рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Линейное дифференциальное уравнение 1-го порядка.

Линейное дифференциальное уравнение 1-го порядка. - раздел Математика, Математический анализ Пример. Разберем Пример: ...

Пример. Разберем пример: .

Решим сначала вспомогательное уравнение . Это – уже знакомое уравнение с разделяющимися переменными, имеющее решение . Для нахождения решения исходного уравнения используем метод вариации постоянной. Он состоит в следующем. Ищем решение нашего уравнения в виде: , где - некоторая дифференцируемая функция. Тогда и, подставляя в уравнение, получаем: или . Интегрируя, находим: . Тогда . Итак, мы нашли решение исходного уравнения. Других решений у него нет, поскольку выполнены все условия теоремы о существовании и единственности решения задачи Коши (- непрерывная функция от , а ее производная по , равная 1, тоже).

В общем случае уравнения , где - непрерывные на функции мы поступаем вполне аналогично. Сначала решаем вспомогательное однородное уравнение: , (мы не рассматриваем решение ), откуда, обозначая любую первообразную для функции , находим, ограничиваясь случаем , для определенности, , или . Далее используем метод вариации постоянных: ищем решение неоднородного уравнения в виде . При этом . Подстановка в уравнение дает или . Интегрируем и, обозначая первообразную для , получаем . Тогда . Эту формулу иногда записывают в виде , понимая под знаком интеграла не все множество первообразных, а одну произвольно выбранную первообразную.

Уравнения, не разрешенные относительно производной. Общее уравнение первого порядка можно пытаться решать разными методами.

Во-первых, можно попытаться все-таки его решить и свести исходное уравнение к одному или нескольким уравнениям вида .

Например, . Уравнение, после преобразования к виду даст равносильную ему совокупность , откуда .

Другой способ – введение параметра.

Например, уравнение можно решить так: введем параметр . Тогда , откуда . Но и мы приходим к уравнению или . При из этого уравнения получаем . Тогда и мы получаем параметрические уравнения: . В этом случае параметр удается исключить: и - явное решение. В случае из получаем .

Указанный прием применим к уравнениям Лагранжа и Клеро.

Уравнение Лагранжа имеет вид , где - дифференцируемые функции. Полагая , получаем . Дифференцируя, получаем: или , откуда . Предполагая, что , получаем уравнение , линейное относительно . Решаем его указанным выше методом и получаем выражение для через и произвольную постоянную . Тогда .

Уравнение Клеро – это частный случай уравнения Лагранжа: . Вводя параметр , получаем (т.е. , как раз оставшийся случай), или . Тогда, если , то и - это общее решение уравнения Клеро. Если же , то . Тогда .

13. Дифференциальное уравнение n-ного порядка. Задача Коши для уравнения . Понижение порядка дифференциального уравнения

Теорема. Пусть функция определена и непрерывна в области . Пусть непрерывны в . Тогда задача Коши, состоящая в нахождении решения уравнения с начальными условиями (где точки принадлежат области ) имеет, притом единственное, непродолжаемое (максимальное) решение.

Теорема сформулирована без доказательства.

Методы понижения порядка уравнения. Существуют разные методы снижения порядка (и, тем самым, некоторого упрощения) уравнения. Мы изложим здесь самые простые.

Если уравнение имеет вид (т.е. не содержит , то введение новой переменной уменьшит порядок уравнения, которое примет вид . Если удастся решить это уравнение, то затем можно получить последовательным интегрированием раз.

Если уравнение не содержит , т.е. имеет вид , то его порядок можно понизить, взяв за независимую переменную и считая производную функцией от . Поясним это на примере.

Пример. Решить уравнение . Пусть . Тогда , откуда ; (пусть ); ; ; . Таким образом, . Далее находим: ; .

– Конец работы –

Эта тема принадлежит разделу:

Математический анализ

На сайте allrefs.net читайте: "Математический анализ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Линейное дифференциальное уравнение 1-го порядка.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Числовые ряды. Критерий Коши сходимости. Свойства сходящихся рядов
Пусть - последовательность чисел. Рассмотрим величины (1).

Доказательство.
сходится Þ сходится . Но

Ряды с неотрицательными членами. Теоремы сравнения. Признаки Даламбера, Коши, Гаусса
Если известно, что все члены ряда имеют, начиная с некоторого номера, постоянный знак, то исследовать его сходимость проще, чем

Доказательство.
. Пусть . Тогда

Абсолютная сходимость. Свойства абсолютно сходящихся рядов
Определение. Абсолютно сходящимся рядом называется сходящийся ряд , для которого сходится и ряд

Условная сходимость. Теорема Лейбница
Существуют также условно сходящиеся ряды. Простейшим примером служит знакочередующийся ряд . Он не является абсолютно схо

Равномерная сходимость функциональной последовательности, ряда. Признак Вейерштрасса
Пусть задана последовательность функций , определенных на множестве

Без доказательства.
Из этой теоремы сразу следует критерий Коши равномерной сходимости функционального ряда: равномерно сходится на

Непрерывность суммы равномерно сходящегося ряда из непрерывных функций. Почленное интегрирование и дифференцирование ряда
Теорема. Пусть на . Пусть

Степенные ряды. Радиус сходимости. Непрерывность суммы. Почленное интегрирование и дифференцирование
Важный частный случай функциональных рядов представляют собой степенные ряды, т.е. ряды вида или, в более общем случае,

Доказательство.
Лемма. Пусть . Тогда сходится на мн

Разложение элементарных функций в степенные ряды
Разложение . Лемма. Если для любого отрезка

Ортонормированные системы функций. Обобщенные ряды Фурье. Тригонометрические ряды Фурье. Теорема сходимости
Понятие об ортогональных системах функций. Начнем с определения ортогональных функций. Функции называют

Линейное дифференциальное уравнение n-ного порядка. Свойства линейного однородного дифференциального уравнения
Рассмотрим дифференциальное уравнение (1), где - функции

Линейная зависимость функций. Определитель Вронского
Перейдем к более глубокому изучению свойств векторного пространства решений уравнения (2). Мы установим ниже, что оно имеет раз

Фундаментальная система решений линейного однородного уравнения
Определение. Любые линейно независимых решений линейного однородного дифференциального уравнения

Линейное неоднородное уравнение. Принцип суперпозиции
Теорема 3. Пусть - решение уравнения

Метод вариации постоянных
Вернемся к неоднородному уравнению (1). Предположим, что мы можем найти фундаментальную систему решений

Линейное однородное дифференциальное уравнение с постоянными коэффициентами. Характеристическое уравнение. Общее решение
Для уравнений (1), у которых (2), где

Метод неопределенных коэффициентов для нахождения частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами
Согласно общей теории линейных дифференциальных уравнений, для решения уравнения (1) достаточно знать фундаментальную систему

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги