рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Извлечение корня й степени из комплексного числа. Множества в комплексной плоскости

Извлечение корня й степени из комплексного числа. Множества в комплексной плоскости - Лекция, раздел Математика, Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например   Равенство (1) Называется Формулой Муавра. Используя Ег...

 

Равенство (1) называется формулой Муавра. Используя его, можно вывести формулу извлечения корня й степени из комплексного числа. Однако для этого надо ввести сначала понятие корня.

Определение 1. Корнем й степени из комплексного числа называется такое комплексное число я степень которого равна Обозначение: Таким образом,

Пусть Имеем (при )

 

Значит, Изменяя здесь видим, что различные значения корня й степени получаются при Дальнейшее изменение привело бы к уже полученным значениям Если же то, очевидно, Мы доказали следующий результат.

Теорема 1. Если то корень имеет ровно различных значений: Если то имеет только одно значение, равное нулю.

Например,

 

 

Приведем примеры простейших множеств точек на комплексной плоскости:

 

а) -- окружность с центром в точке радиусом ;

 

б) -- открытый круг с центром в точке радиусом ;

 

в) -- внешность открытого круга с центром в точке радиусом ;

 

г) -- открытое кольцо с центром в точке ;

 

д) -- луч с началом в точке , идущий под углом к положительному направлению действительной оси;

 

е) -- внутренность неограниченного открытого сектора с вершиной в точке и углом ;

 

ж) -- прямая, параллельная мнимой оси, проходящая через точку ;

 

з) -- прямая, параллельная действительной оси, проходящая через точку

 

и) вертикальная полоса между прямыми и

 

к) горизонтальная полоса между прямыми и

Рекомендуем сделать рисунки всех перечисленных множеств. В качестве упражнения попробуйте записать аналитически (в виде уравнений или неравенств) приводимые ниже множества на комплексной плоскости[3]

 

 

 

 

Рис. 2

Понятие окрестности точки вводится также, как и в действительном анализе.

 

Определение 2. окрестностью точки называется открытый круг

 

с центром в точке радиуса. Проколотой окрестностью точки называется множество

Определение 3. Точка называется внутренней точкой множества если она входит в вместе с некоторой своей окрестностью. Если все точки множества внутренние, то называется открытым множеством.

Определение 4. Точка называется граничной точкой множества если в любой окрестности этой точки имеются как точки, принадлежащие так и точки, не принадлежащие Множество всех граничных точек образует границу Обозначение:

Определение 5. Множество называется связным, если любые две его точки можно соединить непрерывной кривой, не выходя из Множество называется односвязным, если любой замкнутый контур, лежащий в можно стянуть в точку, не выходя из И, наконец, множество называется связным, если его граница состоит из попарно не пересекающихся между собой замкнутых контуров.

Определение 6. Любое открытое связное множество называется областью. Область называется ограниченной, если существует круг, охватывающий область В противном случае область называется не ограниченной.

Пусть и две области на комплексной плоскости причем находится в плоскости а в плоскости

 

Определение 7. Говорят, что задана функция отображающая область в область если каждому числу поставлено в соответствие одно или несколько комплексных чисел по закону При этом называется областью определения функции Если каждому поставлено в соответствие единственное число то говорят, что функция однозначна; в противном случае функция многозначна. Функция называется однолистной в области если

 

Например, функция однозначная, но не однолистная, а функция трёхзначная. Функция однозначная и однолистная.

Поскольку каждое комплексное число вполне определяется своей действительной и мнимой частью, то функцию комплексной переменной можно записать в виде

 

Например, функцию можно записать в указанном виде, если в ней выделить действительную и мнимую части: Здесь

 

Частные типы комплексных функций:

а) комплексная последовательность:

б) комплексная функция действительного аргумента:

С последней функцией мы встречались в главе 4 при рассмотрении комплексных решений дифференциальных уравнений. Такие функции часто используются при задании кривых в комплексной плоскости. Например, уравнение описывает уравнение окружности в плоскости радиуса и с центром в точке

– Конец работы –

Эта тема принадлежит разделу:

Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например

семестр часть Дифференциальные уравнения... В каждой лекции все формулы определения и теоремы нумеруются так же как и в... Лекция Общие понятия Начальная задача задача Коши и теорема существования и единственности решения задачи Коши...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Извлечение корня й степени из комплексного числа. Множества в комплексной плоскости

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Линейные дифференциальные уравнения. Метод вариации произвольной постоянной
Уравнение вида   где неизвестная функция, известные функции[2], называется линейным дифференциальным уравнением. Если то уравнение (1) называется однородным. Ес

Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение и общий интеграл
  Сначала дадим понятие решения уравнения (3). Определение 1.Решением уравнения (3) на отрезке называется такая функция которая удовлетворяет

Уравнения, допускающие понижение порядка
Ясно, что чем меньше порядок дифференциального уравнения, тем легче его решить. Посмотрим, какие уравнения допускают понижение порядка. Сначала рассмотрим простейшее уравнение

Линейная зависимость и линейная независимость системы функций. Вронскиан. Исследование линейной независимости с помощью вронскиана
  Пусть функции имеют смысл на отрезке Определение 1. Говорят, что система функцийлинейно зависима на отрезке , если существуют постоянные , не равные

Структура общего решения однородного дифференциального уравнения
  Рассмотрим однородное линейное дифференциальное уравнение   Докажем следующий важный результат. Теорема 5. Пусть функции являются

Структура общего решения неоднородного уравнения. Метод вариации произвольных постоянных Лагранжа
  Пусть дано неоднородное дифференциальное уравнение   Докажем следующее утверждение. Теорема 1(о структуре общего решения неоднородно

Метод вариации произвольных постоянных Лагранжа
  Согласно теореме 1 поиск общего решения неоднородного дифференциального уравнения (1) сводится к двум процедурам: 1) построение фундаментальной системы решений соответствую

Комплексные решения дифференциальных уравнений. Линейная независимость комплексных решений
  Напомним, что комплексными числами называют числа вида где и – действительные числа, --- мнимая единица ( ). При этом называется действительной частью, а – м

Построение общего решения однородного дифференциального уравнения в случае кратных корней характеристического уравнения
  Напомним сначала, что корень характеристического многочлена называется корнем кратности если   Полезно заметить, что если полином имеет различных корне

Алгоритм 1.
1) По уравнению (1) составляем характеристическое уравнение , заменив в (1) производные на степени ( ). 2) Найдем корни характеристического уравнения и установим их кратности. 3)

Построение общего решения неоднородного уравнения с постоянными коэффициентами. Метод подбора частного решения неоднородного уравнения
  Для неоднородного уравнения   с непрерывными на отрезке коэффициентами и неоднородностью был изложен метод вычисления частного решения называемый методом в

Предел и непрерывность функции комплексной переменной
  Ниже везде, если не оговорено противное, все функции считаются однозначными. Кроме того, запись автоматически предполагает, что и – действительные величины. Ниже везде, есл

Производная функции комплексного переменного. Условия Коши-Римана. Аналитичность функции
  Пусть функция определена в точке и некоторой ее окрестности Сместимся из точки в точку Тогда аргумент функции получит приращение , а сама функция -- приращение Опре

Геометрический смысл модуля и аргумента производной
  Пусть функция дифференцируема в точке и При отображении вектор исходящий из точки переходит в бесконечно малый вектор исходящий из точки а гладкая кривая переходит в гладкую кривую

Теорема Коши для односвязной области и многосвязной области. Интегральная формула Коши
  Напомним, что множество называется односвязным, если любой замкнутый контур, лежащий в можно стянуть в точку, не выходя из . Множество называется связным, если его гра

Первообразная функции комплексных переменных
  Функция называется первообразной функции в области в области если дифференцируема в и Теорема 1. Если однозначная функция дифферен

Степенные ряды. Ряды Тейлора и Лорана
  Функциональные ряды вида где (коэффициенты ряда) и (центр ряда) – постоянные, переменная, называются степенными рядами. Ясно, что если мы научимся вычислять область сходимост

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги