рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Уравнение вынужденных колебаний и его решение. Резонанс.

Уравнение вынужденных колебаний и его решение. Резонанс. - раздел Связь, Телекоммуникаций и информатики Потери Механической Энергии В Любой Колебательной Системе Из-За  Наличи...

Потери механической энергии в любой колебательной системе из-за  наличия сил трения неизбежны, поэтому без «подкачки» энергии извне колебания будут затухающими. Существует несколько принципиально различных способов создания колебательных систем незатухающих колебаний. Остановимся более подробно на рассмотрении незатухающих колебаний под действием внешней периодической силы. Такие колебания называются вынужденными.
Продолжим изучение движения гармонического маятника (рис. 6.9 ). 

 

рис. 6.9

Помимо рассмотренных ранее сил упругости и вязкого трения, на шарик действует внешняя  вынуждающая периодическая сила, изменяющаяся по гармоническому закону

частота, которой может отличаться от собственной частоты колебаний маятника ωo.
Природа этой сил в данном случае нам не существенна. Создать такую силу можно различными способами, например, сообщить шарику электрический заряд и поместить его во внешнее переменное электрическое поле.
Уравнение движения шарика в рассматриваемом случае имеет вид

Разделим его на массу шарика и используем прежние обозначения параметров системы. В результате получим  уравнение вынужденных колебаний:


где fo = Fo/m − отношение амплитудного значения внешней вынуждающей силы к массе шарика.
Общее решение уравнения (3) достаточно громоздко и, конечно, зависит от  начальных условий. Характер движения шарика, описываемого уравнением (3), понятен: под действием вынуждающей силы возникнуть колебания, амплитуда которых будет возрастать. Этот переходный режим достаточно сложен и зависит от начальных условий. По прошествии некоторого промежутка времени колебательный режим установится, их амплитуда перестанет изменяться. Именно установившийся режим колебаний, во многих случаях представляет основной интерес. Мы не будем рассматривать переход системы к установившемуся режиму, а сконцентрируем внимание на описании и изучении характеристик этого режима.
При такой постановке задачи нет необходимости задавать начальные  условия, так как интересующий нас установившийся режим не зависит от начальных условий, его характеристики полностью определяются самим уравнением.
С аналогичной ситуацией мы сталкивались при изучении движения тела под действием постоянной внешней силы и силы вязкого трения 

По прошествии некоторого времени тело движется с постоянной установившейся скоростью  v = Fo, которая не зависит от начальных условий, и полностью определяется уравнением движения. Начальные условия определяют режим, переходный к установившемуся движению.
На основании здравого смысла разумно предположить, что в установившемся  режиме колебаний шарик будет колебаться с частотой внешней вынуждающей силы. Поэтому решение уравнения (3) следует искать в гармонической функции с частотой вынуждающей силы.
Для начала решим уравнение (3), пренебрегая силой сопротивления

 Попробуем найти его решение в виде гармонической функции

Для этого вычислим зависимости скорости и ускорения тела от времени, как производные от закона движения 

и подставим их значения в уравнение (4)

Теперь можно сократить на  cosωt. Следовательно, это выражение обращается в верное тождество в любой момент времени, при выполнении условия

Таким образом, наше предположение о решении уравнения (4) в виде (5)  оправдалось: установившийся режим колебаний описывается функцией

Отметим, что коэффициент A согласно полученному выражению (6) может быть, как положительным (при ω < ωo), так и отрицательным (при ω > ωo). Изменение знака соответствует изменению фазы колебаний на π (причина такого изменение будет выяснена чуть позже), поэтому амплитудой колебаний является модуль этого коэффициента |A|.
Амплитуда установившихся колебаний, как и следовало ожидать, пропорциональна величине вынуждающей силы. Кроме того, эта амплитуда сложным образом зависит от частоты вынуждающей силы. Схематический график этой зависимости показан на рис. 6.10

Рис. 6.10 Резонансная кривая

 

Как следует из формулы (6) и хорошо видно на графике, при приближении  частоты вынуждающей силы к собственной частоте системы амплитуда резко возрастает. Причина такого возрастания амплитуды понятна: вынуждающая сила «во время» подталкивает шарик, при полном совпадении частот установившейся режим отсутствует − амплитуда возрастает до бесконечности. Конечно, на практике такого бесконечного возрастания наблюдать невозможно: во-первых, это может привести к разрушению самой колебательной системы, во-вторых, при больших амплитудах колебаний нельзя пренебрегать силами сопротивления среды.
Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте колебаний системы называется явлением резонанса.
Приступим теперь к поиску решения уравнения вынужденных колебаний с учетом силы сопротивления 

Естественно, что и в этом случае решение следует искать в виде  гармонической функции с частотой вынуждающей силы. Легко заметить, что поиск решения в форме (5) в данном случае не приведет к успеху. Действительно, уравнение (8), в отличие от уравнения (4), содержит скорость частицы, которая описывается функцией синуса. Поэтому, временная часть в уравнении (8) не сократится. Следовательно, решение уравнения (8) следует представить в общей форме гармонической функции

в которой два параметра Ao и φ необходимо найти с помощью уравнения (8). Параметр Ao является амплитудой вынужденных колебаний, φ − сдвиг фаз между изменяющейся координатой и переменной вынуждающей силой. Используя тригонометрическую формулу для косинуса суммы, функцию (9) можно представить в эквивалентной форме

которая также содержит два параметра B = Aocosφ и C = −Aosinφ, подлежащих определению. Используя функцию (10), запишем явные выражения для зависимостей скорости и ускорения частицы от времени

и подставим в уравнение (8):

Перепишем это выражение в виде 

Для того чтобы равенство (13) выполнялось в любой момент времени  необходимо, чтобы коэффициенты при косинусе и синусе были равны нулю. На основании этого условия получаем два линейных уравнения для определения параметров функции (10):

Решение этой системы уравнений имеет вид 

На основании формулы (10) определяем характеристики вынужденных колебаний: амплитуду 

сдвиг фаз

При малом затухании эта зависимость имеет резкий максимум при приближении частоты вынуждающей силы ω к собственной частоте системы ωo. Таким образом, и в этом случае возможно возникновения резонанса, поэтому построенные зависимости часто называют резонансной кривой. Учет слабого затухания показывает, что амплитуда не возрастает до бесконечности, ее максимальное значение зависит от коэффициента затухания − с возрастанием последнего максимальная амплитуда быстро убывает.
Полученная зависимость амплитуды колебаний от частоты вынуждающей силы (16) содержит слишком много независимых параметров ( fo, ωo, γ) для того, чтобы построить полное семейство резонансных кривых. Как и во многих случаях, эту зависимость можно существенно упростить, перейдя к «безразмерным» переменным. Преобразуем формулу (16) к следующему виду

и обозначим

− относительная частота (отношение частоты вынуждающей силы к собственной частоте колебаний системы);

− относительная амплитуда (отношение амплитуды колебаний к величине отклонения Ao = f/ωo2 при нулевой частоте);


− безразмерный параметр, определяющий величину затухания. Используя эти обозначения, функция (16) существенно упрощается

так как содержит всего один параметр − δ.
Однопараметрическое семейство резонансных кривых, описываемых функцией  (16 б) может быть построено, особенно легко с помощью компьютера. Результат такого построения показан на рис. 629.

– Конец работы –

Эта тема принадлежит разделу:

Телекоммуникаций и информатики

Федеральное агентство связи.. государственное образовательное учреждение.. высшего профессионального образования поволжский государственный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Уравнение вынужденных колебаний и его решение. Резонанс.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

А.Г. Глущенко, Е.П.Глущенко
Введение в теорию колебаний. Конспект лекций. – Самара: ГОУВПО ПГУТИ, 2013. – 198 с.     Настоящее издание представляет собой учебное пособие к образовательному

Колебания в биологических объектах
Таким образом, колебания охватывают огромную область физических явлений и технических процессов. Классификация колебаний по характеру взаимодействия с окружающей средой

Гармонические колебания.
Гармоническое колебание —это колебание, при котором физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону

Аналитическое.
Колебательный процесс описывается в виде периодической функции, например,

Метод фазовых траекторий.
Метод описания колебаний путем построения траектории тражения системы в плоскости -

Траектория движения точки в плоскости называется фазовым портретом.
Особенно просто выглядит фазовая траектория гармонического колебания, при котором координата и скорость описываются функциями 

Способы представления колебательных движений: Аналитический, табличный, графический, спектральный, векторные диаграммы, фазовый портрет
Гармонические колебания являются простейшей моделью колебательного движения достаточно часто встречающегося в действительности. Любое колебание может быть представлено как сумма гармонических ко

Сложение гармонических колебаний одного направления
Если колеблющееся система или тело участвует в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические

Сложение взаимно перпендикулярных колебаний
Рассмотрим материальную точку, участвующую в двух взаимно перпендикулярных колебаниях по осям X и Y. Она будет двигаться по некоторой криволинейной траектории, форма которой зависит как от соотноше

Лекция. 3. Спектральное представление колебательных процессов.
  Обычной и естественной системой отсчета для нас является время. Мы наблюдаем, как развивается, то или иное событие во времени. Для наблюдения изменения во времени мгновенных значени

Зачем, собственно, нужно считать спектры сигналов?
Во-первых, это позволяет по-новому взглянуть на сигнал, лучше понять его природу, найти характерные частоты сигнала (если их несколько, то по виду самого сигнала это может быть затруднительно). Нап

Анализ сигнала не включающий определения фазовых соотношений между синусоидальными составляющими называется спектральным анализом.
У частотной области есть свои плюсы. Частотная область гораздо удобнее в плане измерений. Те, кто занимаются беспроводной связью, заинтересованы в определении внеполосного и паразитного излучения.

Непериодические сигналы.
Непериодические сигналы можно представить в виде интеграла синусоидальных сигналов с непрерывным спектром частот. Например, спектральное разложение идеального импульса (единичной мощности и нулевой

Гауссов импульс. Колоколообразный (гауссовский) импульс определяется выражением
Во временной области он изображен на рис. 14 а. Условно длительность такого импульса определяют по уровню е-1/ 2

Спектр широкополосного случайного процесса. Белый шум
Случайный процесс может быть назван широкополосным, если эффективная полоса частот его спектральной плотности мощности сравнима со средней частотой этой полосы, либо эта полоса значительно шире пол

Спектральный анализ
Спектральный анализ — совокупность методов качественного и количественного определения состава среды, основанная на изучении спектров взаимодействия материи с излучением, включая с

Непрерывные спектры дают тела, находящиеся в твердом, жидком состоянии, а также сильно сжатые газы.
Полосатые спектры в отличие от линейчатых спектров создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Полосатые спектры имеют твердые тела.

Лекция 4. Свободные колебания в системах с одной степенью свободы
Пружинный маятник (http://www.all-fizika.com/virtual/pryjin.php) Опишем движение небольшого бруска массой m, расположенного на гладкой горизонтальной поверхности и прикреп

Колебание жидкости в трубке.
Рассмотрим еще один пример колебательной системы. Пусть в вертикальной  U-образной трубке находится вода (рис. 4.8).

Свободные колебания в контуре
Цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром. Пусть конденсатор зарядили до заряда qo и затем подклю

Плазменные колебания.
В плазме возможно самопроизвольное смещение зарядов. Такое смещение зарядов вызовет колебательные движения зарядов. Рассмотрим упрощенный подход к решению задачи о нарушениbя квазинейтр

Лекция 5. Фазовый портрет колебательной системы.
В любой колебательной системе с одной степенью свободы смещение (t) и скорость меня

Положение равновесия в точке 0 на фазовой плоскости является особой точкой и называется особой точкой типа "центр".
Линейный осциллятор с затуханием. Диссипация энергии, обусловленная наличием потерь, оказывает принципиальное влияние на характер движения системы. Наиболее простые закономерно

Нелинейные колебания
С увеличением энергии возрастают амплитуды колебаний смещения и скорости

Затухающие механические колебания крутильного маятника
Свободные колебания реальных механических систем всегда затухают. Затухание возникает в основном из-за трения, сопротивления окружающей среды и возбуждения в ней упругих волн. Рассмотрим с

Период затухающих колебаний
. Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответст­вующих моментам времени,

Добротность
Пниях логарифмического декремента добротность равна (т

Вынужденные электромагнитные колебания
Вынужденныминазываются такие колебания, которые происходят в колебательной системе под влиянием внешнего периодического воздействия.

Установление колебаний.
Мы уже отмечали, что если приложить к покоящемуся маятнику гармоническую силу в момент времени t=0, то маятник начнет постепенно раскачиваться, как это качественно изображено на рис. 2.7а. У

Лекция 8 Колебательные системы с двумя степенями свободы
  Связанные колебательные системы влияют друг на друга. Колебания таких систем уже не будут независимы, поскольку системы обмениваются энергией. Связь может быть обусловлена:

Лекция 8. Колебания систем со многими степенями свободы.
Основные идеи, сформулированные при рассмотрении колебаний систем с двумя степенями свободы, теперь могут быть с успехом использованы для анализа колебаний систем с тремя, четырьмя,

Колебания струны
Представим себе, что мы возбудили струну так, что по ней побежала поперечная упругая волна. Дойдя до закрепленного конца струны, волна отразится и побежит обратно. Тогда в любой точке струны встреч

Тоны и обертоны
Струна, оттянутая строго посередине, будет совершать колебания, показанные на рис. 8.3. Через каждые пол периода вся струна оказывается по разные стороны от положения равновесия. При этом на концах

Колебания воздушного столба
В духовых музыкальных инструментах (различных трубах) источником звука является колеблющийся столб воздуха, в котором, как и в струне, возникают стоячие волны. Его колебания возбуждаются вдуванием

Колебания струны, закрепленной с двух концов
Рис.8.7.   В силу граничных условий, заданных закреплением концов струны, уравнение стоячей волны при выбо

Лекция 9. Параметрические колебания. Качели.
Всем хорошо знакома и многими любима такая старинная забава как качели. Тренировкам на этом снаряде придает большое значение даже летчики и космонавты. Когда малыша, сидящего на качелях, раскачивае

Http://fizportal.ru/physics-book-47-1
http://jstonline.narod.ru/rsw/course_cont.htm#rsw_b0     Приложение 1. Основные характеристики звука Упругие волны в воздухе, имеющ

Закон Вебера-Фехнера. Диаграмма слуха.
Определение громкости звука основано на психофизическом законе, установленном в 1846 году Э.-Г. Вебером, который заложил основы "психометрии", т.е. количественных измерений ощущений. Поск

Некоторые сведения о музыкальных инструментах.
Деревянные деки музыкальных инструментов выполняют функции резонаторов, обеспечивая хорошие условия звучания. Частоты струнных инструментов не зависят от резонатора. Основная частота звука

Добротность различных колебательных систем
Интересно сопоставить основные характеристики различных колебательных систем (иногда их для краткости называют осцилляторами), наиболее распространенных в природе и технике. Примерами таких осцилля

Резонаторы
Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты в

Основные формулы механических и электромагнитных колебаний
  Пружинный маятник Колебательный контур Механические величины Электрические величины

Метод комплексных амплитуд
Если в формуле Эйлера (1.53): под понимать фазу гармонических колебаний

Вынужденные колебания с произвольной частотой.
Будем искать решение уравнения (2.10) в комплексном виде: (2.26)

Возбуждение стоячих волн в шнуре. Моды колебаний.
Пусть кронштейн, к которому привязан левый конец шнура, совершает гармонические колебания где

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги