рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Цель однозначна и бесспорна

Цель однозначна и бесспорна - раздел Образование, ОРГАНИЧЕСКИЙ СИНТЕЗ С Древних Времен Человеку Были Известны Чарующие Цвета, Которые Прида­вали Тк...

С древних времен человеку были известны чарующие цвета, которые прида­вали тканям природные красители, добываемые из различных растений и животных. Уже в XIII в. до н. э. финикийцы владели искусством извлечения индигоидных красителей («тирийский пурпур») из мантии некоторых среди­земноморских моллюсков. Для извлечения 1 г такого красителя требовалось •переработать около 10000 моллюсков, что было длительным и трудоемким процессом, и неудивительно, что получаемый продукт ценился в 10—20 раз дороже золота.

В Древнем Риме рецепт производства пурпура относился к категории наиболее тщательно охранявшихся государственных секретов. Согласно указу Нерона, право на ношение одежды пурпурного цвета принадлежало исключительно императору («королевский пурпур») [1а]. Подобная роман­тическая аура продержалась до второй половины XIX в., вплоть до тех вре­мен, когда адепты новорожденной рационалистической науки, органиче­ской химии, безжалостно сдернули многовековой покров таинственности и показали, что красящими компонентами природного красителя являются не очень сложные химические вещества, индиго (1) и 6,6'-диброминдиго (2) (схема 1.1).

В 1878 г. Байер [1б] разработал недорогой метод синтеза, пригодный для промышленного производства индиго из доступных исходных веществ. В это же время было охарактеризовано и другое красящее вещество, ализарин (3), выделяемый из корней некоторых видов марены, например, марены кра­сильной (Rubia tinktoria), который с древнейших времен использовался как природный краситель. Первоначально ализарин также был очень дорогим продуктом, однако его цена резко снизилась после того, как Гребе и Либерман [2] предложили в 1868 г. простой способ его получения из углеводорода антрацена, выделяемого из каменноугольной смолы.

Эти поистине триумфальные достижения произвели сильнейшее впечат­ление не только на химиков, но и на общество в целом. Действительно, труд­но было более убедительно продемонстрировать могущество и потенциал органического синтеза, этого едва родившегося, но бурно растущего и де­рзкого «младенца».

Схема 1.1

«Символ веры» молекулярной биологии, «нить жизни» — это ДНК, кодиру­ющая наследственную информацию... Общеизвестная двуспиральная структу­ра этой молекулы была предложена Уотсоном и Криком в 1953 г. Как вспоми­нал впоследствии проф. Корана, «у меня немедленно появилась честолюбивая мечта синтезировать ее» [3]. Для осуществления этой мечты потребовалось поч­ти два десятилетия напряженнейшего труда большого коллектива, завершив­шегося блистательным успехом (и Нобелевской премией!) — полным синтезом биологически активного гена — фрагмента ДНК, кодирующего биосинтез тирозиновой транспортной РНК. Это выдающееся достижение не только послу­жило одним из подтверждений фундаментальных принципов молекулярной генетики, но и явилось мощным толчком к развитию генной инженерии.

Витамин С, аскорбиновая кислота (4), относится к числу важнейших витаминов. Еще в эпоху великих географических открытий человечество столкнулось с роковыми последствиями дефицита в пище этого простого, но тог­да еще неизвестного вещества. В те времена несравненно большее число мореплавателей стало жертвами таинственного заболевания, цинги, чем по­гибло во всех бурях и сражениях. Установление строения аскорбиновой кис­лоты (1928 г.), а вслед за этим ее лабораторный (Рейхштейн, 1934 г. [4]) и вскоре промышленный синтез из D-глкжозы сделали это вещество дешевым товарным продуктом, тем самым навсегда ликвидировав угрозу цинги (по крайней мере, в нормальных жизненных условиях; реальная, увы, опасность появления этого заболевания в концлагерях любых режимов здесь не рас­сматривается, ибо причины, обусловливающие такую возможность, лежат далеко за пределами предмета органической химии). Если верить Полингу, то легкодоступный витамин С сможет избавить человека еще от многих дру­гих болезней, включая и обычную простуду.

Простагландины (ПГ), такие, например, как ПГЕ1 (5, схема 1.2), впервые выделенные и охарактеризованные в 50-х годах XX столетия, относятся к числу чрезвычайно важных природных соединений. Представители этого до той поры вообще неизвестного класса соединений присутствуют почти во всех тканях млекопитающих и играют ключевую роль регуляторов функци­онирования таких важнейших систем, как сердечно-сосудистая, системы дыхания, пищеварения и размножения [5а]. Простагландины образуются в организме в микроскопических количествах. Так, в организме взрослого че­ловека синтезируется всего около 1 мг ПГ в день. К сожалению, очень огра­ничена также возможность их выделения из природных источников. К это­му следует добавить высокую лабильность этих соединений, что, конечно, крайне затрудняет их выделение, идентификацию и изучение свойств.

Поэтому изначально была очевидна необходимость разработки путей полного синтеза простагландинов, и десятки лабораторий в разных странах начали исследования в этой области. Именно благодаря решению задачи полного синтеза природных простагландинов и большого числа их искусст­венных аналогов удалось в сравнительно короткий срок добиться действи­тельно впечатляющих успехов как в понимании механизма действия про­стагландинов, так и в разработке путей их практического использования в медицине и ветеринарии [5b]. Благодаря исключительно высокой активно­сти (в концентрациях порядка нанограмм на I мл) как природных ПГ, так и некоторых их синтетических аналогов, синтез этих соединений даже в лабо­раторных масштабах (от сотен миллиграммов до нескольких килограммов в год) способен удовлетворить потребности целой страны.

Схема 1.2

«Стоит ли дерево человеческой жизни?» — под таким названием была опубликована статья в американском журнале «Newsweek» (5.09.1991). Под деревом подразумевалась одна из разновидностей тиса, вечнозеленого растения, произрастающего в лесах на западе США и Канады. Одной из специфических особенностей этого растения (собственно и поставивших под вопрос само существование этого вида!) является его способность продуцировать довольно сложную молекулу, таксол (6) (схема 1.2). Это вещество оказалось мощнейшим противораковым средством [6 а,b]. Оно прошло фазу III клинических испытаний и стало одним из наиболее перспективных ле­карственных средств влечении рака матки и молочной железы, особенно для тех случаев, которые не поддаются лечению другими препаратами.

Ежегодно только в США рак молочной железы уносит жизни 45000 жен­щин, а еще 12000 умирают от рака матки. Для лечения одного такого пациен­та требуется «принести в жертву» три столетних дерева с тем, чтобы получить примерно 25 кг коры, из которых можно выделить лишь несколько граммов таксола. Только для расширенных клинических испытаний фармацевтиче­ской компании Бристол-Мейерс требовалось около 25 кг 6, что означало уничтожение примерно 38000 деревьев [6а]. Возникновение подобной реаль­ной опасности для выживания популяции тисса в тихоокеанском ареале де­лает понятной обеспокоенность защитников окружающей среды, но не ме­нее понятно другое, полярно противоположное видение этой же проблемы глазами пациента: «Стоит ли дерево человеческой жизни?»

К счастью, эта дилемма все-таки менее категорична, чем «кошелек или жизнь?» На самом деле существует ряд решений, которые совсем не требуют обязательного уничтожения дерева для того, чтобы спасти человеческую жизнь. Вполне естестпенно, что сама острота стоящей проблемы послужила мощнейшим стимулом для широкого поиска других природных и возобнов­ляемых источников для выделения таксола и ему подобных веществ, и к настоящему времени стало ясно, что тис не является единственным природ­ным продуцентом соединений этого типа. С неменьшей интенсивностью велись и ведутся исследования по полному синтезу таксола. Уникальность конструкции углеродного скелета 6 в сочетании с наличием большого числа разнообразных функциональных групп делают синтез таксола исключи­тельным по сложности предприятием. Первые два синтеза соединения 6, вы­полненные независимо в 1994 г., один — группой Холтона [6с], другой — группой Николау [6d], по справедливости были сразу же отнесены к выдаю­щимся достижениям современной синтетической химии. Оба этих синтеза включают много стадий, и может показаться, что они представляют лишь чи­сто академический интерес, вне всякой связи с требованиями практики. Од­нако на самом деле подобные исследования важны еше и потому, что они открывают путь к получению набора разнообразных аналогов целевой моле­кулы, что необходимо для установления корреляции структура — активность и направленного поиска биологически активных и практически значимых соединений сходного типа, но существенно более простого строения [6b,е].

Головокружительные успехи в области трансплантации органов принад­лежат к числу самых ярких демонстраций успехов современной медицины. Безусловно, все это стало возможным в первую очередь благодаря возросше­му мастерству хирургов и разработке техники проведения таких операций. Однако не меньшее значение имела также разработка препаратов, способных контролировать иммунный ответ организма пациента с тем, чтобы пред­отвратить отторжение трансплантируемых чужеродных тканей [7а]. В 1987г. из культуральной жидкости микроорганизма Streptomyces tsukubaensis был выделен метаболит FK-506, который оказался одним из наиболее эффектив­ных иммуномодуляторов и для которого было установлено строение макроциклического лактона 7 (см. схему 1.2) [7b].

Менее чем через 2 года полный синтез структуры 7, несмотря на устраша­ющую ее сложность, был завершен группой Шинкаи лаборатории фирмы Мерк Шарп и Дом [7с]. Безусловно, этот синтез не может всерьез рассматри­ваться как альтернатива в обшем-то довольно дешевому процессу микробио­логического синтеза. Но именно благодаря синтетическим усилиям в этой области удалось разработать методы получения ряда родственных соедине­ний и изотопно меченных аналогов 7 [7d—f]. Это, в свою очередь, обеспечи­ло возможность проведения исследований, направленных на выяснение особенностей взаимодействия иммуномодуляторов с рецепторами соответ­ствующих клеток, т.е. тех особенностей, без знания которых невозможен ра­циональный дизайн иммунодепрсссантов, более простых по строению, чем макроцикличсский лактон 7, но проявляющих требуемый спектр свойств.

Не представляет труда умножить многократно число примеров, свиде­тельствующих об огромном вкладе достижений органического синтеза в со­здание современной цивилизации, — вкладе, затрагивающем буквально все аспекты нашей повседневной жизни. Различна техническая сложность этих синтезов и их масштабы — от миллиграммов до миллионов тонн, а также значимость для жизни человечества. Однако что бы не лштялось объектом синтеза — будь то синтетические волокна и каучуки, лекарства и красители, высокооктановый бензин или моющие средства, витамины, гормоны или реагенты для различных целей — во всех случаях их целью является получе­ние веществ с практически полезными свойствами и, стало быть, вряд ли мо­гут возникнуть сомнения в целесообразности синтетических исследований в этих областях. Столь ясно выраженная практическая направленность этих работ в сочетании с очевидной полезностью их конечных результатов, пожалуй, в наибольшей степени отвечают ожиданиям той части налогоплатель­щиков, которые желали бы максимально быстро получать ощутимо полез­ную отдачу от денег, вложенных в развитие науки.

 

– Конец работы –

Эта тема принадлежит разделу:

ОРГАНИЧЕСКИЙ СИНТЕЗ

ORGANIC SYNTHESIS... THE SCIENCE BEHIND THE ART...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Цель однозначна и бесспорна

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОРГАНИЧЕСКИЙ СИНТЕЗ
НАУКА И ИСКУССТВО   Перевод с английского профессора, д-ра хим. наук В. А. Смита и профессора, д-ра хим. наук А. Ф. Бочкова    

Редакция литературы по химии
ISBN5-03-003380-7 (русск.) ISBN 0-85404544-9 (англ.) © The Royal Society of Chemistty 1998 © Перевод на русский язык, оформление «Мир», 2001 © OCR сканированной кн

Цель однозначна, но не бесспорна
Однако важность того или иного направления в науке чаще всего не может быть оценена столь прямолинейно только по критерию немедленной полез­ности конкретных научных исследований. На протяжении всей

Синтез как поиск (цель бесспорна, но не однозначна).
  Синтез природных веществ, в том числе обладающих полезными свойствами, — это лишь одна, наиболее очевидная, но далеко не единственная задача ор­ганического синтеза. Как показывает в

Синтез как инструмент исследования
Во всех обсуждавшихся выше примерах синтез выполняет чисто препаратив­ную функцию, т.е. поставляет нужные вещества. В принципе для решения та­ких задач не имеет значения, каким именно путем было по

Строение соединений с их свойствами
Пожалуй, главная, наиболее фундаментальная задача не только органической химии, но и всей химической науки — это установление зависимости свойств вещества (физических, химических, биологических) ка

Создание новых структур, проблемных для органической химии
На протяжении всей истории органической химии в ней возникали и про­должают возникать проблемы теоретического характера, для решения кото­рых необходимо было изучить те или иные соединения с экзоти

Расширение круга известных органических соединений
Это — одна из традиционных и наиболее скромных сторон деятельности хи­миков-синтетиков. Скромных потому, что большинство таких синтезов носит весьма заурядный характер, и уже давно никого не удивля

Вводные замечания
  Название этой главы может создать впечатление, что мы собираемся рас­смотреть в ней все или хотя бы большинство методов, используемых в совре­менной синтетической практике. Надо сра

Возможность протекания органической реакции. Общие соображения
Во введении мы упоминали привлекательный, но абсолютно нереальный путь синтез уксусной кислоты из метана и углекислого газа (диоксида углерода): СН4 + СО2 → СН

Термодинамическая допустимость реакции
Ископаемое сырье, служащее в конечном счете основным исходным матери­алом для органического синтеза, образовалось в результате чрезвычайно длительных биогеохимических процессов. За это время оно ус

Термодинамический и кинетический контроль
Для того чтобы термодинамически допустимое превращение X → Y могло осуществиться, реагирующая система X (это может быть одно вещество или несколько компонент, словом, все участники процесса),

Органическая реакция и синтетический метод
  Термину «синтетический метод» трудно дать строгое определение, но не трудно описать смысл этого понятия. Идеальный синтетический метод мо­жет быть уподоблен оператору в математике,

Принципы сборки связи С-С. Гетеролитические реакции
  Основу типичной органической молекулы, ее углеродный скелет, составляет система непосредственно связанных друг с другом атомов углерода. Поэтому методы создания углерод-углеродных с

Органические ионы и факторы, определяющие их стабильность
  Высокая химическая активность карбокатионов и карбанионов связана прежде всего с силами кулоновского взаимодействия. Точечный заряд, сосре­доточенный на атоме углерода, создает элек

Электрофилы и нуклеофилы в реакциях образования связей С-С
Существование обширных классов органических реакций, которые могутбыть формально описаны в терминах ионных схем, но в которых реально участвуют ковалентные соединения, позволяет говорить об экви

Реакция Вюрца. Аллильное сочетание и родственные случаи
Выше мы уже обсуждали реакцию Вюрца как один из простейших случаев образования связи С—С. В этой реакции одна молекула алкилгалогенида вы­ступает в роли элекгрофила (эквивалента карбокатиона), в то

Карбонильные соединения как нуклеофилы и электрофилы
В определенном смысле карбонилсодержащий фрагмент С-С=О может рас­сматриваться как аналог аллилъной системы С—С=С. Однако в отличие от по­следней в карбонильных соединениях эффективная стабилизация

Карбометаллирование алкинов
Изложенные выше принципы проведения нуклеофильного присоединения по кратным связям как последовательности независимых стадий атаки нук­леофила и взаимодействия образующегося карбанионного интермеди

Ретросинтетический анализ ациклических целевых структур. Общие рекомендации.
Выше мы рассмотрели лишь некоторые наиболее типичные и часто упот­ребляемые методы сборки связей С-С и С=С. Эта выборка, несмотря на ее Неизбежную ограниченность, дает возможность сформулировать ря

Карбокатионные или карбанионные реагенты. О некоторых дополнительных возможностях проведения реакций образования связи С-С
Вначале разд. 2.2.3 мы не делали никаких принципиальных различий меж­ду карбокатионами и карбанионами, рассматривая и те, и другие в качестве равноправных партнеров в гетеролитичес

Взаимопревращения функциональных групп
  До сих пор мы рассматривали лишь те реакции, результатом которых является образование новой связи С—С, и почти ничего не говорили о возможно­сти переходов от одного типа органически

Изогипсические трансформации. Синтетическая эквивалентность функциональных групп одного уровня окисления.
Как мы уже могли убедиться, функциями, наиболее часто возникающими при сборке связи С—С, являются спиртовая (реакции Гриньяра, альдольная конденсация) и олефиновая (реакция Виттига, кротоновая конд

Неизогипсические трансформации как пути переходов между различными уровнями окисления
В этой группе наиболее значимыми для синтеза являются такие превраще­ния кислородсодержащих соединений, как окисление спиртов до карбо­нильных соединений или карбоновых кислот и обратные им превращ

Взаимопревращение функциональных групп как стратегический метод в полном синтезе.
  В начальный период развития органического синтеза было естественно вы­страивать синтетическую цепочку, используя в качестве исходного соедине­ния то или иное вещество, выделяемое из

Селективность обеспечивается выбором подходящей реакции
Наиболее простой пример такого подхода мы рассматривали на примере бро-мирования толуола (см. разд. 2.1.3). Действительно, в толуоле имеются две функциональные группы, способные легко реагировать с

Варьирование природы реагентов как способ управления селективностью реакции
Хорошо известно, что даже в пределах одной и той же реакции относительная реакционная способность родственных функций может ощутимо зависеть от конкретных особенностей используемого реагента. Поэто

Альтернативных реакционных центров субстрата
Классический пример такого подхода к решению проблемы — ацетоуксус-ный эфир (168).Его обычной реакционноспособной формой является 1енолят 169,реакции которого с ра

Защита функциональных групп как универсальный способ управления селективностью реакций
Во всех подходах к проблеме селективности, которые мы рассматривали вы-ше, «игра» строилась на вариациях, непосредственно затрагивающих участ-ников основного процесса: изменялись природа субстрата

Идеальный органический синтез: фантастика или достижимая цель?
  Пофантазируем немного на тему о том, каким бы хотелось видеть идеальный органический синтез (недалекого будущего?). Мы говорили о том, что синтез состоит в конструировании молекул.

Реагенты и синтетическая эквивалентность
Разумеется, аналогию между реагентом в синтезе и деталью какой-либо ме­ханической конструкции не следует понимать слишком буквально, хотя бы уже потому, что обычно реагент входитв собираемую структ

Понятие о синтонах
Обобщенное описание эквивалентности чрезвычайно полезно с сугубо праг­матических позиций планирования органического синтеза, поскольку с его учетом резко расширяется поле выбора реагентов, применим

Синтонный подход как инструмент в разработке путей синтеза
Введение в обиход синтонов как элементарных блоков-заготовок предо­ставляет химику систему готовых решений если не всех, то многих тактиче­ских задач. Современный синтетик при анализе структуры цел

Изоструктурные синтоны обратной полярности
Как видно, синтонный подход позволяет планировать синтез на основе гете-ролитическях реакций как сборку целевой молекулы из готовых «кубиков», порядок сцепления которых определяется противоположнос

Специфика задач при синтезе циклических соединений
  Вообще говоря, построение молекул, в состав которых входит замкнутая цепь углеродных атомов (цикл), требует решения уже знакомых нам задач образовния связей углерод-углерод. Почему

Малые циклы: производные циклопропана и циклобутана
В циклопропане валентные углы атомов, образующих цикл, равны 60', т. е. очень сильно отличаются от валентного угла тетраэдрического атома углеро­да (109,5°). Поэтому неудивительно, что энтальпия об

Пят- и шестичленные циклы
Благодаря минимальным искажениям валентных углов и минимальному напряжению, обусловленному взаимодействием несвязанных групп, пя­ти- и шестичленные циклы (как и ведущие к ним переходные состояния)

Циклы большего размера. Принципы макроциклизации. Эффекты многоцентровой координации
Число атомов в цикле (п) Относительная скорость(при 50˚С) 1,5 10е 1,7

Циклоприсоединение - методы, специально созданные для получения циклических структур
  Нетрудно заметить, что все ранее рассмотренные методы циклообразования имеют одну общую особенность: циклизация осуществляется как внутримо­лекулярная реакция замыкания единственной

Циклоприсоединение
Среди множества реакций, относящихся к этому классу, особое место занима­ет [4 + 2]-циклоприсоединение. Это — реакция Дильса—Альдера [2а], как пра­вило, не требующая катализа или иницирования облуч

Циклоприсоединение в синтезе производных циклобутана
[2 + 2)-Циклоприсоединенис относится к категории важнейших синтети­ческих методов, поскольку эта реакция позволяет получать различные производные циклобутана по схеме сборки из двух алкеновых фрагм

Синтез циклопропанов путем [2 + 1]-циклоприсоединения
Синтез трехчленных циклов по схеме циклоприсоединения должен, очевид­но, включать взаимодействие непредельного субстрата, например алкена, с каким-либо Срреагентом, выступающим в роли синтетическог

Селективность циклообразования в комплексах переходных металлов
Вспомним, каким трудоемким путем (с общим выходом 0,75%) был впервые получен циклооктатетраен (137,схема 2.65). Этот 10-стадийный синтез был впоследствии воспроизведен другими иссл

Радикальные реакции и их роль в синтезе циклических соединений
Как мы уже отмечали, большинство методов образования связей С—С в пол­ном синтезе основано на гетеролитических реакциях или на реакциях цикло­присоединения. Причины того, что гемолитические реакции

Расщепление связей С-С и перестройка углеродного скелета как синтетические методы
Выше мы обсудили основные типы реакций и методов, используемых для об­разования связей С-С углеродного скелета ацикличгских или циклических молекул. Этот набор должен быть дополнен еще группой мето

Расщепление одинарных связей С-С
  Пожалуй, наиболее известный и очевидный пример конструктивной роли «деструктивной» реакции — декарбоксилирование алкилированных произ­водных ацетоуксусного или малонового эфира. По

Синтетическое использование реакций расщепления двойной углерод-углеродной связи
  Созидательный потенциал реакций, приводящей к разрыву углерод-углерод­ных связей, еще более наглядно может быть продемонстрирован на примере окислительного расщепления олефинов. Сре

Перегруппировки углеродного скелета и некоторые возможности их использования в полном синтезе
Конструктивные и деструктивные реакции, которые мы до сих пор рассмат­ривали, отличаются тем общим свойством, что в них затрагиваются (разры­ваются или образуются) лишь связи тех атомов, которые не

Перегруппировка Кляйзена-Джонсона—Айрленда и гидрокси-перегруппировка Коупа
Как показано в общем виде на схеме 2.154, синтетический результат пере­группировки Кляйзена сводится к введению аллильного фрагмента по а-ато-му исходного карбонильного соединения через промежуточн

Трансформации малых циклов и их роль в полном синтезе
Как было показано выше, разработано множество методов, позволяющих по­лучать циклы различных размеров, в том числе входящие в состав полицикли­ческого скелета. Размер цикла, который может быть обра

Заключительные замечания
В данной главе мы, конечно, не имели возможности сколько-нибудь полно обсудить все те методы, которые составляют основу тактики современного органического синтеза. Однако мы надеемся, что даже на о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги