рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Альтернативных реакционных центров субстрата

Альтернативных реакционных центров субстрата - раздел Образование, ОРГАНИЧЕСКИЙ СИНТЕЗ Классический Пример Такого Подхода К Решению Проблемы — Ацетоуксус-Ный Эфир ...

Классический пример такого подхода к решению проблемы — ацетоуксус-ный эфир (168).Его обычной реакционноспособной формой является 1енолят 169,реакции которого с разнообразными С-нуклеофилами протекают по центральному атому углерода. Последующий гидролиз продукта 170и декарбоксилирование приводят к образованию кетона 171.Нетрудно видеть, что структура последнего соответствует продукту взаимодейст­вия того же электрофила с енолятом ацетона 172,и, следовательно, в показанной на схеме 2.80 последовательности реакций енолят ацетоук-сусного эфира 169на самом деле используется в роли эквивалента енолята 172.

Схема 2.80

 

Зададимся теперь вопросом: а зачем, собственно, здесь нужна подобного рода замена простого на более сложное? Ведь хорошо известно, что енолят 172достаточно легко может быть получен из ацетона при действии основа­ний, и алкилирование 172также само по себе не составляет какой-либо про­блемы. Однако следует учитывать, что ацетон сам является достаточно активным электрофилом, и поэтому трудно избежать его реакции с образую­щимся енолятом 172(альдольная конденсация, см. разд. 2.2.3.2). Но тут есть и второе осложнение, более существенное в свете обсуждаемой проблемы се­лективности. Дело в том, что в получающихся продуктах алкилирования 171также содержится функциональная группа СО-Ме, мало отличающаяся по своим свойствам от подобной функциональной группы исходного ацетона.

Поэтому в условиях реакции будет также происходит депротонирование ке-тона 171с последующим алкилированием образовавшегося енолята электро-филом. Отсюда следует, что прямой путь получения 171непосредственно из ацетона в общем случае малопригоден из-за присущей ему низкой селектив­ности образования целевого продукта.

Иное дело ацетоуксусный эфир 168.В молекуле этого соединения также имеются две группы, способные к ионизации. Однако благодаря эффекту двух электроноакцепторных групп кислотность протонов СН2-фрагмента на несколько порядков выше, чем кислотность протонов метальной группы. По этой же причине енолят 169гораздо стабильнее енолята 173.В силу этих об­стоятельств даже под действием сравнительно слабых оснований (например, спиртового раствора алкоголята натрия) 168 практичеки нацело превращает­ся в енолят 169,чем и обеспечивается селективность образования продукта алкилирования 170.Таким образом, временно введя в молекулу ацетона карбэтоксильную группу, т.е. перейдя к ацетоуксусному эфиру, мы добились резкой активации одной из метальных групп (превращенной таким способом в метиленовую) и тем самым обеспечили селективность реакций с электрофилом. Именно на этом принципе и базировалось использование ацетоуксусного эфира в органическом синтезе на протяжении многих десят­ков лет.

Но это еще не все — потенциал ацетоуксусного эфира, классики не толь­ко синтетической, но и теоретической органической химии, далеко не ис­черпывается рассмотренными выше превращениями. Оказалось, что, сле­дуя тем же принципам, можно, как мы сейчас увидим, добиться обратной селективности алкилирования по альтернативным положениям и провести эту реакцию исключительно по метильной группе. Идея такого рода может показаться парадоксальной, но на самом деле ее реализация выглядит до­статочно логично. Так, если генерировать енолят 169в апротонной среде и далее обработать его еще 1 экв. более сильного основания (например, бутил-лития или диизопропиламида лития, LDA), то происходит повторная иони­зация, приводящая к образованию бис-аниона 174(схема 2.81).

Схема 2.81

 

Наличие двух отрицательных зарядов делает интермедиат 174чрезвычай­но активным. Однако имеющиеся в нем карбанионные центры при С-1 и С-3 достаточно сильно различаются по своей реакционной способности. Благодаря наличию двух карбонильных заместителей карбанионный центр нри С-3 гораздо более стабилизирован по сравнению с центром при С-1. Следовательно, именно последний должен легче подвергаться атаке элект-дофилом, и, действительно, результатом реакции бис-аниона 174с одним аквивалентом какого-либо электрофила является исключительное образова­ние продукта атаки по этому центру 175.Поскольку последний также содер­жит снолятный фрагмент, то возможно провести еще одну стадию алкилиро­вания тем же или иным электрофилом, на этот раз по центру С-3. Таким об­разом, ацетоуксусный эфир, в лице своего бис-аниона 174может использо­ваться как С3-блок для синтеза самых различных кетонов типа 176,а если нужно, то может также служить и С»-блоком для построения эфиров кето-кислот 177, структура которых задается природой и порядком прибавления реагентов Е1 и Е2 [24т].

Двухзарядные или даже трехзарядные органические ионы, структура ко­торых обеспечивает одновременно высокую региоселективность и реакци­онную способность, сравнительно недавно вошли в обиход синтетической практики и широко используются в настоящее время. К ним относятся, по­мимо дианиона 174,такие производные, как дианионы карбоновых кислот J78,пропаргильный дианион 179 и дианион пропаргилового спирта 180(схема 2.82). Селективность электрофильной атаки для этих интермедматов также определяется относительной нуклеофилъноетъю анионных центров, которая обратна их термодинамической стабильности: менее стабилизиро­ванный центр является предпочтительным местом атаки (на схеме 2.82 эти центры обозначены звездочкой).

Схема 2.82

 

Применение подобных полианионов позволило существенно расширить синтетические возможности химии карбанионных реагентов. Уместно под­черкнуть, что это стало возможным именно благодаря разработке методов, основанных на использовании в качестве универсальных реагентов для гене­рации карбанионных интермедиатов сильных ненуклеофильных оснований типа LDA.

На примере ацетона и ацетоуксусного эфира мы рассмотрели простей­ший пример того, каким образом может решаться задача селективного ал­килирования только одного из двух идентичных а-положений. Классиче­ское решение такого рода задач для кетонов всевозможного строения долгoe время строилось на аналогичной основе путем искусственного созда­ния в требуемом месте группировки типа ацстоуксусного эфира, напри­мер, по реакции енолята с хлоругольным эфиром C1COOR. Нетрудно, однако, видеть, что такой подход применим лишь в случае симметричных кетонов, где два енолята идентичны, а последующее ацилирование приво­дит к идентичным продуктам. В случае же несимметричных кетонов ис­пользовать принцип такого рода селективной активации довольно затруд­нительно, в первую очередь из-за малой селективности стадии генерации енолятов.

Эти и другие осложнения заставили в 1960-х годах предпринять углублен­ные исследования в области химии енолятов, в результате чего удалось раз­работать ряд приемов, обеспечивающих надежное решение проблемы селек­тивности генерации енольных производных для карбонильных соединений самого различного строения.

Первоначально найденное решение, хотя и было достаточно общим и надежным, оказалось все-таки не очень удобным. Смысл его сводился к сле­дующему: смесь енолятов, образующихся при взаимодействии несиммет­ричных кетонов, например 1-метилциклогексанона (181),с такими основа­ниями, как триэтиламин в среде апротонного растворителя, обрабатывали триметилхлорсиланом — электрофилом, атакующим еноляты исключитель­но по атому кислорода. Получаемую при этом смесь региоизомерных триме-тилсилиленолятов (например, 182аи 182Ь,схема 2.83) разделяли перегонкой, после чего из индивидуальных изомеров действием метиллития получали in situ соответствующие литиевые еноляты 181аи 181Ь,взаимодействие кото­рых с требуемым электрофилом приводило к получению чистых региоизоме-ров 183аи 183Ь.

Входе дальнейших исследований было замечено, что изомерный состав смеси силильных енолятов зависит от «предыстории» реакции: если триме-тилхлорсилан прибавляют в реакционную смесь немедленно после введения основания, то образуется преимущественно изомер 182а,а если полученную на стадии енолизации смесь литиевых енолятов выдержать некоторое время в отсутствие электрофила, то ее последующее «гашение» триметилхлорсила­ном приводит к смеси силиловых эфиров енолов другого изомерного соста­ва (с преобладанием 182Ь)[25а]. Отсюда следовало, что первоначальным ре­зультатом енолизации является отрыв протона от наименее затрудненного из а-атомов углерода кетона 181с образованием енолята 181а,являющегося та­ким образом кинетическим продуктом, который и может быть «зафиксиро­ван» в виде силильного производного 182а,если в среде присутствует триме-тилхлорсилан. При отсутствии последнего может происходит обратимая изомеризация 181ав 181Ь,и от соотношения изомеров вравновесной смеси и зависит состав смеси силиловых эфиров 182аи 182Ь,получаемых при по­следующем добавлении триметилхлорсилана. Преобладание 182Ьв этой сме­си означает, что 181Ьявляется термодинамически более стабильным изоме­ром, так что образование 182Ьпроисходит за счет термодинамически конт­ролируемого процесса.

Схема 2.83

На основании этих данных удалось разработать методики, который позво­ляли с высокой селективностью получать силиловые эфиры как кинетически контролируемыхенолятов, так и их термодинамически более стабильных изо­меров. Так, если проводить енолизацию кетона 181 с помощью сильного и сте-рически затрудненного основания, такого, как бис-триметилсилиламида ли­тия (BSA) при возможно более низкой температуре с немедленной обработкой реакционной смеси триметилхлорсиланом, то енольный эфир 182а получает­ся с чистотой более 90%. Если же использовать для енолизации более слабое основание, триэтиламин, и проводить реакцию при нагревании, то с такой же чистотой можно получить изомерный продукт 182Ь (см. схему 2.83) [25Ь].

Принцип такого подхода оказался достаточно общим и на его основе раз­работано множество вариантов региоселективного получения коваленгных енольных производных не только кремния, но и других элементов, напри­мер, олова, титана, циркония и бора, которые широко применяются в совре­менном синтезе как эквиваленты ионных енолятов.

Заслуживает упоминания еще один немаловажный аспект химии силило-вых эфиров енолов. Как мы уже отмечали, реакции этих ковалентных произ­водных с электрофилами требуют присутствия кислот Льюиса (см. схемы 2.41—2.44). Существует, однако, альтернативный путь инициирования этой реакции, а именно под действием соли //-ButN+F", которая служит источни­ком несольватированного фторид-иона в среде апротоных органических рас­творителей [17с]. Такое специфическое действие фтор-аниона обусловлено тем, что коваленгная связь Si—F принадлежит к числу самых прочных оди­нарных связей и ее образование — высоко экзотермический процесс. Резуль­татом реакции фторид-иона с силиловыми эфирами енолов является расщеп­ление связи Si—О и образование соответствующего тетрабутиламмониевого енолята, который, как и полагается ионным енолятам, легко взаимодейству­ет с ковалентными электрофилами самой различной природы (схема 2.84).

Схема 2.84

Итак, общим методом избирательной активации альтернативных поло­жений в несимметричных кетонах может служить селективная енолизация с образованием ковалентных производных, результатом которой является по сути дела создание нуклеофильного центра при одном или другом из а-угле-родных атомов.

Среди других способов, также позволяющих решать задачу селективности алкилирования кетонов, следует упомянуть методы, основанные на исполь­зовании в качестве субстратов некоторых производных кетонов, например иминов, гидразонов или оксимов [4]. В этих методах региоселективность образования ионных енолятов определяется действием таких факторов, как способность атома азота образовывать координационную связь с катионом лития и стерическими препятствиями, создаваемыми заместителями при атоме азота. Результатом этих эффектов является высокая предпочтитель­ность енолизации по менее замешенному а-атому, что особенно явно выра-жено для диметилгидразонов кетонов [25с]. На этой основе разработан ряд якнтетически интересных превращений, в которых осуществляется контро­лируемое последовательное алкилирование исходного субстрата по обоим его а-атомам. Пример подобной последовательности реакций, проводимых Людном реакционном сосуде и состоящей из двух последовательных цик-лов — енолизация + алкилирование, показан на схеме 2.85 [25d].

Схема 2.85

 

 

– Конец работы –

Эта тема принадлежит разделу:

ОРГАНИЧЕСКИЙ СИНТЕЗ

ORGANIC SYNTHESIS... THE SCIENCE BEHIND THE ART...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Альтернативных реакционных центров субстрата

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОРГАНИЧЕСКИЙ СИНТЕЗ
НАУКА И ИСКУССТВО   Перевод с английского профессора, д-ра хим. наук В. А. Смита и профессора, д-ра хим. наук А. Ф. Бочкова    

Редакция литературы по химии
ISBN5-03-003380-7 (русск.) ISBN 0-85404544-9 (англ.) © The Royal Society of Chemistty 1998 © Перевод на русский язык, оформление «Мир», 2001 © OCR сканированной кн

Цель однозначна и бесспорна
С древних времен человеку были известны чарующие цвета, которые прида­вали тканям природные красители, добываемые из различных растений и животных. Уже в XIII в. до н. э. финикийцы владели искусств

Цель однозначна, но не бесспорна
Однако важность того или иного направления в науке чаще всего не может быть оценена столь прямолинейно только по критерию немедленной полез­ности конкретных научных исследований. На протяжении всей

Синтез как поиск (цель бесспорна, но не однозначна).
  Синтез природных веществ, в том числе обладающих полезными свойствами, — это лишь одна, наиболее очевидная, но далеко не единственная задача ор­ганического синтеза. Как показывает в

Синтез как инструмент исследования
Во всех обсуждавшихся выше примерах синтез выполняет чисто препаратив­ную функцию, т.е. поставляет нужные вещества. В принципе для решения та­ких задач не имеет значения, каким именно путем было по

Строение соединений с их свойствами
Пожалуй, главная, наиболее фундаментальная задача не только органической химии, но и всей химической науки — это установление зависимости свойств вещества (физических, химических, биологических) ка

Создание новых структур, проблемных для органической химии
На протяжении всей истории органической химии в ней возникали и про­должают возникать проблемы теоретического характера, для решения кото­рых необходимо было изучить те или иные соединения с экзоти

Расширение круга известных органических соединений
Это — одна из традиционных и наиболее скромных сторон деятельности хи­миков-синтетиков. Скромных потому, что большинство таких синтезов носит весьма заурядный характер, и уже давно никого не удивля

Вводные замечания
  Название этой главы может создать впечатление, что мы собираемся рас­смотреть в ней все или хотя бы большинство методов, используемых в совре­менной синтетической практике. Надо сра

Возможность протекания органической реакции. Общие соображения
Во введении мы упоминали привлекательный, но абсолютно нереальный путь синтез уксусной кислоты из метана и углекислого газа (диоксида углерода): СН4 + СО2 → СН

Термодинамическая допустимость реакции
Ископаемое сырье, служащее в конечном счете основным исходным матери­алом для органического синтеза, образовалось в результате чрезвычайно длительных биогеохимических процессов. За это время оно ус

Термодинамический и кинетический контроль
Для того чтобы термодинамически допустимое превращение X → Y могло осуществиться, реагирующая система X (это может быть одно вещество или несколько компонент, словом, все участники процесса),

Органическая реакция и синтетический метод
  Термину «синтетический метод» трудно дать строгое определение, но не трудно описать смысл этого понятия. Идеальный синтетический метод мо­жет быть уподоблен оператору в математике,

Принципы сборки связи С-С. Гетеролитические реакции
  Основу типичной органической молекулы, ее углеродный скелет, составляет система непосредственно связанных друг с другом атомов углерода. Поэтому методы создания углерод-углеродных с

Органические ионы и факторы, определяющие их стабильность
  Высокая химическая активность карбокатионов и карбанионов связана прежде всего с силами кулоновского взаимодействия. Точечный заряд, сосре­доточенный на атоме углерода, создает элек

Электрофилы и нуклеофилы в реакциях образования связей С-С
Существование обширных классов органических реакций, которые могутбыть формально описаны в терминах ионных схем, но в которых реально участвуют ковалентные соединения, позволяет говорить об экви

Реакция Вюрца. Аллильное сочетание и родственные случаи
Выше мы уже обсуждали реакцию Вюрца как один из простейших случаев образования связи С—С. В этой реакции одна молекула алкилгалогенида вы­ступает в роли элекгрофила (эквивалента карбокатиона), в то

Карбонильные соединения как нуклеофилы и электрофилы
В определенном смысле карбонилсодержащий фрагмент С-С=О может рас­сматриваться как аналог аллилъной системы С—С=С. Однако в отличие от по­следней в карбонильных соединениях эффективная стабилизация

Карбометаллирование алкинов
Изложенные выше принципы проведения нуклеофильного присоединения по кратным связям как последовательности независимых стадий атаки нук­леофила и взаимодействия образующегося карбанионного интермеди

Ретросинтетический анализ ациклических целевых структур. Общие рекомендации.
Выше мы рассмотрели лишь некоторые наиболее типичные и часто упот­ребляемые методы сборки связей С-С и С=С. Эта выборка, несмотря на ее Неизбежную ограниченность, дает возможность сформулировать ря

Карбокатионные или карбанионные реагенты. О некоторых дополнительных возможностях проведения реакций образования связи С-С
Вначале разд. 2.2.3 мы не делали никаких принципиальных различий меж­ду карбокатионами и карбанионами, рассматривая и те, и другие в качестве равноправных партнеров в гетеролитичес

Взаимопревращения функциональных групп
  До сих пор мы рассматривали лишь те реакции, результатом которых является образование новой связи С—С, и почти ничего не говорили о возможно­сти переходов от одного типа органически

Изогипсические трансформации. Синтетическая эквивалентность функциональных групп одного уровня окисления.
Как мы уже могли убедиться, функциями, наиболее часто возникающими при сборке связи С—С, являются спиртовая (реакции Гриньяра, альдольная конденсация) и олефиновая (реакция Виттига, кротоновая конд

Неизогипсические трансформации как пути переходов между различными уровнями окисления
В этой группе наиболее значимыми для синтеза являются такие превраще­ния кислородсодержащих соединений, как окисление спиртов до карбо­нильных соединений или карбоновых кислот и обратные им превращ

Взаимопревращение функциональных групп как стратегический метод в полном синтезе.
  В начальный период развития органического синтеза было естественно вы­страивать синтетическую цепочку, используя в качестве исходного соедине­ния то или иное вещество, выделяемое из

Селективность обеспечивается выбором подходящей реакции
Наиболее простой пример такого подхода мы рассматривали на примере бро-мирования толуола (см. разд. 2.1.3). Действительно, в толуоле имеются две функциональные группы, способные легко реагировать с

Варьирование природы реагентов как способ управления селективностью реакции
Хорошо известно, что даже в пределах одной и той же реакции относительная реакционная способность родственных функций может ощутимо зависеть от конкретных особенностей используемого реагента. Поэто

Защита функциональных групп как универсальный способ управления селективностью реакций
Во всех подходах к проблеме селективности, которые мы рассматривали вы-ше, «игра» строилась на вариациях, непосредственно затрагивающих участ-ников основного процесса: изменялись природа субстрата

Идеальный органический синтез: фантастика или достижимая цель?
  Пофантазируем немного на тему о том, каким бы хотелось видеть идеальный органический синтез (недалекого будущего?). Мы говорили о том, что синтез состоит в конструировании молекул.

Реагенты и синтетическая эквивалентность
Разумеется, аналогию между реагентом в синтезе и деталью какой-либо ме­ханической конструкции не следует понимать слишком буквально, хотя бы уже потому, что обычно реагент входитв собираемую структ

Понятие о синтонах
Обобщенное описание эквивалентности чрезвычайно полезно с сугубо праг­матических позиций планирования органического синтеза, поскольку с его учетом резко расширяется поле выбора реагентов, применим

Синтонный подход как инструмент в разработке путей синтеза
Введение в обиход синтонов как элементарных блоков-заготовок предо­ставляет химику систему готовых решений если не всех, то многих тактиче­ских задач. Современный синтетик при анализе структуры цел

Изоструктурные синтоны обратной полярности
Как видно, синтонный подход позволяет планировать синтез на основе гете-ролитическях реакций как сборку целевой молекулы из готовых «кубиков», порядок сцепления которых определяется противоположнос

Специфика задач при синтезе циклических соединений
  Вообще говоря, построение молекул, в состав которых входит замкнутая цепь углеродных атомов (цикл), требует решения уже знакомых нам задач образовния связей углерод-углерод. Почему

Малые циклы: производные циклопропана и циклобутана
В циклопропане валентные углы атомов, образующих цикл, равны 60', т. е. очень сильно отличаются от валентного угла тетраэдрического атома углеро­да (109,5°). Поэтому неудивительно, что энтальпия об

Пят- и шестичленные циклы
Благодаря минимальным искажениям валентных углов и минимальному напряжению, обусловленному взаимодействием несвязанных групп, пя­ти- и шестичленные циклы (как и ведущие к ним переходные состояния)

Циклы большего размера. Принципы макроциклизации. Эффекты многоцентровой координации
Число атомов в цикле (п) Относительная скорость(при 50˚С) 1,5 10е 1,7

Циклоприсоединение - методы, специально созданные для получения циклических структур
  Нетрудно заметить, что все ранее рассмотренные методы циклообразования имеют одну общую особенность: циклизация осуществляется как внутримо­лекулярная реакция замыкания единственной

Циклоприсоединение
Среди множества реакций, относящихся к этому классу, особое место занима­ет [4 + 2]-циклоприсоединение. Это — реакция Дильса—Альдера [2а], как пра­вило, не требующая катализа или иницирования облуч

Циклоприсоединение в синтезе производных циклобутана
[2 + 2)-Циклоприсоединенис относится к категории важнейших синтети­ческих методов, поскольку эта реакция позволяет получать различные производные циклобутана по схеме сборки из двух алкеновых фрагм

Синтез циклопропанов путем [2 + 1]-циклоприсоединения
Синтез трехчленных циклов по схеме циклоприсоединения должен, очевид­но, включать взаимодействие непредельного субстрата, например алкена, с каким-либо Срреагентом, выступающим в роли синтетическог

Селективность циклообразования в комплексах переходных металлов
Вспомним, каким трудоемким путем (с общим выходом 0,75%) был впервые получен циклооктатетраен (137,схема 2.65). Этот 10-стадийный синтез был впоследствии воспроизведен другими иссл

Радикальные реакции и их роль в синтезе циклических соединений
Как мы уже отмечали, большинство методов образования связей С—С в пол­ном синтезе основано на гетеролитических реакциях или на реакциях цикло­присоединения. Причины того, что гемолитические реакции

Расщепление связей С-С и перестройка углеродного скелета как синтетические методы
Выше мы обсудили основные типы реакций и методов, используемых для об­разования связей С-С углеродного скелета ацикличгских или циклических молекул. Этот набор должен быть дополнен еще группой мето

Расщепление одинарных связей С-С
  Пожалуй, наиболее известный и очевидный пример конструктивной роли «деструктивной» реакции — декарбоксилирование алкилированных произ­водных ацетоуксусного или малонового эфира. По

Синтетическое использование реакций расщепления двойной углерод-углеродной связи
  Созидательный потенциал реакций, приводящей к разрыву углерод-углерод­ных связей, еще более наглядно может быть продемонстрирован на примере окислительного расщепления олефинов. Сре

Перегруппировки углеродного скелета и некоторые возможности их использования в полном синтезе
Конструктивные и деструктивные реакции, которые мы до сих пор рассмат­ривали, отличаются тем общим свойством, что в них затрагиваются (разры­ваются или образуются) лишь связи тех атомов, которые не

Перегруппировка Кляйзена-Джонсона—Айрленда и гидрокси-перегруппировка Коупа
Как показано в общем виде на схеме 2.154, синтетический результат пере­группировки Кляйзена сводится к введению аллильного фрагмента по а-ато-му исходного карбонильного соединения через промежуточн

Трансформации малых циклов и их роль в полном синтезе
Как было показано выше, разработано множество методов, позволяющих по­лучать циклы различных размеров, в том числе входящие в состав полицикли­ческого скелета. Размер цикла, который может быть обра

Заключительные замечания
В данной главе мы, конечно, не имели возможности сколько-нибудь полно обсудить все те методы, которые составляют основу тактики современного органического синтеза. Однако мы надеемся, что даже на о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги