рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Циклоприсоединение в синтезе производных циклобутана

Циклоприсоединение в синтезе производных циклобутана - раздел Образование, ОРГАНИЧЕСКИЙ СИНТЕЗ [2 + 2)-Циклоприсоединенис Относится К Категории Важнейших Синтети­ческих Мет...

[2 + 2)-Циклоприсоединенис относится к категории важнейших синтети­ческих методов, поскольку эта реакция позволяет получать различные производные циклобутана по схеме сборки из двух алкеновых фрагментов. Этот процесс может протекать как по согласованому механизму через об­разование циклического переходного состояния (а), так и по стадиям, включающим промежуточное образование бирадикального (B) или бипо­лярного (с) интермедиата (схема 2.126). Реализация того или иного из этих механизмов зависит как от строения реагентов, так и от условий проведе­ния реакции.

Схема 2.126

 

В случае термически индуцированного процесса согласованный меха­низм реализуется лишь для ограниченной категории реакций, таких, как вза­имодействие кетенов с алкенами или алкинами. Результатом реакции всегда является образование продуктов чис-присоединения [32а]. Сам кетен в силу своей неустойчивости относительно редко используется в этой реакции, и чаще всего для синтеза циклобутанонов применяют более стабильные а-хлоркетены, которые генерируются in situ (действием триэтиламина на хло-рангидриды а-хлорзамещенных кислот) в присутствии второго компонента циклоприсоединения. На схеме 2.127 приведены типичные примгры этой реакции — образование циклоаддуктов 378[32Ь] и 379[32с]. Отметим, что, хотя в последнем случае реакция протекала с довольно скромным выходом (около 20%), однако она оказалась самым удобным методом синтеза аддукта 379,из которого в одну стадию был получен микотоксин монилиформин (380),природное соединение уникальной структуры, которую довольно за­труднительно получить другим способом.

Схема 2.127

 

а-Хлорциклобутаноны, образующиеся в рассматриваемой реакции, до­статочно просто могут быть превращены в соответствующие циклобутаноны (восстановительным дехлорированием) или их можно непосредственно ис­пользовать в дальнейших превращениях в качестве субстратов, содержащих хорошую уходящую группу (а-хлорзаместитель) (см. далее).

Важным для синтеза является внутримолекулярное [2 + 21-циклопри-соединение кетенов к алкенам. Для этой реакции оптимальное расстояние между двумя кратными связями соответствует мостику из трех звеньев [32d]. Поэтому этот путь особенно удобен для получения различных струк­тур, содержащих 4,5-сочлененный бициклический фрагмент. Типичными примерами являются показанные на схеме 2.128 превращения 381-> 382[32е] и 383-> 384[32f]. В этих превращениях генерация кетеновой функ­ции также проводится in situ, но в этом случае, благодаря легкости проте­кания внутримолекулярной циклизации, уже не требуется наличия а-хлорзаместителя в кетеновом фрагменте (см. структуры интермедиатов 381аи 383а).Очевидным достоинством метода является легкость получе­ния требуемых предшественников, как это показано на примере синтеза эфира 383.

Схема 2.128

 

Фотохимически индуцированное [2 + 21-циклоприсоединение относится к категории важнейших реакций, особенно б синтезе стерически затруднен­ных соединений самых экзотических структурных типов [32g|. Эта реакция может протекать в соответствии с правилами сохранения орбитальной сим­метрии по согласованному механизму, но чаще реализуется бирадикальный механизм (пугьЬ, схема 2.126). В препаративной практике чаще всего приме­няется фотохимически индуцированное [2 + 2]-циклоприсоединение оле-фина к енону. Для этой реакции характерны высокая региоселективность, но подчас довольно низкая стереоселективность, что вполне согласуется с упо­мянутым бирадикальным механизмом.

Один из первых примеров, показавших полезность этой реакции для по­лучения полициклических соединений, был описанный Кори [32h] синтез природного сесквитерпсна, а-кариофиллена (385)(схема 2.129). В качестве исходного вещества здесь был использован бициклический аддукт 386,полу­ченный с высоким выходом по схеме фотоциклоприсоединения изобутиле-на к циклогексенону.

Схема 2.129

 

В структуре адцукта 386уже содержался требуемый фрагмент 1,1-диме-тилциклобутана. Наличие в этом адцукте карбонильной функции позволило далее относительно легко достроить третий цикл и получить таким образом аддукт 387,уже содержавший 14 из 15 требуемых атомов углерода молекулы 385.Дальнейшая последовательность превращений, помимо трансформа­ций функциональных групп, включала также стадии разрыва центральной связи гидриндановой системы (по реакции фрагментации) с образованием 9-членного цикла и метиленирования по Виттигу,

Синтез а-кариофиллена наглядно продемонстрировал богатые синтети­ческие возможности фотоциклоприсоединия олефина к енону, и вслед за ним последовало еще множество полных синтезов, в которых эта реакция использовалась на той или иной из ключевых стадий [32i].

Схема 2.130

Фотохимически индуцированное [2 + 2]-циклоприсоединение во внутри­молекулярном варианте проведения реакции оказалось незаменимым мето­дом построения высоконапряженных молекул. Именно с помощью этой ре­акции за последние несколько десятилетий удалось получить «во плоти» множество структур, возникших «на кончике пера» как плод творческого во­ображения химиков-органиков. Одним из первых достижений такого рода был выполенный ван Тамеленом [laj удивительно короткий синтез бензола Дьюара (388),показанный на схеме 2.130.

На начальной стадии этого синтеза легко доступный продукт реакции Дильса—Альдера 389с помощью последовательности бромирование/дегидробромирование превращался в диен 389а.При облучении последнего легко протекало [2 + 2]-циклоприсоединение с образованием трициклического про­дукта 390.Завершающие стадии синтеза 388включали омыление ангидридно­го цикла и окислительное декарбоксилирование полученной дикислоты.

Отметим также, что в уже упоминавшемся синтезе баскетена (357)(схема 2.123) образование последней недостающей связи каркасной системы было также осуществлено с помощью [2 + 2]-фотоциклоприсоединения.

Внутримолекулярное [2 + 2]-фотоциклоприсоединение олефина к енону находит широкое применение в синтезе полициклических соединений как ключевая стадия, обеспечивющая быстрое усложнение скелета собираемой молекулярной конструкции [32j]. Хорошей иллюстрацией эффективности такого подхода могут служить превращения, показанные на схеме 2.131.

Схема 2.131

Действительно, превращения 391->392[32k] и 393->394[321] (равно как и многие другие, им подобные, см., например [32т]) протекают при комнатной температуре достаточно быстро с хорошим выходом, с высокой регио- и стереоселективностью и не требуют никаких реагентов или катализаторов, а только облучения. К этому следует добавить, что синтез требуемых диенонов типа 391или 393также несложен и легко может быть выполнен с помощью последовательности хорошо отработанных реакций, таких, как реакция Михаэля и ачкилирование енолятов. Таким образом, вырисовывается общая схема синтеза полициклических соединений, содержащих разные комбина­ции линейно и ангулярно сочлененных циклов, который включает две ос­новные стадии, а именно: синтез полифункционального субстрата и его [2 + 2]-фотоциклоприсоединение. Дополнительная препаративная ценность такого протокола обусловлена тем, что получаемые напряженные системы могут легко претерпевать реакции с раскрытием циклобутанового фрагмен­та, а также скелетные перегруппировки [32т] (см. ниже, разд. 2.7.3.2.).

В последующих разделах этой, а также других глав, будет приведено еще немало примеров использования [2 + 2]-фотоциклоприсоединення (как в варианте алкен+ачкен, так и в варианте алкен+енон) для решения задач по­строения самых различных структур. Здесь уместно сделать еще одно замеча­ние более общего характера. Структуры типа баскетена (357)или бензола Дьюара (388)относятся к числу богатых энергией жестких структур с систе­мой напряженных связей С—С. По сути дела в ходе образования подобного рода систем происходит преобразование лучистой энергии в энергию хими­ческой связи. Ясно также, что превращения таких соединений, протекаю­щие с разрывом напряженных фрагментов (например, под действием ката­лизаторов), должны сопровождаться выделением энергии, запасенной при их синтезе. Поэтому внутримолекулярное фотоциклоприсоединение рас­сматривается сейчас не только как один из полезнейших инструментов органического синтеза, но и как перспективный путь создания систем, спо­собных аккумулировать лучистую (в том числе солнечную) энергию в форме химической энергии, удобной для практического использования.

 

– Конец работы –

Эта тема принадлежит разделу:

ОРГАНИЧЕСКИЙ СИНТЕЗ

ORGANIC SYNTHESIS... THE SCIENCE BEHIND THE ART...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Циклоприсоединение в синтезе производных циклобутана

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОРГАНИЧЕСКИЙ СИНТЕЗ
НАУКА И ИСКУССТВО   Перевод с английского профессора, д-ра хим. наук В. А. Смита и профессора, д-ра хим. наук А. Ф. Бочкова    

Редакция литературы по химии
ISBN5-03-003380-7 (русск.) ISBN 0-85404544-9 (англ.) © The Royal Society of Chemistty 1998 © Перевод на русский язык, оформление «Мир», 2001 © OCR сканированной кн

Цель однозначна и бесспорна
С древних времен человеку были известны чарующие цвета, которые прида­вали тканям природные красители, добываемые из различных растений и животных. Уже в XIII в. до н. э. финикийцы владели искусств

Цель однозначна, но не бесспорна
Однако важность того или иного направления в науке чаще всего не может быть оценена столь прямолинейно только по критерию немедленной полез­ности конкретных научных исследований. На протяжении всей

Синтез как поиск (цель бесспорна, но не однозначна).
  Синтез природных веществ, в том числе обладающих полезными свойствами, — это лишь одна, наиболее очевидная, но далеко не единственная задача ор­ганического синтеза. Как показывает в

Синтез как инструмент исследования
Во всех обсуждавшихся выше примерах синтез выполняет чисто препаратив­ную функцию, т.е. поставляет нужные вещества. В принципе для решения та­ких задач не имеет значения, каким именно путем было по

Строение соединений с их свойствами
Пожалуй, главная, наиболее фундаментальная задача не только органической химии, но и всей химической науки — это установление зависимости свойств вещества (физических, химических, биологических) ка

Создание новых структур, проблемных для органической химии
На протяжении всей истории органической химии в ней возникали и про­должают возникать проблемы теоретического характера, для решения кото­рых необходимо было изучить те или иные соединения с экзоти

Расширение круга известных органических соединений
Это — одна из традиционных и наиболее скромных сторон деятельности хи­миков-синтетиков. Скромных потому, что большинство таких синтезов носит весьма заурядный характер, и уже давно никого не удивля

Вводные замечания
  Название этой главы может создать впечатление, что мы собираемся рас­смотреть в ней все или хотя бы большинство методов, используемых в совре­менной синтетической практике. Надо сра

Возможность протекания органической реакции. Общие соображения
Во введении мы упоминали привлекательный, но абсолютно нереальный путь синтез уксусной кислоты из метана и углекислого газа (диоксида углерода): СН4 + СО2 → СН

Термодинамическая допустимость реакции
Ископаемое сырье, служащее в конечном счете основным исходным матери­алом для органического синтеза, образовалось в результате чрезвычайно длительных биогеохимических процессов. За это время оно ус

Термодинамический и кинетический контроль
Для того чтобы термодинамически допустимое превращение X → Y могло осуществиться, реагирующая система X (это может быть одно вещество или несколько компонент, словом, все участники процесса),

Органическая реакция и синтетический метод
  Термину «синтетический метод» трудно дать строгое определение, но не трудно описать смысл этого понятия. Идеальный синтетический метод мо­жет быть уподоблен оператору в математике,

Принципы сборки связи С-С. Гетеролитические реакции
  Основу типичной органической молекулы, ее углеродный скелет, составляет система непосредственно связанных друг с другом атомов углерода. Поэтому методы создания углерод-углеродных с

Органические ионы и факторы, определяющие их стабильность
  Высокая химическая активность карбокатионов и карбанионов связана прежде всего с силами кулоновского взаимодействия. Точечный заряд, сосре­доточенный на атоме углерода, создает элек

Электрофилы и нуклеофилы в реакциях образования связей С-С
Существование обширных классов органических реакций, которые могутбыть формально описаны в терминах ионных схем, но в которых реально участвуют ковалентные соединения, позволяет говорить об экви

Реакция Вюрца. Аллильное сочетание и родственные случаи
Выше мы уже обсуждали реакцию Вюрца как один из простейших случаев образования связи С—С. В этой реакции одна молекула алкилгалогенида вы­ступает в роли элекгрофила (эквивалента карбокатиона), в то

Карбонильные соединения как нуклеофилы и электрофилы
В определенном смысле карбонилсодержащий фрагмент С-С=О может рас­сматриваться как аналог аллилъной системы С—С=С. Однако в отличие от по­следней в карбонильных соединениях эффективная стабилизация

Карбометаллирование алкинов
Изложенные выше принципы проведения нуклеофильного присоединения по кратным связям как последовательности независимых стадий атаки нук­леофила и взаимодействия образующегося карбанионного интермеди

Ретросинтетический анализ ациклических целевых структур. Общие рекомендации.
Выше мы рассмотрели лишь некоторые наиболее типичные и часто упот­ребляемые методы сборки связей С-С и С=С. Эта выборка, несмотря на ее Неизбежную ограниченность, дает возможность сформулировать ря

Карбокатионные или карбанионные реагенты. О некоторых дополнительных возможностях проведения реакций образования связи С-С
Вначале разд. 2.2.3 мы не делали никаких принципиальных различий меж­ду карбокатионами и карбанионами, рассматривая и те, и другие в качестве равноправных партнеров в гетеролитичес

Взаимопревращения функциональных групп
  До сих пор мы рассматривали лишь те реакции, результатом которых является образование новой связи С—С, и почти ничего не говорили о возможно­сти переходов от одного типа органически

Изогипсические трансформации. Синтетическая эквивалентность функциональных групп одного уровня окисления.
Как мы уже могли убедиться, функциями, наиболее часто возникающими при сборке связи С—С, являются спиртовая (реакции Гриньяра, альдольная конденсация) и олефиновая (реакция Виттига, кротоновая конд

Неизогипсические трансформации как пути переходов между различными уровнями окисления
В этой группе наиболее значимыми для синтеза являются такие превраще­ния кислородсодержащих соединений, как окисление спиртов до карбо­нильных соединений или карбоновых кислот и обратные им превращ

Взаимопревращение функциональных групп как стратегический метод в полном синтезе.
  В начальный период развития органического синтеза было естественно вы­страивать синтетическую цепочку, используя в качестве исходного соедине­ния то или иное вещество, выделяемое из

Селективность обеспечивается выбором подходящей реакции
Наиболее простой пример такого подхода мы рассматривали на примере бро-мирования толуола (см. разд. 2.1.3). Действительно, в толуоле имеются две функциональные группы, способные легко реагировать с

Варьирование природы реагентов как способ управления селективностью реакции
Хорошо известно, что даже в пределах одной и той же реакции относительная реакционная способность родственных функций может ощутимо зависеть от конкретных особенностей используемого реагента. Поэто

Альтернативных реакционных центров субстрата
Классический пример такого подхода к решению проблемы — ацетоуксус-ный эфир (168).Его обычной реакционноспособной формой является 1енолят 169,реакции которого с ра

Защита функциональных групп как универсальный способ управления селективностью реакций
Во всех подходах к проблеме селективности, которые мы рассматривали вы-ше, «игра» строилась на вариациях, непосредственно затрагивающих участ-ников основного процесса: изменялись природа субстрата

Идеальный органический синтез: фантастика или достижимая цель?
  Пофантазируем немного на тему о том, каким бы хотелось видеть идеальный органический синтез (недалекого будущего?). Мы говорили о том, что синтез состоит в конструировании молекул.

Реагенты и синтетическая эквивалентность
Разумеется, аналогию между реагентом в синтезе и деталью какой-либо ме­ханической конструкции не следует понимать слишком буквально, хотя бы уже потому, что обычно реагент входитв собираемую структ

Понятие о синтонах
Обобщенное описание эквивалентности чрезвычайно полезно с сугубо праг­матических позиций планирования органического синтеза, поскольку с его учетом резко расширяется поле выбора реагентов, применим

Синтонный подход как инструмент в разработке путей синтеза
Введение в обиход синтонов как элементарных блоков-заготовок предо­ставляет химику систему готовых решений если не всех, то многих тактиче­ских задач. Современный синтетик при анализе структуры цел

Изоструктурные синтоны обратной полярности
Как видно, синтонный подход позволяет планировать синтез на основе гете-ролитическях реакций как сборку целевой молекулы из готовых «кубиков», порядок сцепления которых определяется противоположнос

Специфика задач при синтезе циклических соединений
  Вообще говоря, построение молекул, в состав которых входит замкнутая цепь углеродных атомов (цикл), требует решения уже знакомых нам задач образовния связей углерод-углерод. Почему

Малые циклы: производные циклопропана и циклобутана
В циклопропане валентные углы атомов, образующих цикл, равны 60', т. е. очень сильно отличаются от валентного угла тетраэдрического атома углеро­да (109,5°). Поэтому неудивительно, что энтальпия об

Пят- и шестичленные циклы
Благодаря минимальным искажениям валентных углов и минимальному напряжению, обусловленному взаимодействием несвязанных групп, пя­ти- и шестичленные циклы (как и ведущие к ним переходные состояния)

Циклы большего размера. Принципы макроциклизации. Эффекты многоцентровой координации
Число атомов в цикле (п) Относительная скорость(при 50˚С) 1,5 10е 1,7

Циклоприсоединение - методы, специально созданные для получения циклических структур
  Нетрудно заметить, что все ранее рассмотренные методы циклообразования имеют одну общую особенность: циклизация осуществляется как внутримо­лекулярная реакция замыкания единственной

Циклоприсоединение
Среди множества реакций, относящихся к этому классу, особое место занима­ет [4 + 2]-циклоприсоединение. Это — реакция Дильса—Альдера [2а], как пра­вило, не требующая катализа или иницирования облуч

Синтез циклопропанов путем [2 + 1]-циклоприсоединения
Синтез трехчленных циклов по схеме циклоприсоединения должен, очевид­но, включать взаимодействие непредельного субстрата, например алкена, с каким-либо Срреагентом, выступающим в роли синтетическог

Селективность циклообразования в комплексах переходных металлов
Вспомним, каким трудоемким путем (с общим выходом 0,75%) был впервые получен циклооктатетраен (137,схема 2.65). Этот 10-стадийный синтез был впоследствии воспроизведен другими иссл

Радикальные реакции и их роль в синтезе циклических соединений
Как мы уже отмечали, большинство методов образования связей С—С в пол­ном синтезе основано на гетеролитических реакциях или на реакциях цикло­присоединения. Причины того, что гемолитические реакции

Расщепление связей С-С и перестройка углеродного скелета как синтетические методы
Выше мы обсудили основные типы реакций и методов, используемых для об­разования связей С-С углеродного скелета ацикличгских или циклических молекул. Этот набор должен быть дополнен еще группой мето

Расщепление одинарных связей С-С
  Пожалуй, наиболее известный и очевидный пример конструктивной роли «деструктивной» реакции — декарбоксилирование алкилированных произ­водных ацетоуксусного или малонового эфира. По

Синтетическое использование реакций расщепления двойной углерод-углеродной связи
  Созидательный потенциал реакций, приводящей к разрыву углерод-углерод­ных связей, еще более наглядно может быть продемонстрирован на примере окислительного расщепления олефинов. Сре

Перегруппировки углеродного скелета и некоторые возможности их использования в полном синтезе
Конструктивные и деструктивные реакции, которые мы до сих пор рассмат­ривали, отличаются тем общим свойством, что в них затрагиваются (разры­ваются или образуются) лишь связи тех атомов, которые не

Перегруппировка Кляйзена-Джонсона—Айрленда и гидрокси-перегруппировка Коупа
Как показано в общем виде на схеме 2.154, синтетический результат пере­группировки Кляйзена сводится к введению аллильного фрагмента по а-ато-му исходного карбонильного соединения через промежуточн

Трансформации малых циклов и их роль в полном синтезе
Как было показано выше, разработано множество методов, позволяющих по­лучать циклы различных размеров, в том числе входящие в состав полицикли­ческого скелета. Размер цикла, который может быть обра

Заключительные замечания
В данной главе мы, конечно, не имели возможности сколько-нибудь полно обсудить все те методы, которые составляют основу тактики современного органического синтеза. Однако мы надеемся, что даже на о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги