рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Термодинамическая допустимость реакции

Термодинамическая допустимость реакции - раздел Образование, ОРГАНИЧЕСКИЙ СИНТЕЗ Ископаемое Сырье, Служащее В Конечном Счете Основным Исходным Матери­алом Для...

Ископаемое сырье, служащее в конечном счете основным исходным матери­алом для органического синтеза, образовалось в результате чрезвычайно длительных биогеохимических процессов. За это время оно успело достиг­нуть состояния равновесия или, по крайней мере, к нему приблизиться. Это означает, что соединения, выделяемые из природных источников, прибли­жены к состоянию с минимумом свободной энергии, по крайней мере, в ана­эробных условиях. Органический синтез, как правило, имеет целью получение соединений с более высоким содержанием свободной энергии — свобод­ной энергии, запасенной в виде образовавшихся связей и в большей упорядоченности системы, чем исходные вещества*.

Для того чтобы создать такие неравновесные системы, необходимо про­извести некоторую работу, энергия для которой должна быть привнесена из­вне. Это может быть тепловая, электрическая или световая энергия, но чаще всего в органическом синтезе используется химическая энергия.

Источником химической энергии служат химические реагенты, энергия которых была запасена на стадии их приготовления за счет других источни­ков (в конечном счете, как правило, за счет электрической энергии). В при­мере, рассмотренном выше, такими реагентами являлись магний и бром, по­лученные в свою очередь электролизом соответствующих солей. Отсюда ста­новится понятным, почему столь большую, подчас ключевую роль в органи­ческом синтезе играют такие высокоактивные реагенты, как свободные га­логены (F2, Сl2, Вr2), металлы (например, Li, Na, К, Mg, Zn), простые и ком­плексные гидриды (например, LiH, NaH, KH, NaBH4, LiAlH4, Bu3SnH, В2Н6) и т. д.

С термодинамической точки зрения органический синтез может быть уподоблен сложному и опасному путешествию в горах со многими подъемами, спусками и обходами препятствий, имеющему своей конечной Целью достижение некоторой точки, расположенной на более высоком уровне, чем исходная. Схематический профиль пути, ведущего от стартово­го вещества А к конечному продукту Р, представлен на рис. 2.1.

Рис.2.1. Энергетический профиль многостадийного синтеза продукта Р из исходного вещества А (В, С и г.д. — промежуточные продукты, Rgt 1—Rgt 4 — реагенты).

 

Этот рисунок иллюстрирует три важных общих положения, характерных для типичной синтетической последовательности. Во-первых, как видно из схемы, для успешного продвижения по показанному маршруту необходима пе­риодическая «подкачка» свободной энергии, что достигается введением в сис­тему дополнительных регентов Rgt I—Rgt 4. Во-вторых, энергия, запасаемая при этом, может далее расходоваться постепенно, для обеспечения прохожде­ния промежуточных точек (например, С -> D -»Е), что позволяет контролиро­вать ход превращения. Так, в разобранном синтезе уксусной кислоты свобод­ная энергия, внесенная в систему в виде MeMgBr, была далее использована в реакциях с диоксидом углерода, а затем с бромоводородом. В-третьих, очевид­но, что промежуточные продукты в данной последовательности обладают не­которым избыточным запасом свободной энергии и, следовательно, они потенциально способны «свалиться в яму», т.е. превратиться в тупиковые, с точки зрения поставленной цели, соединения. Поэтому очень важно иметь воз­можность направить по нужному руслу энергию, запасаемую на стадиях проме­жуточных продуктов. Вопрос о факторам, определяющих относительную до­ступность альтернативных каналов реакции рассмотрен в следующем разделе.

– Конец работы –

Эта тема принадлежит разделу:

ОРГАНИЧЕСКИЙ СИНТЕЗ

ORGANIC SYNTHESIS... THE SCIENCE BEHIND THE ART...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Термодинамическая допустимость реакции

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОРГАНИЧЕСКИЙ СИНТЕЗ
НАУКА И ИСКУССТВО   Перевод с английского профессора, д-ра хим. наук В. А. Смита и профессора, д-ра хим. наук А. Ф. Бочкова    

Редакция литературы по химии
ISBN5-03-003380-7 (русск.) ISBN 0-85404544-9 (англ.) © The Royal Society of Chemistty 1998 © Перевод на русский язык, оформление «Мир», 2001 © OCR сканированной кн

Цель однозначна и бесспорна
С древних времен человеку были известны чарующие цвета, которые прида­вали тканям природные красители, добываемые из различных растений и животных. Уже в XIII в. до н. э. финикийцы владели искусств

Цель однозначна, но не бесспорна
Однако важность того или иного направления в науке чаще всего не может быть оценена столь прямолинейно только по критерию немедленной полез­ности конкретных научных исследований. На протяжении всей

Синтез как поиск (цель бесспорна, но не однозначна).
  Синтез природных веществ, в том числе обладающих полезными свойствами, — это лишь одна, наиболее очевидная, но далеко не единственная задача ор­ганического синтеза. Как показывает в

Синтез как инструмент исследования
Во всех обсуждавшихся выше примерах синтез выполняет чисто препаратив­ную функцию, т.е. поставляет нужные вещества. В принципе для решения та­ких задач не имеет значения, каким именно путем было по

Строение соединений с их свойствами
Пожалуй, главная, наиболее фундаментальная задача не только органической химии, но и всей химической науки — это установление зависимости свойств вещества (физических, химических, биологических) ка

Создание новых структур, проблемных для органической химии
На протяжении всей истории органической химии в ней возникали и про­должают возникать проблемы теоретического характера, для решения кото­рых необходимо было изучить те или иные соединения с экзоти

Расширение круга известных органических соединений
Это — одна из традиционных и наиболее скромных сторон деятельности хи­миков-синтетиков. Скромных потому, что большинство таких синтезов носит весьма заурядный характер, и уже давно никого не удивля

Вводные замечания
  Название этой главы может создать впечатление, что мы собираемся рас­смотреть в ней все или хотя бы большинство методов, используемых в совре­менной синтетической практике. Надо сра

Возможность протекания органической реакции. Общие соображения
Во введении мы упоминали привлекательный, но абсолютно нереальный путь синтез уксусной кислоты из метана и углекислого газа (диоксида углерода): СН4 + СО2 → СН

Термодинамический и кинетический контроль
Для того чтобы термодинамически допустимое превращение X → Y могло осуществиться, реагирующая система X (это может быть одно вещество или несколько компонент, словом, все участники процесса),

Органическая реакция и синтетический метод
  Термину «синтетический метод» трудно дать строгое определение, но не трудно описать смысл этого понятия. Идеальный синтетический метод мо­жет быть уподоблен оператору в математике,

Принципы сборки связи С-С. Гетеролитические реакции
  Основу типичной органической молекулы, ее углеродный скелет, составляет система непосредственно связанных друг с другом атомов углерода. Поэтому методы создания углерод-углеродных с

Органические ионы и факторы, определяющие их стабильность
  Высокая химическая активность карбокатионов и карбанионов связана прежде всего с силами кулоновского взаимодействия. Точечный заряд, сосре­доточенный на атоме углерода, создает элек

Электрофилы и нуклеофилы в реакциях образования связей С-С
Существование обширных классов органических реакций, которые могутбыть формально описаны в терминах ионных схем, но в которых реально участвуют ковалентные соединения, позволяет говорить об экви

Реакция Вюрца. Аллильное сочетание и родственные случаи
Выше мы уже обсуждали реакцию Вюрца как один из простейших случаев образования связи С—С. В этой реакции одна молекула алкилгалогенида вы­ступает в роли элекгрофила (эквивалента карбокатиона), в то

Карбонильные соединения как нуклеофилы и электрофилы
В определенном смысле карбонилсодержащий фрагмент С-С=О может рас­сматриваться как аналог аллилъной системы С—С=С. Однако в отличие от по­следней в карбонильных соединениях эффективная стабилизация

Карбометаллирование алкинов
Изложенные выше принципы проведения нуклеофильного присоединения по кратным связям как последовательности независимых стадий атаки нук­леофила и взаимодействия образующегося карбанионного интермеди

Ретросинтетический анализ ациклических целевых структур. Общие рекомендации.
Выше мы рассмотрели лишь некоторые наиболее типичные и часто упот­ребляемые методы сборки связей С-С и С=С. Эта выборка, несмотря на ее Неизбежную ограниченность, дает возможность сформулировать ря

Карбокатионные или карбанионные реагенты. О некоторых дополнительных возможностях проведения реакций образования связи С-С
Вначале разд. 2.2.3 мы не делали никаких принципиальных различий меж­ду карбокатионами и карбанионами, рассматривая и те, и другие в качестве равноправных партнеров в гетеролитичес

Взаимопревращения функциональных групп
  До сих пор мы рассматривали лишь те реакции, результатом которых является образование новой связи С—С, и почти ничего не говорили о возможно­сти переходов от одного типа органически

Изогипсические трансформации. Синтетическая эквивалентность функциональных групп одного уровня окисления.
Как мы уже могли убедиться, функциями, наиболее часто возникающими при сборке связи С—С, являются спиртовая (реакции Гриньяра, альдольная конденсация) и олефиновая (реакция Виттига, кротоновая конд

Неизогипсические трансформации как пути переходов между различными уровнями окисления
В этой группе наиболее значимыми для синтеза являются такие превраще­ния кислородсодержащих соединений, как окисление спиртов до карбо­нильных соединений или карбоновых кислот и обратные им превращ

Взаимопревращение функциональных групп как стратегический метод в полном синтезе.
  В начальный период развития органического синтеза было естественно вы­страивать синтетическую цепочку, используя в качестве исходного соедине­ния то или иное вещество, выделяемое из

Селективность обеспечивается выбором подходящей реакции
Наиболее простой пример такого подхода мы рассматривали на примере бро-мирования толуола (см. разд. 2.1.3). Действительно, в толуоле имеются две функциональные группы, способные легко реагировать с

Варьирование природы реагентов как способ управления селективностью реакции
Хорошо известно, что даже в пределах одной и той же реакции относительная реакционная способность родственных функций может ощутимо зависеть от конкретных особенностей используемого реагента. Поэто

Альтернативных реакционных центров субстрата
Классический пример такого подхода к решению проблемы — ацетоуксус-ный эфир (168).Его обычной реакционноспособной формой является 1енолят 169,реакции которого с ра

Защита функциональных групп как универсальный способ управления селективностью реакций
Во всех подходах к проблеме селективности, которые мы рассматривали вы-ше, «игра» строилась на вариациях, непосредственно затрагивающих участ-ников основного процесса: изменялись природа субстрата

Идеальный органический синтез: фантастика или достижимая цель?
  Пофантазируем немного на тему о том, каким бы хотелось видеть идеальный органический синтез (недалекого будущего?). Мы говорили о том, что синтез состоит в конструировании молекул.

Реагенты и синтетическая эквивалентность
Разумеется, аналогию между реагентом в синтезе и деталью какой-либо ме­ханической конструкции не следует понимать слишком буквально, хотя бы уже потому, что обычно реагент входитв собираемую структ

Понятие о синтонах
Обобщенное описание эквивалентности чрезвычайно полезно с сугубо праг­матических позиций планирования органического синтеза, поскольку с его учетом резко расширяется поле выбора реагентов, применим

Синтонный подход как инструмент в разработке путей синтеза
Введение в обиход синтонов как элементарных блоков-заготовок предо­ставляет химику систему готовых решений если не всех, то многих тактиче­ских задач. Современный синтетик при анализе структуры цел

Изоструктурные синтоны обратной полярности
Как видно, синтонный подход позволяет планировать синтез на основе гете-ролитическях реакций как сборку целевой молекулы из готовых «кубиков», порядок сцепления которых определяется противоположнос

Специфика задач при синтезе циклических соединений
  Вообще говоря, построение молекул, в состав которых входит замкнутая цепь углеродных атомов (цикл), требует решения уже знакомых нам задач образовния связей углерод-углерод. Почему

Малые циклы: производные циклопропана и циклобутана
В циклопропане валентные углы атомов, образующих цикл, равны 60', т. е. очень сильно отличаются от валентного угла тетраэдрического атома углеро­да (109,5°). Поэтому неудивительно, что энтальпия об

Пят- и шестичленные циклы
Благодаря минимальным искажениям валентных углов и минимальному напряжению, обусловленному взаимодействием несвязанных групп, пя­ти- и шестичленные циклы (как и ведущие к ним переходные состояния)

Циклы большего размера. Принципы макроциклизации. Эффекты многоцентровой координации
Число атомов в цикле (п) Относительная скорость(при 50˚С) 1,5 10е 1,7

Циклоприсоединение - методы, специально созданные для получения циклических структур
  Нетрудно заметить, что все ранее рассмотренные методы циклообразования имеют одну общую особенность: циклизация осуществляется как внутримо­лекулярная реакция замыкания единственной

Циклоприсоединение
Среди множества реакций, относящихся к этому классу, особое место занима­ет [4 + 2]-циклоприсоединение. Это — реакция Дильса—Альдера [2а], как пра­вило, не требующая катализа или иницирования облуч

Циклоприсоединение в синтезе производных циклобутана
[2 + 2)-Циклоприсоединенис относится к категории важнейших синтети­ческих методов, поскольку эта реакция позволяет получать различные производные циклобутана по схеме сборки из двух алкеновых фрагм

Синтез циклопропанов путем [2 + 1]-циклоприсоединения
Синтез трехчленных циклов по схеме циклоприсоединения должен, очевид­но, включать взаимодействие непредельного субстрата, например алкена, с каким-либо Срреагентом, выступающим в роли синтетическог

Селективность циклообразования в комплексах переходных металлов
Вспомним, каким трудоемким путем (с общим выходом 0,75%) был впервые получен циклооктатетраен (137,схема 2.65). Этот 10-стадийный синтез был впоследствии воспроизведен другими иссл

Радикальные реакции и их роль в синтезе циклических соединений
Как мы уже отмечали, большинство методов образования связей С—С в пол­ном синтезе основано на гетеролитических реакциях или на реакциях цикло­присоединения. Причины того, что гемолитические реакции

Расщепление связей С-С и перестройка углеродного скелета как синтетические методы
Выше мы обсудили основные типы реакций и методов, используемых для об­разования связей С-С углеродного скелета ацикличгских или циклических молекул. Этот набор должен быть дополнен еще группой мето

Расщепление одинарных связей С-С
  Пожалуй, наиболее известный и очевидный пример конструктивной роли «деструктивной» реакции — декарбоксилирование алкилированных произ­водных ацетоуксусного или малонового эфира. По

Синтетическое использование реакций расщепления двойной углерод-углеродной связи
  Созидательный потенциал реакций, приводящей к разрыву углерод-углерод­ных связей, еще более наглядно может быть продемонстрирован на примере окислительного расщепления олефинов. Сре

Перегруппировки углеродного скелета и некоторые возможности их использования в полном синтезе
Конструктивные и деструктивные реакции, которые мы до сих пор рассмат­ривали, отличаются тем общим свойством, что в них затрагиваются (разры­ваются или образуются) лишь связи тех атомов, которые не

Перегруппировка Кляйзена-Джонсона—Айрленда и гидрокси-перегруппировка Коупа
Как показано в общем виде на схеме 2.154, синтетический результат пере­группировки Кляйзена сводится к введению аллильного фрагмента по а-ато-му исходного карбонильного соединения через промежуточн

Трансформации малых циклов и их роль в полном синтезе
Как было показано выше, разработано множество методов, позволяющих по­лучать циклы различных размеров, в том числе входящие в состав полицикли­ческого скелета. Размер цикла, который может быть обра

Заключительные замечания
В данной главе мы, конечно, не имели возможности сколько-нибудь полно обсудить все те методы, которые составляют основу тактики современного органического синтеза. Однако мы надеемся, что даже на о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги