рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Метод вариации произвольных постоянных Лагранжа

Метод вариации произвольных постоянных Лагранжа - Лекция, раздел Математика, Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например   Согласно Теореме 1 Поиск Общего Решения Неоднородного Диффере...

 

Согласно теореме 1 поиск общего решения неоднородного дифференциального уравнения (1) сводится к двум процедурам:

1) построение фундаментальной системы решений соответствующего однородного уравнения;

2) вычисление частного решения неоднородного уравнения (1).

Самым трудным является осуществление первой процедуры. Однако для уравнений с постоянными коэффициентами (см. следующий раздел) ее можно всегда реализовать. Если же найдена фундаментальная система решений однородного уравнения то реализовать вторую процедуру не составляет особого труда.

Теорема 2. Пусть --- фундаментальная система решений однородного уравнения с непрерывными на отрезке коэффициентами Если правая часть соответствующего неоднородного уравнения (1) непрерывна на отрезке то его частное решение можно вычислить в виде

 

где функции (представляющие собой варьированные постоянные общего решения однородного уравнения ) находятся из системы

 

Доказательство. Проведем доказательство для уравнения второго порядка:

 

В этом случае система (6) имеет вид

 

Проверим, что функция

 

где и удовлетворяют уравнениям (8), является частным решением уравнения (7). Вычислим производные и функции (9) с учетом равенств (8):

 

 

Отсюда получаем, что

 

Группируя здесь коэффициенты отдельно перед каждой функций и получаем

 

Поскольку и – решения соответствующего однородного уравнения то и значит Таким образом, функция является частным решением неоднородного уравнения (7). Теорема доказана.

Пример 1. Проверить, что функции образуют фундаментальную систему решения уравнения и найти общее решение неоднородного уравнения

Решение.Поскольку и то функция удовлетворяет уравнению Точно так же убеждаемся, что функция также удовлетворяет уравнению Вычисляем вронскиан

 

Видим, что он не обращается в нуль на промежутке значит функции образуют фундаментальную систему решений уравнения

Найдем теперь частное решение неоднородного уравнения в форме При этом функции и должны удовлетворять системе

 

Поскольку нас интересует частное решение неоднородного уравнения то и можно взять в виде Подставляя их в функцию , получаем частное решение в виде

 

а значит, общее решение неоднородного уравнения запишется в форме

 

 

– Конец работы –

Эта тема принадлежит разделу:

Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например

семестр часть Дифференциальные уравнения... В каждой лекции все формулы определения и теоремы нумеруются так же как и в... Лекция Общие понятия Начальная задача задача Коши и теорема существования и единственности решения задачи Коши...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Метод вариации произвольных постоянных Лагранжа

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Линейные дифференциальные уравнения. Метод вариации произвольной постоянной
Уравнение вида   где неизвестная функция, известные функции[2], называется линейным дифференциальным уравнением. Если то уравнение (1) называется однородным. Ес

Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение и общий интеграл
  Сначала дадим понятие решения уравнения (3). Определение 1.Решением уравнения (3) на отрезке называется такая функция которая удовлетворяет

Уравнения, допускающие понижение порядка
Ясно, что чем меньше порядок дифференциального уравнения, тем легче его решить. Посмотрим, какие уравнения допускают понижение порядка. Сначала рассмотрим простейшее уравнение

Линейная зависимость и линейная независимость системы функций. Вронскиан. Исследование линейной независимости с помощью вронскиана
  Пусть функции имеют смысл на отрезке Определение 1. Говорят, что система функцийлинейно зависима на отрезке , если существуют постоянные , не равные

Структура общего решения однородного дифференциального уравнения
  Рассмотрим однородное линейное дифференциальное уравнение   Докажем следующий важный результат. Теорема 5. Пусть функции являются

Структура общего решения неоднородного уравнения. Метод вариации произвольных постоянных Лагранжа
  Пусть дано неоднородное дифференциальное уравнение   Докажем следующее утверждение. Теорема 1(о структуре общего решения неоднородно

Комплексные решения дифференциальных уравнений. Линейная независимость комплексных решений
  Напомним, что комплексными числами называют числа вида где и – действительные числа, --- мнимая единица ( ). При этом называется действительной частью, а – м

Построение общего решения однородного дифференциального уравнения в случае кратных корней характеристического уравнения
  Напомним сначала, что корень характеристического многочлена называется корнем кратности если   Полезно заметить, что если полином имеет различных корне

Алгоритм 1.
1) По уравнению (1) составляем характеристическое уравнение , заменив в (1) производные на степени ( ). 2) Найдем корни характеристического уравнения и установим их кратности. 3)

Построение общего решения неоднородного уравнения с постоянными коэффициентами. Метод подбора частного решения неоднородного уравнения
  Для неоднородного уравнения   с непрерывными на отрезке коэффициентами и неоднородностью был изложен метод вычисления частного решения называемый методом в

Извлечение корня й степени из комплексного числа. Множества в комплексной плоскости
  Равенство (1) называется формулой Муавра. Используя его, можно вывести формулу извлечения корня й степени из комплексного числа. Однако для этого надо ввести сначала понятие

Предел и непрерывность функции комплексной переменной
  Ниже везде, если не оговорено противное, все функции считаются однозначными. Кроме того, запись автоматически предполагает, что и – действительные величины. Ниже везде, есл

Производная функции комплексного переменного. Условия Коши-Римана. Аналитичность функции
  Пусть функция определена в точке и некоторой ее окрестности Сместимся из точки в точку Тогда аргумент функции получит приращение , а сама функция -- приращение Опре

Геометрический смысл модуля и аргумента производной
  Пусть функция дифференцируема в точке и При отображении вектор исходящий из точки переходит в бесконечно малый вектор исходящий из точки а гладкая кривая переходит в гладкую кривую

Теорема Коши для односвязной области и многосвязной области. Интегральная формула Коши
  Напомним, что множество называется односвязным, если любой замкнутый контур, лежащий в можно стянуть в точку, не выходя из . Множество называется связным, если его гра

Первообразная функции комплексных переменных
  Функция называется первообразной функции в области в области если дифференцируема в и Теорема 1. Если однозначная функция дифферен

Степенные ряды. Ряды Тейлора и Лорана
  Функциональные ряды вида где (коэффициенты ряда) и (центр ряда) – постоянные, переменная, называются степенными рядами. Ясно, что если мы научимся вычислять область сходимост

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги