поля, создаваемые ОС, перемещают электронный луч по поверхности экрана кинескопа. Частота строчной развертки 15750 Гц, а кадровой 60 Гц [В соответствии с телевизионным стандартом, принятым в СССР, частота строчной развертки составляет 15625 Гц и кадровой — 50 Гц. Прим.перев.]. Во всех телевизионных приемниках схема выходной ступени блока строчной развертки более сложная, чем кадровой развертки, так как первое устройство выполняет ряд дополнительных функций. Демпфирующий диод Д2 (рис. 2.11) предназначен для пйэдавления коротких высоковольтных импульсов, возникающих в системе. На выходе выпрямителя, собранного на диоде Дь получается напряжение в несколько тысяч вольт, которое используется для управления фокусировкой луча в кинескопе. Высоковольтный конденсатор С5 имеет малюе реактивное сопротивление для высокочастотных составляющих выпрямленного напряжения и поэтому работает как фильтрующий конденсатор. (На рис. 2.11 изображена схема, применяемая в черно-белых телевизорах. Аналогичная схема применяется и в цветных телевизорах, хотя в них для получения большей яркости используются более высокие напряжения.)
На выходе блока строчной развертки возникают импульсные напряжения амплитудой 115 — 30 кВ в зависимости от типа трубки и ее назначения (для воспроизведения черно-белого или цветного изображения). Для получения требуемого для работы трубки высоковольтного постоянного напряжения эти импульсы выпрямляют mo следовательно соединенными диодами Д3, Д4 и ДБ. Чтобы выровнять распределение напряжений и защитить диоды от вредного воздействия выбросов высокого напряжения,, используют конденсаторы С6 и С7.
Вторым анодом кинескопа является внутренний проводящий слой. Высокий положительный потенциал этого слоя притягивает и дополнительно ускоряет отрицательно заряженные электроны, формирующие электронный луч. Внешняя поверхность, кинескопа также покрыта слоем проводящего вещества и заземлена (рис. 2.11). Между внутренними внешним проводящими слоями образуется емкость, которая служит емкостью-фильтра высоковольтного выпрямителя. Так как стекло является хорошим изолятором, то на полученном конденсаторе высокое напряжение может сохраняться значительное время после выключения телевизора, что может послужить причиной поражения .электрическим током при случайном прикосновении.
Как показано на рис. 2.11, строчный трансформатор имеет-дополнительные обмотки, с которых импульсные сигналы снимаются и подаются на другие блоки приемника. Напряжение одного из выходов используется в качестве опорного напряжения фазового детектора в схеме строчной развертки, а в цветных телевизионных приемниках для управления генератором поднесущей (см. разд. 4.6). Напряжение другого выхода подается в схему импульсной АРУ (гл. 7).
Глава 3
УСИЛИТЕЛИ ПРОМЕЖУТОЧНОЙ И ВЫСОКОЙ ЧАСТОТЫ
Принципиальная схема УПЧ
Усилители промежуточной частоты (УПЧ) применяют для? усиления амплитуды сигналов промежуточной частоты, поступающих от предшествующих усилительных или преобразовательных каскадов радиоприемников. Как .и усилители радиочастоты, УПЧ усиливают сигнал, улучшают селективность,, а также позволяют осуществлять автоматическую регулировку громкости (АРГ) в радиоприемниках и автоматическую регулировку усиления (АРУ) в телевизионных приемниках (гл. 7). Усилители промежуточной частоты работают в режиме класса А (см. разд. 1.4).
Рис. 3.1. Усилитель промежуточной частоты.
Типичная схема УПЧ показана на рис. 3.1. Входной сигнал, поступающий на первичную обмотку трансформатора, выделяется во йторичной обмотке, которая совместно с конденсатором C1 образует резонансный контур L2C1 высокой добротности, настроенный на частоту сигнала. Для согласования выходного сопротивления контура с входным сопротивлением транзистора напряжение снимается с части вторичной обмотки трансформатора. Напряжение АРГ поступает к нижнему выводу контура через R1C2-цепь, которая отфильтровывает ВЧ-составляющие, содержащиеся в выходном напряжении детектора АРГ. Напряжение АРГ создает необходимое прямое смещение базы (положительное для транзистора n — р — n-типа).
Цепь R2C5, подключенная к эмиттеру, предназначена для температурной стабилизации работы (см. разд. 1.1). Резистор Rз служит для установки напряжения обратного смещения коллекторного перехода до требуемой величины. Конденсатор Сб шунтирует по высокой частоте резистор R3. Цепь RsC5 является развязывающей (см. разд. 1.6).
Если внутренние емкости транзистора имеют малое реактивное сопротивление для усиливаемых сигналов, то в усилителе-может возникнуть паразитная автогенерация. Для ее устранения в усилителях промежуточной и высокой частоты используют нейтрализующий конденсатор, через который поступает дополнительный сигнал с величиной амплитуды, равной амплитуде сигнала, вызвавшего автогенерацию. При этом схема нейтрализации рассчитывается так, чтобы этот добавочный сигнал был сдвинут по фазе на 180° ро отношению к сигналу, явившемуся причиной автогенерации. В схеме, показанной на рис. ЗЛ, ,нейт-ралияующий конденсатор С3 включен между нижним вывод-ом резонансного контура в цепи коллектора и базой транзистора. Емкость конденсатора С3 выбирается такой величины, чтобы обеспечить необходимую для эффективной нейтрализации амплитуду сигнала. Заметим, что источник питания подключен к отводу от середины катушки индуктивности из колебательного контура. Так как конденсатор С6 заземляет ВЧ-составляющие сигнала, то при указанном подключении источника контур разделяется на две части, причем напряжение на (нижней части контура сдвинуто по фазе на 180° по отношению к напряжению на верхней его части.
Термин «нейтрализация», заимствованный из ламповой электроники, применим также и .к транзисторным схемам. Однако в последнее время вместо нейтрализации говорят обычно о компенсации внутренней обратной связи. Устройство с компенсированной обратной связью осуществляет однонаправленную передачу сигналов — от входа устройства к его выходу. Поэтому ни собственно усиленный сигнал, ни сигнал, подаваемый на следующий каскад, не попадают обратно на вход усилителя. Строго говоря, компенсация обратной связи — процесс, при помощи которого, используя внешнюю обратную связь, компенсируют внутренние емкостные и гальванические обратные связи между выходом и входом транзистора, так же, впрочем, как и индуктивные связи, которые могут иметь место. В отличие от этого термин «нейтрализация» подразумевает компенсацию только емкостной обратной связи, имеющейся между выходом и входом устройства.
Рис. 3.4. УВЧ.
На рис. 3.4, б показана схема УВЧ, собранная на МОП-транзисторе в режиме обогащения с n-каналом. В отличие от схемы, показанной на рис. 3.4, а, здесь источники смещения и питания подключены параллельно резонансным цепям и -поэтому оказывают более сильное шунтирующее действие на резонансные цепи, чем при последовательном включении. Высокочастотный дроссель L4 в цепи источника питания ограничивает ток частоты сигнала, а также уменьшает связь между каскадами через общий источник питания.
Катушка индуктивности L3 и конденсатор переменной емкости С3 образуют последовательный резонансный контур. Низкий импеданс этого контура на частоте резонанса обеспечивает требуемую для нейтрализации обратную связь. Для устранения паразитной генерации подбирают надлежащую связь между выходом ,и входом, регулируя величину емкости С3.
Конденсаторы С2 и С4, шунтирующие цепи питания, предотвращают закорачивание по постоянному току источников питания через катушки индуктивности L2 и L5. Напряжение смешения подается через резистор Яи в некоторых схемах УВЧ для этой цели может быть использован дроссель. Полярность и величина .смещения зависят от типа усилителя и требуемых рабочих характеристик устройства.
Линейный усилитель класса В
Усилители класса В применяются в лриемно-передающих системах для усиления амплитудно-модулированных (AM) сигналов радиочастоты. Термин «линейный усилитель класса Ь» подчеркивает, что в этом режиме используется линейная часть характеристики транзистора.
Если сигнал модулирован в усилительном каскаде класса U то следующие каскады усилителей класса С не способны усиливать такой сигнал, поскольку у них ток .коллектора отсекается при входном сигнале, равном примерно .половине амплитуды. Поэтому усилители класса С не способны воспроизвести все компоненты модуляции несущей и для усиления таких сигналов их не применяют. В транзисторном же усилителе класса В надлежащим смещением рабочая точка устанавливается вблизи точки отсечки, и в этом режиме работы ток коллектора определяется только полупериодами входного сигнала одной какой-нибудь полярности. Поскольку в усилителе имеются резонансные контуры, недостающий полупериод входного сигнала воспроизводится благодаря колебательным (фильтрующим) свойствам этих контуров. Для увеличения выходной мощности можно использовать двухтактные схемы усилителей.
Типичная схема линейного усилителя класса В показана на рис. 3.5. Здесь выходной резонансный контур усилителя класса С, который предшествует усилителю класса В, представлен конденсатором C1 и катушкой индуктивности L1. Входные модулированные колебания несущей поступают на входной резонансный контур усилителя класса В через трансформатор, образованный индуктивностями li и L2. Как показано на рисунке, напряжение фиксированного смещения, соответствующего режиму усиления класса В, поступает на нижний вывод входного резонансного контура.
Рис. 3.5. УВЧ класса В (линейный).
Для входных колебаний, изображенных на рис. 3.5, отрицательные полуволны сигнала несущей при отсутствии модуляции имеют амплитуду, равную половине разности входных напряжений транзистора, приводящих к насыщению и к отсечке тока коллектора. Это позволяет увеличивать или уменьшать амплитуду модулированных колебаний относительно уровня несущей до тех пор, пока ток транзистора не выходит за границы области между точкой отсечки и точкой насыщения. На практике уровень несущей устанавливают примерно -в середине линейной части выходной характеристики транзистора.
Так как положительные полуволны сигнала возбуждения .попадают в зону отсечки тока, то коллекторный ток течет только во время действия отрицательных полуволн напряжения входного сигнала (которое суммируется с небольшим отрицательным напряжением прямого смещения). Соответственно, как показано на рисунке, коллекторный ток представляет собой последовательность импульсов различной высоты. Благодаря фильтрующим свойствам резонансного контура, образованного элементами С4 и Lz, недостающие «полуволны восстанавливаются. В результате на выходе усилителя получаются амплигудно-модулированные колебания (рис. 3.5).
Поскольку в рассматриваемом усилителе -амплитуда немодулированных колебаний несущей ограничивается половиной линейной области рабочих характеристик транзистора, такого усиления несущей, как в случае усилителей класса С (разд. 3.6 — 3.8), получить не удается. Поэтому к. п. д. линейного усилителя модулированных колебаний класса В близок к 30% в отличие от к. п. д., равного 65% и достигаемого в обычном усилителе класса В.
Конденсатор переменной емкости С3 устраняет возбуждение каскада (см. разд. 3.1). Как показано на рис. 3.5, напряжение обратного смещения коллекторного перехода транзистора подается на среднюю точку катушки индуктивности L3 через дроссель высокой частоты (ДВЧ), обладающий высоким реак-тивиым сопротивлением для колебаний несущей, благодаря чему ослабляется шунтирующее действие источника питания. Выходные сигналы передаются в колебательный контур, образованный элементами L4 и сб, для дальнейшего усиления усилителями класса В или поступают «а антенную систему для излучения.
Однотактный усилитель класса С
Усилители класса С используются преимущественно в передающих устройствах для увеличения амплитуды сигнала несущей частоты до расчетного уровня. Усилители класса С строятся по одно- или двухтактной схеме (рис. 3.6 и 3.7). Для создания условий работы в режиме класса С необходимо подать на эмиттерный переход биполярного транзистора обратное смещающее напряжение такой величины, при которой рабочая точка транзистора находится в области отсечки. При этом транзистор отпирается лишь в течение небольшой части каждого периода колебаний (меньшей полупериода), ,в которой мгновенное значение сигнала близко к амплитудному значению (см. разд. 11.4). В этом случае к. п. д. усилителя может достигать 90%.
Рис. 3.6. Однотактный усилитель класса С.
Как показано на рис. 3.6, входной ВЧ-сигнал поступает на первичную обмотку L1 входного трансформатора. Такой сигнал называют управляющим сигналом или сигналом возбуждения, Вторичная обмотка L2 вместе с шунтирующим конденсатором С1 образует резонансный контур, настроенный на частоту входного сигнала. Конденсатор С2 пропускает входной сигнал на базу транзистора и одновременно предотвращает закорачивание цепи базы по постоянному току.
Резонансный контур в цепи коллектора, называемый также колебательным контуром, составлен из катушки индуктивности L4 и шунтирующих ее конденсаторов переменной емкости Сз и С4. К катушке L4 можно присоединить обычный конденсатор переменной емкости, но сдвоенные конденсаторы переменной емкости с заземленным ротором обеспечивают большую безопасность при пробоях, вызванных высоким напряжением. Так как роторы конденсаторов находятся на одной оси, а статоры разделены, или «разрезаны», на две секции, то такие конденсаторы часто называют конденсаторами с разрезными статорами.
Для того чтобы оба вывода L4 находились под высокочастотным потенциалом относительно земли, что необходимо для нейтрализации паразитной обратной связи, источник питания подключают к средней точке катушки L4. Так как межэлектродные емкости транзистора создают положительную обратную связь между выходом и входом, усилитель может возбудиться и начать генерировать собственные колебания вместо того, чтобы усиливать сигналы предыдущего каскада. Для увеличения устойчивости усилителя используют нейтрализующий конденсатор С5. Этот элемент включен между нижним выводом резонансного контура и выводом базы транзистора. Величина емкости нейтрализации подбирается так, чтобы амплитуда противофазного напряжения была равна напряжению положительной связи, которое вызывает генерацию. Высокочастотный дроссель LS не пропускает составляющих радиосигнала, выделяющихся в колебательном контуре, к источнику питания. Через трансформатор, составленный элементами L4 и L6, и выходной резонансный контур L6C6 усиленный выходной сигнал передается на вход усилителя класса С большей мощности или (к антенной системе.
Последующий каскад усиления, на который поступает выходной радиосигнал, является нагрузочным элементом усилителя, называемым нагрузкой. Если усилитель класса С не нагружен и его контур настроен в резонанс, то при этом коллекторный ток транзистора минимален. Но так как при резонансе ненагруженный параллельный .колебательный «онтур обладает очень большим входным сопротивлением, то на нем выделяется максимальное напряжение сигнала. Поэтому высокое напряжение, получаемое на контуре, (при отключенной нагрузке может вызвать пробой между пластинами ротора и статора конденсатора настройки. Для предотвращения пробоя, могущего возникнуть в процессе настройки и нейтрализации паразитной обратной связи ненагруженного усилителя, иногда уменьшают напряжение питания (во время настройки). При расстройке контура коллекторный ток транзистора резко возрастает, но напряжение на контуре падает, так (как параллельный резонансный контур (на частотах выше и ниже резонансной имеет малый импеданс. Как уже говорилось, в усилителе класса С входное сопротивление контура при отключенной нагрузке велико; велика также добротность Q контура (Q>50). Однако в условиях подключенной нагрузки, .когда усилитель работает с хорошим к.т.д., добротность контура падает до 10 — 15. При более точном подборе величины нагрузочного сопротивления, определяемого характеристиками транзистора, требуемое значение Q нагруженного усилителя выбирают с учетом величины p = |/L/C — характеристического сопротивления колебательного контура в цепи коллектора, где L — результирующая индуктивность и С — результирующая емкость контура. Уменьшение Q, вызываемое подключением нагрузки, увеличивает устойчивость усилителя. Однако очень малое значение Q приводит к расширению полосы пропускания устройства и, следовательно, к более слабому подавлению нежелательных гармонических составляющих сигнала. При значениях Q ниже нормы ухудшается селективность усилителя и уменьшается полезная мощность в нужном диапазоне частот. При слишком высоком Q и при наличии нагрузки контурные токи становятся настолько большими, что излучаемая самим колебательным контуром мощность намного больше, чем в нормальном режиме. Результатом этого являются излишние потери ВЧ-мощности.
Величины L и С, требуемые для получения резонансной частоты fр контура, можно найти из уравнения
(3.1)
Добротность контура выражается следующими соотношениями:
(3.2)
где XL = 2пfpL и Xc = 2пfpC. Сопротивление R в соотношениях (3.2) — пересчитанное эквивалентное сопротивление потерь энергии, шунтирующее колебательный контур. Это сопротивление R=RH практически учитывает только мощность, потребляемую нагрузкой (очень малыми потерями мощности в активном сопротивлении катушки индуктивности обычно (пренебрегают). Сопротивление нагрузки в соответствии с законом Ома определяется как отношение постоянного напряжения коллекторного питания к амплитудному значению тока коллектора при подключенной нагрузке:
(3.3)
предполагается, что амплитуда напряжения на контуре UK~EK. Зная требуемую величину Q нагруженного контура, мы можем найти результирующую (полную) емкость колебательного контура на данной частоте. Эта емкость обратно пропорциональна пересчитанному сопротивлению нагрузки, т. е. отношению EK/IK. Результирующая величина емкости колебательного контура определяется из формул (3.1) — (3.3):
(3.4)
где С — результирующая емкость контура, ,пФ;
Q — добротность контура при наличии нагрузки (Q=l0 — 115);
IK — ток коллектора, мА;
f — частота, МГц (обычно средняя частота рабочего диапазона частот);
Eк — постоянное напряжение коллектора, В. Величина емкости, найденная из этого уравнения, должна соответствовать емкости колебательного контура в среднем положении ротора переменного конденсатора. Зная величину емкости С для данного Q, можно найти величину общей индуктивности колебательного контура из формулы (3.1):
(3.5)
где L — результирующая индуктивность, мкГ; С — емкость, пФ; f — частота, кГц.
Двухтактный усилитель класса С
Аналогично двухтактным схемам низкочастотного диапазона, описанным в разд. l.ll, можно построить симметричные Двухтактные схемы высокочастотного диапазона, обеспечивающие высокий к.п.д. Типичная схема двухтактного УВЧ показана на рис. 3.7. Здесь, как и в предыдущей схеме, ВЧ-сигнал возбуждений, поступает на трансформатор, составленный из об-моток L1 и L2. Однако в двухтактной схеме у обмотки L2 имеется отвод со дредней точки, через который подается напряжение смещения эмиттерных переходов транзисторов T1 и T2. Конденсаторы с разрезными статорами очень удобны для использования в двухтактных схемах, поскольку они позволяют довольно легко симметрировать схему. Роторы конденсаторов С, и С2 заземлены, что обеспечивает поступление сигналов на базы транзисторов T1 и Т2 в противофазе. В коллекторных цепях также используются конденсаторы с разрезными статорами Для повышения устойчивости двухтактных усилителей применяют перекрестную нейтрализацию. Конденсатор С3 соединяет коллектор транзистора TI (подключенный к выводу коллекторного контура) с базой транзистора Т2 и передает противофазный сигнал нейтрализации требуемой величины. Аналогичным образом нейтрализующий конденсатор С4, присоединенный к коллекторной цепи транзистора Т2, обеспечивает нейтрализацию во втором плече схемы. Для развязки по высокой частоте источников питания и смещения, как и ранее, используются последовательно включенные высокочастотные дроссели. Это делает излишним подключение к выводу средней точки L3 шунтирующего по высокой частоте конденсатора. Заземленные роторы конденсаторов с разрезными статорами фиксируют точки нулевого потенциала в контурах. Этот потенциал может не точно совпадать с потенциалом среднего вывода катушки индуктивности L3. В передатчиках для увеличения мощности ВЧ-сигнала до необходимого уровня каскады усилителей класса С с высоким к п д помещают между генератором и антенной системой.
Рис. 3.7. Двухтактный усилитель класса С.
В связных радиопередатчиках для контроля токов транзисторов последовательно с выводами базы ,и коллектора включают миллиамперметры или амперметры. Контроль тока базы помогает настроить входной контур на нужную частоту сигнала и установить требуемый уровень прикладываемого управляющего сигнала. Контроль тока коллектора помогает настроить в резонанс выходной колебательный контур по минимуму коллекторного тока, который имеет место при резонансе. В процессе настройки цепей нейтрализации уровень возбуждения ВЧ-сиг-нала на базах меняется, и нейтрализующие конденсаторы настраивают по минимуму показаний базовых амперметров.
ГЛАВА 4
ГЕНЕРАТОРЫ
Рис. 4.4. Генератор по схеме Колпитса.
Резонансная частота колебательного контура (с учетом влияния внутренних емкостей транзистора и емкостей разделительных конденсаторов) определяет частоту генерации.
Как обычно в таких схемах, напряжение питания подается через ВЧ-дроссель, который препятствует протеканию тока генерируемой частоты через источник питания. Выходной сигнал для передачи на следующий каскад снимается с катушки L2, связанной трансформаторной связью с катушкой L1.
Глава 5
ФИЛЬТРЫ И АТТЕНЮАТОРЫ (ОСЛАБИТЕЛИ)
Глава 6
МОДУЛЯЦИОННЫЕ УСТРОЙСТВА
Глава 7
ДЕМОДУЛЯТОРЫ И СХЕМЫ АРГ, АРУ И ДРУГИЕ
Схема ослабления звуковых сигналов более высоких частот
Для компенсации действия схемы предварительной коррекции, введенной в процессе модуляции (см. разд. 6.8), между демодулятором и усилителем сигналов звуковой частоты в приемниках ЧМ-сигналов устанавливают специальную схему, компенсирующую постепенный подъем уровня звуковых сигналов более высоких частот с тем, чтобы они стали пропорциональными уровням сигналов, поступающих на микрофон передающей станции.
Рис. 7.7. Схема ослабления звуковых сигналов более высоких частот.
На рис. 7.7 приведена схема компенсации такого подъема амплитуд. По существу схема ведет себя как фильтр нижних частот, поскольку шунтирующее действие конденсаторов Ci и С2 возрастает для более высокочастотных составляющих сигнала» Последовательно включенные резисторы Ri и R2 вместе с шунтирующими конденсаторами имеют постоянную времени, соответствующую постоянной времени схемы предварительной коррекции, используемой в процессе модуляции. Конденсатор Cs является обычным конденсатором связи, а резистор R3 — регулятором громкости.
Схема, показанная на рис. 7.7, может быть упрощена путем исключения элементов Rz и С2 и изменения значений Ri и Ci таким образом, чтобы они имели требуемую постоянную времени. Однако для получения более плавного линейного перехода предпочтительнее схема, показанная на рис. 7.7.
Основная схема АРУ
Схемы АРУ используются в телевизионных приемниках для поддержания постоянного уровня сигнала изображения, установленного регулятором контрастности приемника. Как и в случае схем АРГ, схемы АРУ формируют напряжение смещения в зависимости от уровня сигналов радиочастотной несущей; это напряжение прикладывается к радиочастотным и ПЧ-каска-дам приемника.
На рис. 7.11 изображена наиболее простая схема АРУ. На этой схеме видеосигнал поступает с каскада видеодетектора. При показанной полярности включения диод Д1 проводит ток в направлении, указанном стрелкой, и заряжает конденсатор С1 до максимального значения амплитуды синхроимпульсов, размещаемых на гасящих импульсах. Во время проводящего состояния диода Д1 вследствие весьма малой постоянной времени зарядной цепи происходит быстрый заряд конденсатора Сь По окончании гасящего импульса передаются видеосигналы меньшей амплитуды и диод Д1 оказывается запертым. Так как при запертом диоде постоянная времени разряда RiCi конденсатора С2 весьма велика, то конденсатор остается почти полностью заряженным в течение интервала времени между синхроимпульсами.
Рис. 7.11. Основная схема АРУ.
Конденсатор C1, весьма медленно разряжающийся через резистор R1, создает на нем падение напряжения указанной на рис. 7.11 полярности. Часть этого напряжения образует напряжение смещения АРУ, которое прикладывается к радиочастотным и ПЧ-каскадам усиления. Величина смещения для принимаемых сигналов среднего уровня может устанавливаться при помощи движка переменного резистора Ri. Так как во время передачи амплитуда синхроимпульсов поддерживается постоянной, то образуемое напряжение смещения имеет неизменную величину. При настройке на отдаленную станцию с более слабым сигналом амплитуда синхроимпульсов уменьшается и на резисторе Ri образуется отрицательное напряжение смещения более низкого уровня. Это приводит к уменьшению обратного смещения, прикладываемого к радиочастотным и ПЧ-усилите-лям, что вызывает увеличение коэффициента передачи слабого входного сигнала. Если осуществлена настройка на станцию с мощным сигналом, образуется обратное смещение большей величины, в результате чего коэффициент передачи радиочастотных и ПЧ-каскадов понижается. За счет этого обеспечиваются выравнивание амплитуд видеосигналов, подаваемых на кинескоп, и регулировка степени контрастности.
В описываемой системе АРУ настройка на отдаленную станцию вызывает уменьшение напряжения смещения. Такое уменьшение приводит к увеличению коэффициента усиления полевых МОП-транзисторов, работающих в режиме обеднения носителей, когда ток стока протекает при отсутствии смещения, и к уменьшению при увеличении смещения. Для транзисторов других типов увеличение прямого смещения вызвало бы увеличение коэффициента усиления и возрастание тока. Однако для получения лучших характеристик, лучшей стабильности и увеличения чувствительности предпочитают использовать ключевую схему АРУ.
Ключевая схема АРУ
Рис. 7.12. Ключевая схема АРУ.
Ключевым схемам АРУ отдают предпочтение перед основной схемой, описанной в разд. 7.9, по той причине, что они обеспечивают лучшие, рабочие характеристики. Ключевая схема АРУ характеризуется более высоким отношением сигнал/шум и более быстрой реакцией на изменение амплитуды сигнала. В ключевой схеме АРУ (рис. 7.12) используются два транзистора, один из которых служит в качестве ключа, а другой — как усилитель. При применении n — р — n-транзистора оба импульса, подаваемых на транзистор Т1, должны иметь положительную полярность. Это обусловлено тем, что движок переменного резистора (потенциометра) Ri устанавливается таким образом, что при отсутствии входных сигналов транзистор Т1 заперт. Поскольку к коллектору транзистора не подводится постоянного напряжения для создания отрицательного обратного смещения его коллекторного перехода, необходимого для нормальной работы открытого транзистора, импульс, подаваемый на коллектор, должен иметь положительную полярность. Аналогично этому, если при наличии напряжения прямого смещения, снимаемого с резистора R1, транзистор все же остается закрытым, то для его отпирания на базу транзистора следует подать сигнал положительной полярности. Следовательно, для отпирания транзистора Т1 оба положительных импульса, подаваемых на транзистор, должны поступать одновременно.
Движок потенциометра R1 устанавливается таким образом, чтобы только при воздействии синхроимпульсов, поступающих на базу транзистора Т1, создавалось прямое смещение, достаточное для открывания транзистора при условии, что потенциал коллектора положительный. Поэтому при подаче положительных импульсов на коллектор транзистор TI периодически открывается с частотой гасящих импульсов (15750 Гц для черно-белых приемников и 15734 Гц для цветных). Эмиттерный ток транзистора Т1 поступает на цепь R3,C1, а также ответвляется к базе транзистора Т2, протекая через резисторы R4 и R5 и замыкаясь через резистор R6 и источник +E. Ток, протекающий через Rб, повышает потенциал базы транзистора Т2 и открывает его. Таким образом, периодическое открывание Т1 приводит к появлению импульсов на эмиттерном выходе транзисто--ра, поступающих на цепь R3C1, и на входе транзистора 7Y Эти импульсы усиливаются и подаются на входы УВЧ и УПЧ (вместо двух выходных линий с коллектора и эмиттера при наличии соответствующих развязывающих резисторов можно использовать один вывод).
Так как транзистор АРУ Т1 может проводить только при наличии синхроимпульсов, совпадающих во времени с импульсами строчной развертки, подаваемыми на коллектор транзистора Ti, то в промежутках между синхроимпульсами он не проводит. Поэтому любые шумовые сигналы, прикладываемые к схеме в промежутках времени между соседними синхроимпульсами, не оказывают воздействия на систему АРУ. Фильтр на выходе транзистора Т1 должен быть рассчитан на частоту горизонтальной развертки; поэтому он может иметь малую постоянную времени, обеспечивающую малую чувствительность АРУ к быстрым изменениям уровня сигнала несущей. Ключевая схема АРУ особенно хорошо подходит для сведения к минимуму флуктуации контрастности изображения, причиной которых являются пролетающие самолеты. Самолеты вызывают многократные отражения сигналов, что приводит к дрожанию изображения на экране телевизора.
При увеличении уровня входного видеосигнала на базу Т1 поступает сигнал большей амплитуды, что вызывает увеличение прямого смещения и проводимости. Вследствие этого для целей регулирования усиления формируется большой выходной сигнал. Более слабый сигнал обеспечивает соответственно меньшее прямое смещение с последующим уменьшением выходного напряжения АРУ.
Рис. 7.15. Схема демодулятора цветоразностных сигналов и матричная схема.
Транзисторы 73 и Т4 усиливают сигналы R — Y и В — У, и снимаемые с каждого коллектора усиленные сигналы прикладываются к соответствующим управляющим сеткам кинескопа для получения красного и синего цвета. Некоторая часть сигналов с выходов транзисторов Т3 и Г4 подается при помощи резисторов Ri8, Rн и Ris на базу транзистора Т6. Эти резисторы образуют матрицу для смешивания нужных значений амплитуд выходных сигналов с целью получения требуемого колебания G — У для сигналов зеленого цвета. Поэтому величины сопротивлений резисторов R16 и Rn различны, причем нужные номиналы зависят от характеристик транзисторов и параметров схемы, а также от амплитуд сигналов в каналах R — У и В — У (см. также рис. 2.6 и соответствующий текст.).
Глава 8
ЦИФРОВЫЕ СХЕМЫ
Схема ИЛИ
Логической схемой ИЛИ называется схема с одним выходом и любым числом входов, когда выходной сигнал образуется в результате .воздействия входного сигнала иа один или несколько входов схемы. На рис. 8.2, а показана типичная схема (вентиль) ИЛИ, выполненная на диодах. На схеме изображены три входа, хотя можно использовать только два входа или же добавить другие входы. Такой вентиль ИЛИ не нуждается в источнике питания, поскольку для обеспечения проводимости диодов подаются входные сигналы соответствующей полярности.
Когда к входу A прикладывается положительное (по отношению к земле) напряжение или импульс, диод Д] становится проводящим. Возникающий при этом ток создает на резисторе падение напряжения, представляющее выходной сигнал. Таким образом, при подаче импульса на вход А возникает выходной-импульс. Такой же результат получается при подаче импульса на вход В или С. Если импульсы напряжения; одинаковой высоты приложены к двум или трем входам одновременно, выходной сигнал практически не отличается от рассмотренного. Таким образом, один и тот же выходной сигнал образуется при воздействии сигнала на вход Л, ИЛИ на вход В, ИЛИ на вход С, ИЛИ на два, ИЛИ на все три входа. Вместо использования положительного сигнала (импульса), соответствующего логической единице, или логическому высказыванию ИСТИНА, может использоваться импульс отрицательной полярности. В этом случае диоды, показанные на рис. 8.2, а, должны быть включены в обратном направлении. (Если для представления логической 1 выбраны положительные сигналы, то сигналы отрицательной полярности, а также состояние отсутствия сигнала представляются 0. Аналогично этому использование логической 1 для отрицательных сигналов означает соответствие 0 положительных сигналов, а также состояния отсутствия сигнала.)
Рис. 8.2. Схемы ИЛИ и их условные обозначения.
На рис. 8.2,6 показана схема ИЛИ, реализованная на транзисторах, включенных с объединенным эмиттером. Для увеличения числа входов можно использовать три или более транзистора. На оба коллектора подается положительное напряжение, создающее обратное смещение коллекторных переходов. При отсутствии входных сигналов транзисторы практически заперты и выходной сигнал отсутствует. Однако, когда к входу А прикладывается импульс положительной полярности, транзистор Т1 отпирается. Возникает ток эмиттера, который протекает через резистор в цепи эмиттера и создает на этом резисторе падение напряжения, являющееся выходным сигналом. Аналогично импульс положительной полярности на входе В также приводит к появлению выходного сигнала, поскольку в этом случае отпирается транзистор Т2. Как и в случае схемы, показанной на рис. 8.2, а, при одновременном воздействии сигналов на оба входа также возникает выходной сигнал, что соответствует логической функции ИЛИ.
На рис. 8.2,в — д показаны условные обозначения схемы ИЛИ с различным числом входов (2, 3 и 5) [В отечественной научно-технической литературе используются другие обозначения схемы ИЛИ. — Прим. ред.]. Булева алгебра, упомянутая в разд. 8.1, является разделом математики; она описывает поведение переключающих логических схем и в символическом виде выражает соотношения между состояниями таких схем. В булевой алгебре знак + используется для обозначения функции ИЛИ — логического сложения. Поэтому выражение А + В в действительности обозначает А ИЛИ В, а вовсе не указывает на арифметическое сложение. Можно производить логическое сложение нескольких величин, например А + В + + С + D [Чтобы отличать логическую схему от арифметической, используется специальный символ логического сложения V- Тогда приведенное здесь выражение будет выглядеть следующим образом: A/B/C/D. — Прим. ред.].
Как отмечалось выше, логическим состояниям ИСТИНА (И) и ЛОЖЬ (Л) соответствуют два значения логической величины. Логическая сумма двух логических величин может принимать значения, указанные в табл. 8.1 — 8.3.
Таблица 8.1
0 + 0 = 0
A + 0 = 1
0 + B = 1
A + B = 1
Таблица 8.2
Л + Л = Л
И + Л = И
Л + И = Л
И + И = И
Таблица 8.3
0 + 0 = 0
1 + 0 = 1
0 + 1 =1
1 + 1 = 1
При большем числе логических слагаемых возможны соотношения:
0+0 + 0 = 0; 0 + 1+0=1 и т. д.
Таблица 8.4
Входы | Выход | ||
А | В | с | D |
Если импульсы подаются на оба входа одновременно, каждый транзистор получает необходимое прямое смещение и оказывается проводящим, благодаря чему цепь протекания коллекторных токов замыкается. Если выходной сигнал снимается с резистора в цепи эмиттера транзистора Тч, то выполняемая логическая операция называется операцией И, а логическая схема — соответственно схемой (вентилем) И по той причине, что для получения выходного импульса необходима подача импульсов на оба входа А и В. При трехвходовой схеме И для возникновения выходного импульса, соответствующего логической единице, понадобилось бы приложение импульсов на все три входа, поскольку все три транзистора были бы включены последовательно.
Если выходной сигнал снимается с коллектора транзистора Ti, то подаваемый на его вход сигнал инвертируется. Поскольку в этом случае полярность выходного сигнала не совпадает с полярностью входных сигналов, выполняемая при этом логическая операция называется И-НЕ; такое же название присваивается логической схеме.
Функция И обозначается в логических выражениях знаком умножения [В качестве знака логического умножения используется также специальный символ /. — Прим. ред.]. Поэтому логическое соотношение D=A-B выражает логическую операцию И, а не арифметическое умножение одной величины на другую. Символ умножения иногда опускают, и операция логического умножения обозначается как АВ или ABC. На рис. 8.3,г показано условное обозначение схемы И, а на рис. 8.3,д и е — обозначения схем И-НЕ с разным числом входов [В отечественной литературе используются другие условные обозначения схем И и И-НЕ. — Прим. ред.].
Таблица 8.4 представляет собой таблицу истинности схемы И с тремя входами, выражающую логическую операцию D = A*B*C. Как показано в этой таблице, для получения выходного сигнала необходимо совпадение во времени сигналов на всех трех входах.
Схема ИСКЛЮЧАЮЩЕЕ ИЛИ
Для вентилей И, И-НЕ и др. удобно использовать символы, поскольку они позволяют более наглядно представлять входные и выходные логические сигналы и рабочие характеристики таких вентилей. Поэтому, хотя и известны различные способы реализации схемы ИЛИ (на диодах, резисторах и диодах, на транзисторах), для их обозначения используется один символ.
Иногда используемую комбинацию логических схем можно представить одним символом, определяющим все свойства комбинированной сложной схемы, что делает ненужным изображение четырех, пяти или даже большего числа символических обозначений отдельных схем, применяемых для реализации некоторой операции. Примером может служить полусумматор, схема которого показана на рис. 8.8. По существу полусумматор состоит из схемы ИЛИ и двух схем И, одна из которых имеет инвертированный вход. Последняя схема является схемой ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ (ЗАПРЕТ). Эти три логические схемы связаны между собой, как показано на рис. 8.8, а, хотя для индикации комбинации схем И и ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ, но без выхода для цифры переноса часто используют один символ, изображенный на рис. 8.8, б. Этот символ соответствует схеме ИСКЛЮЧАЮЩЕЕ ИЛИ [Эта логическая схема известна под названием схемы неравнозначности или двухвходовой суммы суммирования по модулю 2. — Прим. ред.]. Если после схемы, показанной на рис. 8.8,6, следует инвертор (рис. 8.8, в), то получаем схему ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ (схема эквивалентности или равнозначности), символ которой изображен на рис.8.8,г.
Полные сумматоры (последовательного типа) могут быть получены путем использования двух полусумматоров, показанных на рис. 8.8, а. Полусумматоры применяются также для целей переключений и для преобразования кодов.
Рис. 8.8. Полусумматор (а) и условные обозначения схем ИСКЛЮЧАЮЩЕЕ ИЛИ (б), НЕ (в) и ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ (г).
Если на .входы схемы ИЛИ поступают два импульса, то они одновременно появятся и на схеме И. Тогда на выходе этой схемы И возникает импульс, который поступает на вход схемы ЗАПРЕТ и закрывает эту схему, препятствуя вводу сигналов от схемы ИЛИ. Следовательно, логика работы данной схемы такова: когда на обоих входах схемы ИЛИ действуют 1, то на выходе «Сумма» появляется 0, а на выходе «Перенос» — 1.
Таблица 8.5
А | в | Сумма | Перенос |
При подаче импульса только на один какой-нибудь вход схемы ИЛИ импульс запрета не формируется. В этом случае импульс, соответствующий 1, образуется только на выходе «Сумма». Выполняемая логическая операция соответствует правилу двоичного сложения 1 + 1 = 10 (двоичное число два). Поэтому, если на входах А и В действуют единичные сигналы, то выходной сигнал на выходе «Сумма» соответствует 0 (импульс отсутствует), но возникает импульс переноса на выходе «Перенос» представляемый 1 старшего разряда в двоичном числе 10.
Рис. 8.9. Преобразователь кода Грея в двоичный код.
На основе описания данной логической схемы может быть составлена таблица истинности (табл. 8.5), иллюстрирующая операции, выполняемые схемой (полусумматором).
Комбинацию схем ИСКЛЮЧАЮЩЕЕ ИЛИ можно использовать для преобразования кода Грея в двоичный код (рис. 8.9). Код Грея называют также циклическим кодом или кодом с минимальными ошибками. Код Грея широко применяется в вычислительных и управляющих системах, поскольку при этом уменьшаются случайные ошибки в дроцессе работы. Это объясняется тем, что по мере возрастания чисел в коде Грея в некоторый момент времени изменяется только одна цифра. В двоичном коде это не так (табл. 8.6).
В преобразователе, показанном на рис. 8.9, количество логических схем ИСКЛЮЧАЮЩЕЕ ИЛИ равно количеству разрядов преобразуемых чисел. Предположим, что слева в схему вводится число в коде Грея 1010 (01010). [Заметим, что на выходах схем сигнала переноса не образуется (1 + 1=0).] Нуль, цо-ступающий на верхний вход схемы А, передается и на выход, поскольку вход непосредственно соединен с выходом. При подаче 1 на нижний вход схемы А на выходе этой схемы также формируется 1. Но выход этой схемы связан с входом схемы В. Поскольку на нижний вход схемы В сигнал не поступает (подается сигнал, соответствующий нулю), на выходе формируется 1. Эта 1 подается на верхний вход схемы С и так как на нижний вход этой схемы также поступает 1, то на ее выходе получаем 0. Аналогично этому, поскольку на входы схемы D сигналы не поступают (подаются нули) , то на выходе также получается 0. Таким образом, число 1010 в коде Грея преобразуется в двоичное число 1100 (табл. 8.6).
Таблица 8.6
Десятичное число | Двоичный код | Код Грея |
Рис. 8.10. Схема считывания двоичного числа в прямом и обратном кодах.
Глава 9
МОСТОВЫЕ СХЕМЫ
Мост Хея
На рис. 9.5, а показан мост Хея. Этот мост аналогичен мосту Максвелла, описанному ранее, за исключением того, что конденсатор Ci и резистор R2 включены не параллельно, а последовательно. Мост Хея используется для измерений индук-тивностей очень большой величины. Неизвестные индуктивность и сопротивление рассчитываются по формулам
Мост Шеринга
Мост Шеринга, показанный на рис. 9.5, б, используется для высоковольтных измерений. Неизвестную величину емкости конденсатора Сх находят из следующего выражения:
(9.13)
Рис. 9.5. Мостовые схемы Хея и Шеринга.
Глава 10
ИСТОЧНИКИ ПИТАНИЯ И СХЕМЫ УПРАВЛЕНИЯ
Схема с тиристорами
Тиристор, или кремниевый управляемый прибор, представляет собой специальный тип полупроводникового диода, который переводится в открытое состояние путем подачи напряжения на управляющий электрод. Тиржгщры выпускаются различных размеров и номинальных мощностей, что позволяет использовать их для управления определенными уровнями мощности. Например, прибор размером 13X26 мм может управлять током — 20 А при напряжении — 400 В.
Характеристики тиристора имеют такую же полярность, как и у обычного кремниевого выпрямительного диода при подаче напряжения между анодом и катодом. Однако характеристики тиристора по сравнению с диодами имеют большое преимущество, так как позволяют путем подачи небольших напряжений и при очень малой мощности управлять током значительной величины.
Схема, в которой используется тиристор, приведена на рис. 10.И,а, а на рис. 10.11,6 показано условное обозначение тиристора. При подаче на вход постоянного напряжения тиристор обычно остается в закрытом состоянии и ток через него и, следовательно, через нагрузку не протекает. Если же подать запускающее напряжение между управляющим электродом и катодом (рис. 10.11, а), то тиристор переводится в полностью открытое состояние. При этом основное сопротивление для источника постоянного напряжения составляет сопротивление нагрузки. После запуска тиристора, даже если отключить запускающее напряжение, прибор все равно остается в открытом состоянии, и ток продолжает протекать через нагрузку. Таким образом, запуск можно осуществлять короткими импульсами и тем самым подавать в налрузку ток большой величины.
Хотя после запуска тиржгщра напряжение на управляющем электроде перестает действовать, все же можно перевести тиристор в закрытое состояние путем изменения приложенного к нему постоянного напряжения. Выключение можно осуществить или путем отключения поданного на тиристор напряжения, или путем изменения его полярности на обратную.
Рис. 10.11. Схема включения тиристора (а) и условные обозначения обычного тиристора (б) и тиристора с двумя управляющими электродами (в).
Переменное напряжение также можно использовать как в качестве управляющего сигнала, так и управляемого. При подаче на управляющий электрод переменного напряжения, которое находится в фазе с напряжением, приложенным между анодом и катодом, тиристор будет открываться во время каждого положительного полупериода напряжения на его аноде. Если разность фаз между управляющим и управляемым напряжениями будет постепенно изменяться, то тиристор будет открыт в течение части положительного полупериода, уменьшая тем самым мощность, передаваемую в нагрузку. Фазосдвигающая цепь, описанная в разд. 10.12, может использоваться для управления мощностью, поступающей в нагрузку.
Для выделения постоянного напряжения на нагрузке полученное пульсирующее напряжение можно подать на обычный фильтр, состоящий из последовательного резистора или дросселя и параллельного конденсатора.
Путем введения в тиристор дополнительного управляющего электрода можно получить кремниевый управляемый переключатель (рис. 10.И,в). Такой прибор может запускаться импульсами либо положительной, либо отрицательной полярности. В отличие от обычного тиристора переключатель можно перевести в закрытое состояние путем подачи сигнала на управляющий электрод.
Рис. 10.12. Применение тиристора в телевизионном приемнике в качестве высоковольтного ограничителя.
Кроме управления мощностью, тиристор можно также использовать в качестве высоковольтного ограничителя (рис. 10.12). Такая схема применяется в цветных телевизионных приемниках (например, в некоторых моделях фирмы Sylvania) для того, чтобы избежать появления слишком больших напряжений, которые могут нарушить работоспособность элементов или вызвать генерирование рентгеновского излучения.
Управление осуществляется в цепи усилителя строчной развертки, выполненного на транзисторе n — р — n-типа. В схеме ограничения используются стабилитрон Д1 и тиристор Д2. Вывод стабилитрона, находящийся под потенциалом 120В, связан со схемой, которая вырабатывает высокое напряжение. Если высокое напряжение по какой-то причине возрастет до уровня, превышающего нормальный, то при 135 В произойдут пробой стабилитрона и запуск тиристора. При этом тиристор открывается, его малое сопротивление зашунтирует входную базовую цепь усилителя строчной развертки, изменится смещение на базе транзистора и его проводимость уменьшится. В результате схема строчной развертки и связанный с ней источник высокого напряжения перестают работать до тех пор, пока путем регулировки не будет устранена причина, вызвавшая повышение высокого напряжения. Если же причина заключается в выходе из строя какого-либо элемента схемы, который не может быть восстановлен регулировкой, то вновь произойдет запуск тиристора и высоковольтная часть опять будет переведена в нерабочее состояние.
Схема с игнитроном
Игнитрон представляет собой электронную лампу, временем пребывания которой в открытом состоянии можно управлять. В игнитроне находится жидкая ртуть, контакт с которой имеет вывод во внешнюю цепь (рис. 10.14,а). Кроме того, в игнитроне находятся анод и электрод поджига; кончик электрода, изготовленный из карбида кремния или карбида бора,, погружен на небольшую глубину в ртуть. Если между электродом поджига и ртутью есть некоторая разность потенциалов,, то образуется искра, в результате чего возникает электронная эмиссия. При положительном потенциале на аноде электроны,, двигаясь к аноду, будут сталкиваться с атомами газа в лампе,. т. е. начнется процесс ионизации.
Рис. 10.14. Игнитрон (а) и схема с его применением (б).
Когда через игнитрон протекает ток, падение напряжения на нем невелико; следовательно, эта лампа имеет небольшое внутреннее сопротивление. Игнитрон обладает рядом преимуществ: опасность пробоя между анодом и катодом невелика, так как максимальное обратное напряжение имеет место только в интервалы времени, когда внутреннее сопротивление лампы имеет большую величину; не требуется энергии для подогрева катода; как и в случае тиристора, запуск игнитрона может производиться в любой точке периода переменного напряжения, что позволяет осуществлять управление выходной мощностью. Поскольку ртуть имеет неолраниченный срок службы и может выдерживать большие перегрузки, игнитрон находит широкое применение в мощных промышленных установках. Вследствие присутствия ртути лампа должна работать в вертикальном положении.
Схема с применением игнитрона изображена на рис. 10.14,6. Диод с указанной на рисунке полярностью включен последовательно с ограничительным резистором Ri между анодом и электродом поджига. Источник переменного тока соединен последовательно с нагрузкой Rн и игнитроном, т. е. так же, как и в схеме с тиристором. Во время действия положительного полупериода переменного напряжения диод Д[ и игнитрон hi находятся в открытом состоянии. Однако игнитрон не может открываться до тех пор, пока электрод поджига не вызовет электронную эмиссию. Когда диод находится в открытом состоянии, происходит электрический разряд между электродом и ртутью, и возникающая в результате электронная эмиссия вызовет ионизацию и протекание тока. Во время отрицательной полуволны переменного напряжения и игнитрон, и диод находятся в закрытом состоянии. Вместо диода Д( управляющее напряжение, как и в схеме с тиристором, может вырабатываться фазосдвигаю-щей цепью (см. рис. 10.13). Показанная на рис. 10.14 схема имеет невысокий к. п. д., так как в ней используется однополу-периодное выпрямление. Полученное напряжение перед подачей в нагрузку для уменьшения пульсаций может быть отфильтровано. Для повышения к. п. д. можно применять схему с игнитронами, выполняющую двухполупериодное выпрямление, которую и рассмотрим в следующем разделе.
Двухполупериодная схема с игнитронами
По сравнению со схемой однополупериодного выпрямления с игнитроном, рассмотренной выше, Двухполупериодная схема (рис. 10.15, а) имеет более высокий к. п. д. Как и в обычной схеме двухполупериодного выпрямителя, игнитроны открываются поочередно, и ток через нагрузку Rн протекает всегда в одном направлении, показанном на рисунке стрелкой (полярность напряжения на нагрузке также указана). Как и в других схемах источников питания, амплитуду пульсаций можно уменьшить, если применить соответствующие фильтры.
Во время действия положительного полупериода напряжения на верхней половине вторичной обмотки L2 трансформатора на аноде игнитрона И1 также действует положительное напряжение. Если в это же время на диод R1 подано положительное напряжение, то игнитрон И1 перейдет в открытое состояние. В течение этого времени на аноде второго игнитрона И2 напряжение будет отрицательным, и он будет находиться в закрытом состоянии. Электроны будут двигаться от ртути к аноду И1 и через резистор нагрузки Rн. Когда переменное напряжение на верхней половине обмотки Z2 станет отрицательным, то на нижней половине этой обмотки оно будет положительным. При этом игнитрон И1 будет закрыт, а игнитрон И2 может перейти в открытое состояние при запуске напряжением соответствующей полярности через диод Д2. При открытом игнитроне И2 электроны будут протекать от ртути к аноду и через нагрузку в том же направлении, что и в предыдущем полупериоде. Длительностью интервалов времени, в течение которых игнитроны находятся в открытом состоянии, можно управлять путем изменения фазы напряжения, подаваемого на обмотку L4. Так как это напряжение появляется на обмотке L3 со сдвигом фазы относительно центрального вывода, диоды Д1 и Д2 поочередно осуществляют запуск то одного, то другого игнитрона.
Рис 10.15. Схемы двухполупериодного выпрямителя на игнитронах.
Если требуется питать нагрузку переменным током, то в этом случае можно использовать схему из двух игнитронов, показанную на рис. 10.15,6. В этой схеме в течение очередных полупериодов направление тока в нагрузке меняется на противоположное. Таким образом, когда на входных зажимах Т1 и Т2 действует положительная полуволна напряжения, напряжение на аноде И2 также положительное, а на катоде отрицательное. При этом и на аноде HI напряжение отрицательное, вследствие чего он не может открыться. Если полярность напряжения на диоде Д2 такова, что И2 будет переведен в открытое состояние, то электроны будут протекать от ртути к аноду И2 и через сопротивление нагрузки к зажиму Т1. Во время отрицательного полупериода на входных зажимах отрицательное напряжение будет приложено к аноду И2 и катоду И1. В этих условиях игнитрон И2 открываться не может. В это время на аноде игнитрона HI напряжение будет положительным, а на его катоде — отрицательным. Следовательно, при подаче соответствующего напряжения на диод Д1 можно осуществить запуск этого игнитрона. При открытом игнитроне HI электроны через сопротивление нагрузки будут протекать вниз, т. е. в противоположном направлении по сравнению с предшествующим полупериодом. Таким образом, ток через нагрузку будет переменным.
Глава 11
ЦЕПИ ПРЕОБРАЗОВАНИЯ ФОРМЫ СИГНАЛОВ
Глава 12
РЕАКТАНСНЫЕ СХЕМЫ
Основная схема с управляемым реактивным сопротивлением
Электронные реактансные схемы, эквивалентные реактивной цепи, можно построить, используя резисторно-емкостные цепи с транзистором, и таким образом получить реактивный элемент, потребляющий либо опережающий, либо запаздывающий ток относительно приложенного к элементу колебательного напряжения; таким напряжением обычно является напряжение на колебательном контуре автогенератора. Если реактансную схему подключить параллельно колебательному контуру автогенератора, то появляется возможность управлять частотой генерации. Управление реактансной схемой в свою очередь осуществляется путем изменения напряжения смещения, подаваемого на ее вход. Таким образом, появляется возможность подстройки частоты автогенератора путем изменения управляющего напряжения смещения.
Специальные полупроводниковые диоды при подаче на них обратного смещающего напряжения обладают свойствами переменной емкости и также могут использоваться для подстройки частоты резонансного контура. Такие диоды, называемые ва-ракторами, изменяют величину емкости при изменении приложенного напряжения. Эти приборы называют также варикапами. Они находят широкое применение в радио- и телевизионных приемниках и позволяют упростить блоки настройки. Транзисторные реактансные RС-схемы также широко применяются в промышленных системах управления, в блоках перестройки частоты и устройствах регулирования фазы (см. также рис. 4Д. 6.6, 15.2 и 15.9).
Типичная схема управления реактивным сопротивлением реактансной схемы на основе полевого транзистора изображена-на рис. 12.1. Здесь С1 и R1 являются фазосдвигающими элементами, которые обусловливают протекание реактивного тока через выходной резистор Rz. Подробнее свойства этой схемы рассматриваются в следующем разделе. Через конденсатор Сз осуществляется связь реактансной схемы с колебательным контуром автогенератора для перестройки частоты генерации путем изменения амплитуды и полярности сигнала, подаваемого на затвор полевого транзистора. Реактансная схема может иметь или емкостный, или индуктивный характер в зависимости от соотношения фаз напряжений на выходе реактансной схемы и на контуре автогенератора. В случае чисто емкостного характера реактансной схемы потребляемый ею ток будет опережать напряжение на 90°, а при чисто индуктивном характере этой схемы потребляемый ток будет отставать на 90°. Таким образом, создавая отставание или опережение потребляемого тока, схема имитирует емкостную или индуктивную нагрузку, действие которой будет описано в разд. 12.2 и 12.3.
Рис. 121. Основная схема с управляемым реактивным сопротивлением.
Реактансная схема RС-типа
Реактивности различного характера можно получить, комбинируя элементы ri и С1 (рис. 12.2). Для сравнения на рис. 12.2, а и в приведены упрощенные варианты схемы, изображенной на рис. 12.1, с соответствующими векторными диаграммами (рис. 12.2,б и г]. Схема на рис. 12.2,а имеет емкостную характеристику, и так как она подключена параллельно колебательному контуру автогенератора, то ее эквивалентная емкость добавляется к емкости колебательного контура. Таким образом, образуется результирующая колебательная система автогенератора, состоящая из указанных емкостей и индуктивности контура автогенератора. Небольшие паразитные емкости и индуктивности, имеющиеся в схеме, также оказывают влияние на частоту. Частота генератора определяется суммарными значениями индуктивности и емкости элементов параллельного резонансного контура L и С. Поэтому изменение величины емкости или индуктивности колебательного контура приводит к изменению частоты генерируемых колебаний. Частота колебаний определяется общеизвестной формулой
(12.1)
В схеме на рис. 12.2, а элементами, определяющими емкостную характеристику реактансной схемы, являются конденсатор C1 и резистор R1, причем С1 включают между стоком транзистора, и затвором, a R1 — между затвором и землей. Таким образом, указанные два элемента реактансной схемы фактически присоединены параллельно колебательному контуру автогенератора. Следовательно, вырабатываемый автогенератором сигнал оказывается приложенным к цепи R1C1.
Рис. 12.2. Реактангные схемы RC-тuna.
Значения емкости С1 и сопротивления R1 выбираются таким образом, чтобы на частоте колебаний автогенератора емкостное реактивное сопротивление С1 было значительно выше сопротивления R1. При этом на колебательное напряжение автогенератора, воздействующее на эту цепь, основное влияние будет оказывать емкость. Следовательно, ток в этой цепи на частоте колебаний автогенератора будет опережать напряжение Е0 на колебательном контуре автогенератора. Если вектор напряжения ЕС изобразить графически (рис. 12.2,6), то вектор тока IR1C1, протекающего через цепь R1 и C1, будет опережать вектор E0 на 90°. Однако напряжение на R1 и ток через него изменяются синфазно. Следовательно, напряжение E3 на затворе, равное падению напряжения на R1, также будет опережать напряжение E0 на 90°. Так как ток стока находится в фазе с напряжением на затворе, то вектор тока стока Iс совпадает по направлению с вектором Е3. Отсюда следует, что ток стока опережает напряжение генератора на 90°. Именно опережение тока стока обеспечивает емкостную характеристику реактансной схемы, присоединенной к контуру генератора. Эквивалентная емкость реактансной схемы Сэ зависит от крутизны gT полевого транзистора и выражается формулой
Cэ = gTR1C1. (12.2)
где Сэ — эквивалентная емкость, Ф;
gT — крутизна характеристики транзистора, А/В;
Ri — сопротивление резистора, Ом;
С1 — емкость конденсатора в цепи обратной связи, Ф. На практике сопротивление резистора Ri выбирается таким образом, чтобы оно составляло приблизительно десятую часть реактивного сопротивления емкости Ci, благодаря чему обеспечивается емкостный характер цепи обратной связи. Если сопротивление Ri равно десятой части емкостного сопротивления С], то приведенную выше формулу можно записать в виде
(12.3)
где f — рабочая частота.
Формула (12.3) показывает, что эквивалентная емкость зависит только от крутизны транзистора и рабочей частоты. Емкостное сопротивление Хс также связано с частотой и эквивалентной емкостью:
(12.4)
Из закона Ома следует, что емкостное сопротивление связано с напряжением и током:
(12.5)
Из приведенного анализа видно, что изменение переменной составляющей тока стока Iс полевого транзистора приводит к изменению емкостного реактивного сопротивления и, следовательно, эквивалентной емкости. Меняя амплитуду входного напряжения, подаваемого на затвор, можно изменять ток стока. Ток стока можно увеличивать или уменьшать, подавая на затвор отрицательное или положительное напряжение смещения, и таким образом изменять величину емкости, моделирующей реактивное сопротивление. Входной сигнал может также содержать составляющую звукового сигнала, которая будет увеличивать и уменьшать ток стока в соответствующие полупериоды. Таким образом, частота генератора будет увеличиваться и уменьшаться в зависимости от частоты входного звукового сигнала. Такая система используется в передатчиках с ЧМ и в других устройствах, где требуется частотная модуляция (гл. 6 и 15).
Предположим, что для получения сигнала с ЧМ используется сигнал звуковой частоты. При подаче звукового сигнала большей амплитуды отклонение тока стока увеличивается и ток будет иметь величину выше и ниже среднего значения, определяемого смещением. Следовательно, частота сигналов генератора будет изменяться в сторону больших и меньших значений относительно ее номинального значения (несущей частоты). Таким образом, когда реактансная схема находится под воздействием управляющего звукового сигнала, частота генератора изменяется пропорционально частоте звукового сигнала, а величина девиации частоты определяется амплитудой звукового сигнала, подаваемого на вход.
В схеме на рис. 12.2,0 характеристика реактансной схемы является индуктивной. Здесь резистор R1 и конденсатор С1 также образуют реактивную цепочку. Разделительный конденсатор С2 служит для того, чтобы напряжение стока не подавалось на затвор. Этот конденсатор имеет большую емкость, так что его последовательное реактивное сопротивление достаточно мало и обеспечивает хорошую связь на частоте сигнала между стоком и цепью обратной связи R1C1.
В этой схеме сопротивление резистора R1 выбирается примерно в 10 раз больше реактивного сопротивления конденсатора Cj. Поэтому сигнал от автогенератора, приложенный к этой цепи, вызовет протекание тока IR1C1. находящегося в фазе с напряжением (рис. 12.2, г). Поскольку входное напряжение на затвор подается с конденсатора C1, ток конденсатора IR1C1 опережает напряжение Е3 на конденсаторе на 90°. Но так как ток стока Iс совпадает по фазе с напряжением Е3 на затворе, то ток стока Iс отстает от напряжения Е0 генератора на 90°. Таким образом, вследствие запаздывания тока стока относительно Ео моделируемое реактансной схемой эквивалентное реактивное сопротивление носит индуктивный характер. Величину эквивалентной индуктивности можно рассчитать по формуле
(12.6)
где L3 — эквивалентная индуктивность, Г;
gT — крутизна характеристики транзистора, А/В;
f — рабочая частота.
Так же как и в схеме на рис. 12.2, а, величину реактивного сопротивления можно изменять путем подачи напряжения смещения между затвором и землей. Индуктивное сопротивление зависит от частоты и определяется формулой
XL = 6,28fL. (12.7)
В соответствии с законом Ома индуктивное сопротивление определяется следующим выражением:
(12.8)
Так же как и в схеме на рис. 12.2, а, величину реактивного сопротивления можно изменять, варьируя модулирующее напряжение на затворе. Таким образом, величина эквивалентной индуктивности, шунтирующей колебательный контур автогенератора, может изменяться при помощи входного сигнала.
12.3. Реактансная схема RL-типа.
В реактансных схемах вместо конденсатора можно применять катушку индуктивности. В реактансной схеме на рис. 12.3, а реактивная цепь образована резистором Ri и катушкой индуктивности L1. Здесь сопротивление Ri выбирается таким образом, чтобы его величина была примерно в 10 раз больше реактивного сопротивления L1. При этом условии ток IRL через цепочку R1 и L1 фактически совпадает по фазе с приложенным напряжением Е0 от автогенератора (рис. 12.3,6). Однако, поскольку напряжение на затвор транзистора подается только с индуктивности L1, напряжение Е3 на затворе будет опережать ток IRL на 90°. Влияние этого напряжения на ток стока 1С показано на рис. 12.3, б. Следовательно, ток стока будет опережать напряжение Е0 генератора на 90°, т. е. схема имеет емкостный характер (как и схема на рис. 12.2,а). Формулы, аналогичные приведенным для схемы рис. 12.2, а, при надлежащей замене емкости на индуктивность справедливы и в данном случае. Разделительный конденсатор C1 служит для того, чтобы напряжение стока не подавалось на затвор через резистор Ri и не оказывало влияния на величину эквивалентной емкости.
Рис. 12.3. Реактансные схемы RL-типа.
Еще один вариант реактансной схемы изображен на рис. 12.3, в. Здесь индуктивность включена между стоком и затвором. Так как в этом случае постоянное напряжение со стока через индуктивность может подаваться на затвор, необходимо применить разделительный конденсатор С1. Этот конденсатор имеет большую емкость и, следовательно, небольшое сопротивление на частоте сигнала; поэтому для напряжения сигнала он практически представляет собой короткозамкнутую цепь. Благодаря этому напряжение сигнала с автогенератора подается на индуктивно-резистивную цепь так же, как и в других рассмотренных схемах.
В схеме на рис. 12.3, в индуктивность L1 выбирается так, чтобы ее реактивное сопротивление на частоте сигнала было в 10 раз больше сопротивления резистора R1. Поэтому ток IRL в цепи обратной связи будет отставать от напряжения Е0 автогенератора на 90° (рис. 12.3,г). Этот ток протекает также через резистор R1 и определяет напряжение ERl на резисторе, которое совпадает по фазе с током IRL (рис. 12.3, г). Ток стока Iс имеет ту же фазу, что и напряжение ERI или Е3 (рис. 12.3, г). Отсюда следует, что напряжение Е0 автогенератора опережает ток стока на 90°. Следовательно, данная реактансная схема имеет индуктивный характеру причем величина эквивалентной индуктивности и ее реактивное сопротивление рассчитываются по формулам, подобным приведенным для схемы на рис. 12.2, в. Таким образом, путем воздействия управляющего напряжения-на резистор Ri можно управлять величиной эквивалентной индуктивности и соответственно изменять частоту автогенератора,, как и в других рассмотренных реактансных схемах.
Схема подстройки с двумя варакторами
Как указывалось в разд. 12.1, варактор обладает емкостью, величина которой зависит от приложенного к нему обратного напряжения. Типичная схема с варакторами, используемая для подстройки приемника, показана на рис. 12.4, где параллельно резонансному контуру C1L1 включены два варакторных диода. В этой схеме диоды Д1 и Д2 включены встречно для обеспечения более высокой стабильности и линейности. Однако часто-применяются схемы только с одним варакторным диодом.
Схема, показанная на рисунке, представляет собой высокочастотный резонансный усилитель на полевом транзисторе, контур которого настраивается в резонанс с частотой приходящего сигнала. Переменный конденсатор Ci может быть подстроечным и использоваться для подстройки в диапазоне одной станции или же выполнять роль основного конденсатора настройки, действующего независимо от варакторных диодов. В некоторых приемниках применение селекторного ключа позволяет осушествлять ручную настройку конденсатора для последовательного выбора передающей станции. При этом поворот ротора конденсатора C1 производится синхронно с поворотом конденсатора гетеродина (одной ручкой). При варакторной настройке выбор необходимой станции осуществляется кнопочным управлением. В этом случае при помощи кнопок в схему источника питания включаются резисторы с различным сопротивлением, и таким образом изменяется напряжение, подаваемое на варакторные диоды. При каждом уровне напряжения приемник настраивается на определенную станцию.
Рис. 12.4. Схема подстройки с двумя варакторными диодами (а) и условное обозначение такого диода (б).
В остальном показанная на рис. 12.4, а схема является традиционной. Разделительный конденсатор С2 служит для подачи сигнала на затвор полевого транзистора, а также для изоляции контура от постоянного напряжения. Резистор AI соединяет затвор транзистора с землей, и на него подается входной сигнал. Резисторно-емкостная цепь между истоком и землей обеспечивает стабилизацию постоянного тока, протекающего между истоком и стоком. Через резистор R3 подается напряжение питания на сток.
Условные обозначения варакторных диодов, показанные на-: рис. 12.4, а, применяются наиболее часто, но иногда используют и другие символы (рис. 12.4,6). Обозначения катода (к) и анода (а) на рис. 12.4,6 не отличаются от принятых для обычных диодов, но рядом с диодом изображается символ малой емкости.
Схема с одним варактором
Применение варакторов в блоке настройки показано на» рис. 12.5. Такой блок настройки может использоваться в телевизорах и высококачественных радиоприемниках. Как показано на рисунке, настройка осуществляется кнопочным переключателем, который подключает резисторы. Эти резисторы являются переменными; изменяя их сопротивление, обеспечивают подачу соответствующего уровня напряжения для настройки на сигнал определенной станции. Резистор R2 предназначен для ограничения приложенного напряжения до необходимого уровня, а конденсатор С1 имеет большую емкость и поэтому заземляет контур на частоте сигнала.
Хотя на схеме на рис. 12.5 показаны только три подстроеч-ных резистора, при необходимости количество резисторов может быть увеличено. Как и в схеме, показанной на рис. 12.4, здесь можно осуществлять настройку ручным способом, так что в тех случаях, когда требуется перестройка по всему диапазону приемника, можно обойтись без варакторов. Так как в схемах всегда имеется некоторый дрейф, то часто применяют различные виды точной автоматической настройки (см. гл. 7).
Рис. 12.5. Схема настройки с одним ва рак горным диодом.
Глава 13
СПЕЦИАЛЬНЫЕ УСТРОЙСТВА И СИСТЕМЫ
Схема гашения
В цветных телевизионных приемниках управление полосовым усилителем осуществляется сигналами цветности и требуется, чтобы синхроимпульсы не проходили через этот усилитель и не попадали на кинескоп, иначе они вызовут искажение изображения. Поэтому в приемнике должна быть предусмотрена схема гашения. Типичная схема гашения, в которой использованы транзисторы n — р — n-типа, изображена на рис. 13.9. В этой схеме на базу запирающего транзистора с выходного трансформатора строчной развертки подаются импульсные сигналы, которые периодически создают на базе положительное смещение, в результате чего транзистор открывается во время действия импульса. Эмиттер транзистора полосового усилителя подключен к земле через резистор R4- Поэтому с приходом на базу импульса гашения транзистор открывается и ток, протекающий через резистор R4, возрастает. В .результате падение напряжения на резисторе R4 увеличивается; его полярность указана на рисунке. Поэтому прямое смещение на транзисторе полосового усилителя уменьшается настолько, что транзистор закрывается. Так как описанное бланкирование полосового усилителя осуществляется во время прихода синхроимпульсов, то последние не проходят на выход усилителя и, следовательно, не подаются на кинескоп.
Рис. 13.9. Схема гашения и фиксации.
Рис. 13.10. Система переключения AM- и ЧМ-сигналое в стереоприемнике.
Электромеханические системы управления бывают двух типов: разомкнутые и замкнутые. Система разомкнутого типа — это электрические и механические устройства, соединенные между собой образующие законченную систему, предназначенную для выполнения определенной функции при лодаче соответствующей команды. Таким образом, электрическую стиральную машину или электросушитель можно рассматривать как разомкнутую систему. Например, в электросушителе при нажатии кнопки производится включение схемы и начинается выполнение механических операций. Степень нагрева и время сушки устанавливаются заранее. Система устроена таким образом, что по окончании заданного времени она автоматически отключается. Бытовые нагревательные приборы, регулируемые при помощи термостатов, можно рассматривать как замкнутые системы управления. Здесь термостат является датчиком отклонения температуры от некоторого заданного уровня. При отклонении температуры от заданного уровня автоматически включается нагреватель, температура повышается до заданного уровня, после чего система выключается.
Сервомеханизм можно определить как систему управления замкнутого типа, в которой элементом управления является положение стрелки, рычага или стержня. Сервомеханизм, или следящая система, используется в радиолокационной станции, где управляемым элементом является механическое положение антенны. Еще одним примером применения сервомеханизма является цветная печать, где объектом управления является положение бумаги, необходимое для получения правильного отпечатка. Сервомеханизмы применяются также для управления давлением жидкости в трубопроводе, осуществляемого изменением положения клапана, регулирующего давление.
Сельсины представляют собой устройства, преобразующие механические величины в электрические сигналы, которые передаются по проводам и затем опять преобразуются в механические величины. На практике применение сервомеханизмав и сельсинов взаимно связано. Основные схемы указанных механизмов рассматриваются в настоящей главе.
Глава 14
ИНТЕГРАЛЬНЫЕ СХЕМЫ
Многоэмиттерные транзисторы в схемах ТТЛ-типа
В интегральных логических схемах часто используются мно-гоэмиттерные транзисторы (МЭТ) (рис. 14.4, а). Такие транзисторы удобно применять для многовходовых логических вентилей, так как это упрощает процесс изготовления интегральных схем. Применение многоэмиттерного транзистора в схеме логического вентиля показано на рис. 14.4,6. Здесь три эмиттера транзистора Т1 n — р — n-типа являются входными зажимами схемы. Транзистор Т2 инвертирует сигнал, поэтому оба транзистора T1 и Т2 формируют логику отрицания. Эта схема представляет транзисторно-транзисторный логический (ТТЛ) вентиль типа И-НЕ (см. гл. 8).
Оба транзистора — в схеме n — р — n-типа, поэтому при работе в нормальном (неинверсном) режиме прямое смещение на базе имеет положительную полярность относительно эмиттера.
На базу МЭТ через резистор R1 подается положительный потенциал (несколько вольт). При подаче хотя бы на один из входов МЭТ отрицательного или даже небольшого положительного потенциала (не более — 0,5 В) эмиттерный ток МЭТ почти равен току базы МЭТ, а ток базы транзистора Т2 практически равен нулю, и транзистор Т2 заперт. Если же на все входы МЭТ будут поданы положительные потенциалы выше 1 — 2 В, то токи эмиттеров МЭТ становятся практически равными нулю, а ток базы МЭТ оказывается равным току базы транзистора Т2.
Рис. 14.4 Многоэмиттерный транзистор fa) и логическая схема ТТЛ-типа на его основе (б).
В этом случае транзистор T2 открыт и находится в состоянии насыщения. Выходной каскад на транзисторе Т2 работает как инвертор, а МЭТ выполняет функции логической схемы И.
Применение многоэмиттерных транзисторов и логических устройств ТТЛ-типа позволяет минимизировать число элементов, составляющих интегральную схему. Использование непосредственной связи между транзисторами исключает применение переходного конденсатора, способствует повышению быстродействия и помехоустойчивости логической схемы этого типа, выполняющей логическую функцию И-НЕ. Иногда применяют многоэмиттерные транзисторы с четырьмя-пятью входами, но большее число эмиттеров приводит к снижению помехоустойчивости схемы.
Схема вентиля ИЛИ-НЕ инжекционного типа
На рис. 14.7 изображена схема логического двухвходового вентиля ИЛИ-НЕ. Схема имеет два выхода, один из которых является выходом с отрицанием (ИЛИ-НЕ), а второй выход — неинвертированный (ИЛИ). В таком вентиле использованы три схемы инжекционного типа, а источники постоянного тока образованы инжекционными транзисторами, являющимися неотъемлемой частью интегральной схемы.
Коллекторы каждой из входных инжекционных схем соединены между собой перекрестно, т. е. верхний коллектор схемы А соединен с нижним коллектором схемы В и наоборот. Выход схемы А подан на базу дополнительной инжекционной схемы, которая является инвертором. Благодаря этому при подаче сигнала на вход А на выходе этой схемы он инвертируется; вторая схема инвертирует сигнал вторично и возвращает его в исходное состояние. Когда же сигнал подается на вход В, то он инвертируется только один раз, и поэтому полярность сигнала на выходе окажется противоположной сигналу на входе.
Рис. 14.8. Схема фиксации с диодами Шоттки.
При подаче сигнала на вход А он появляется на выходе после второго инвертора в неинвертированном виде. Однако с первой инжекционной схемы этот же сигнал подается и на выход нижней схемы, а так как здесь он не подвергается повторной операции инвертирования, на нижнем выходе вентиля сигнал появляется в инвертированном виде (А).
Аналогичным образом при подаче импульса на вход В на нижнем коллекторе схемы и на выходе он появится в инвертированном виде (В). Выходной сигнал с верхнего коллектора нижней схемы подается одновременно на верхнюю схему и выходной инвертор. Следовательно, на верхнем выходе этот сигнал появится в неинвертированном виде. Таким образом, выходные сигналы в такой схеме появляются в случае подачи сигнала ИЛИ на вход Л, ИЛИ на вход В, ИЛИ на оба входа вместе, а выходной сигнал получается как в инвертированном, так и в неинвертированном виде. Путем добавления других схем, аналогичных показанной на рис. 14.7, можно получить схему с большим числом входов и выходов.
Схема фиксации с диодами Шоттки
Для улучшения характеристик логических схем в интегральной технике широко применяются специальные приборы, называемые диодами Шоттки.
Эти диоды выполняют функции переключения с значительно более высокой скоростью, чем обычные диоды. Кроме того, благодаря небольшому падению напряжения на диодах Шоттки потери мощности в таких диодах минимальны. Условное изображение диодов Шоттки (рис. 14.8) отличается от принятого для
обычных диодов.
В схеме на рис. 14.8 диоды Шоттки используются для фиксации выходных сигналов вентилей инжекционного типа. Эти диоды ограничивают амплитуду сигналов, подаваемых на вход логических схем, и уменьшают время переключения, которое имело бы место при чрезмерно большой амплитуде сигналов. Применение фиксирующих диодов Шоттки позволяет увеличить скорость переключения инжекционного вентиля примерно в 5 — 6 раз. Приведенная на рисунке схема применяется в вентилях инжекционного типа фирмы IBM для уменьшения амплитуд сигналов, превышающих 500 мВ, до уровня 150 — 300 мВ.
Глава 15
ФУНКЦИОНАЛЬНЫЕ СХЕМЫ ПЕРЕДАЮЩИХ И ПРИЕМНЫХ УСТРОЙСТВ
Передатчик АМ-сигналов
Рис. 15.1. Блок-схема передатчика с A.M.
Схема передающего устройства, показанная на рис. 15.1, применяется для генерирования АМ-сигналов, которые передаются в широковещательных радиосистемах. (Соответствующий приемник АМ-сигналов рассмотрен в разд. 15.5). Как показано на рис. 15.1, высокочастотный генератор с кварцевой стабилизацией генерирует колебания несущей частоты. С выхода генератора колебания подаются на стандартный буферный усилитель класса С или умножитель частоты, после чего амплитуда и частота сигнала принимают такие значения, которые требуются для управления высокочастотным усилителем мощности. Сигналы с микрофона, звукоснимателя или магнитофона подаются на предварительный усилитель. Далее для повышения амплитуды сигнала применяются звуковой усилитель и выходной усилитель мощности, с выхода которого сигнал используется для модуляции несущей (более подробно см. гл. 6).
Если сигнал с модулирующего усилителя класса С подается непосредственно в антенну, как показано на рисунке, то такую схему называют схемой модуляции на высоком уровне мощности (модуляция осуществляется при наибольшей мощности несущей). Если же после модулятора используется линейный усилитель класса В (показан штриховой линией), выход которого присоединяется к антенне, тогда имеет место схема модуляции на низком уровне мощности (модуляция производится при наименьшей мощности несущей).
В результате амплитудной модуляции для каждого сигнала звуковой частоты образуются сигналы верхней и нижней боковых частот. Таким образом, если несущая частота 100 кГц модулируется сигналом частотой 1000 Гц, то образуются сигналы с частотами 101 и 99 кГц. Это сигналы боковых полос, и вместе с несущей они образуют сложный радиосигнал, амплитуда высокочастотных колебаний которого изменяется с частотой модулирующего звукового сигнала. Так как боковые составляющие отстоят от несущей на частоту модулирующего сигнала, то при большей частоте модулирующего сигнала боковые составляющие будут дальше отстоять от несущей частоты, и, следовательно, для передачи и приема будет требоваться более широкая полоса частот.
М98
УДК 621.37
ББК 32.852
М--------------инф.письмо 6Ф0.32
041(01)-85
Редакция литературы по информатике и электронике
© 1978 Prentice-Hall, Inc.
© перевод на русский язык, «Мир», 1985, 1980
Матью Мэндл
200 ИЗБРАННЫХ СХЕМ ЭЛЕКТРОНИКИ
Старший научный редактор Л. П. Якименко
Младший научный редактор Е. П. Орлова
Художник Т. С. Андреева
Художественный редактор Н. М. Иванов
Технический редактор И. М. Кренделева
Корректоры Л. В. Байкова, Г. С. Заерко, Н. Н. Яковлева
ИБ № 5923
Сдано в набор 16.05.85. Подписано к печати 29.10.85. Формат 60Х90 1/1б. Бумага типографская N 1. Гарнитура латинская. Печать высокая. Объем 11,00 бум. л. Усл. печ. л. 22,00. Уч.-изд. л. 21 93 Усл. кр.-отт. 22,00. Изд. № 6/4453. Тираж 30000 экз. Зак. 1137. Цена 1 р. 90 к.
ИЗДАТЕЛЬСТВО «МИР» Москва, 1-й Рижский пер., 2. Московская типография № 11 Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли. Москва, 113105, Нагатинская ул., д. 1.
OCR Pirat
– Конец работы –
Используемые теги: Избранные, схемы, электр0.05
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ИЗБРАННЫЕ СХЕМЫ ЭЛЕКТРОНИКИ
Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Новости и инфо для студентов