рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теорема Коши для односвязной области и многосвязной области. Интегральная формула Коши

Теорема Коши для односвязной области и многосвязной области. Интегральная формула Коши - Лекция, раздел Математика, Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например   Напомним, Что Множество Называется Односвязным, Если Л...

 

Напомним, что множество называется односвязным, если любой замкнутый контур, лежащий в можно стянуть в точку, не выходя из . Множество называется связным, если его граница состоит из попарно не пересекающихся между собой замкнутых контуров. Например, на рисунке A изображена односвязная область, на рисунке B – 4-связная область (одна внешняя граница и три внутренних границ). При этом будем говорить, что направление на границе является положительным ( – положительно ориентирована), если при её обходе область остаётся слева. Например, на рисунке C граница двухсвязной области положительно ориентирована. Ориентация, противоположная положительной, называется отрицательной.

Теорема Коши для односвязной области.Пусть область односвязная и функция аналитична в Тогда каков бы ни был кусочно-

гладкий замкнутый контур лежащий внутри интеграл от по равен нулю.

Доказательство.Вычислим интеграл

 

Воспользуемся формулой Грина:

 

где область, охватываемая контуром Будем иметь

 

(здесь в квадратных скобках выписаны условия Коши-Римана, которые выполняются, так как функция аналитична в области ). Теорема доказана.

Теорема Коши для многосвязной области.Пусть область связна,причем её внешняя граница, а её внутренние границы, обходимые все против часовой стрелки. Пусть функция аналитична в Тогда имеет место равенство

 

Доказательствопроведём для двухсвязной области Сделаем разрез соединяющий внутреннюю и внешнюю границы и Тогда область будет односвязной, а замкнутый контур лежит в Значит, для этого контура справедлива предыдущая теорема: Применяя свойство аддитивности интеграла, будем иметь

 

Рис. 10

Учитывая, что приходим к равенству

 

Остаётся учесть, что здесь контуры и обходятся против часовой стрелки. Теорема доказана.

И, наконец, сформулируем без доказательство следующее важное утверждение.

Интегральная теорема Коши. Пусть функция аналитична в односвязной области Тогда какова бы ни была точка лежащая внутри области и замкнутый кусочно-гладкий контур , охватывающий точку и обходимый против часовой стрелки, справедлива интегральная формула Коши

При этом функция имеет всюду в производные любого порядка, для которых справедлива формула

.

Замечание 1. Если функция аналитична в замкнутой ограниченной области с кусочно гладкой границей то в качестве контура в (6) можно взять границу Тогда из (5) вытекает, что аналитическая в функция полностью определяется своими значениями на границе Таким свойством действительные функции не обладают.

Интегральная формула Коши имеет многочисленные применения, о которых будет сказано в дальнейшим. Рассмотрим несколько примеров.

Пример 1.Вычислить

Решение. Внутри окружности знаменатель дроби обращается в нуль в точке . Для удобства применения формулы (5) перепишем интеграл в виде

.

Здесь и аналитична в круге . Тогда .

Пример 2.Вычислить : по

а) контуру ; б) .

Решение.а) В круге функция аналитична. Следовательно, по теореме Коши для односвязной области получаем, что .

б) Так как внутри контура интегрирования знаменатель подынтегральной функции обращается в нуль в точках и , то для того, чтобы стало возможным применить формулу (5), рассмотрим многосвязную область (рис. 11), ограниченную окружностью и внутренними контурами и .

 

Рис. 11

Тогда в области функция является аналитической, и по теореме Коши для многосвязной области можно записать: . Для вычисления интегралов справа применим формулу (5):

;

 

 

Таким образом, .

 

 

– Конец работы –

Эта тема принадлежит разделу:

Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например

семестр часть Дифференциальные уравнения... В каждой лекции все формулы определения и теоремы нумеруются так же как и в... Лекция Общие понятия Начальная задача задача Коши и теорема существования и единственности решения задачи Коши...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теорема Коши для односвязной области и многосвязной области. Интегральная формула Коши

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Линейные дифференциальные уравнения. Метод вариации произвольной постоянной
Уравнение вида   где неизвестная функция, известные функции[2], называется линейным дифференциальным уравнением. Если то уравнение (1) называется однородным. Ес

Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение и общий интеграл
  Сначала дадим понятие решения уравнения (3). Определение 1.Решением уравнения (3) на отрезке называется такая функция которая удовлетворяет

Уравнения, допускающие понижение порядка
Ясно, что чем меньше порядок дифференциального уравнения, тем легче его решить. Посмотрим, какие уравнения допускают понижение порядка. Сначала рассмотрим простейшее уравнение

Линейная зависимость и линейная независимость системы функций. Вронскиан. Исследование линейной независимости с помощью вронскиана
  Пусть функции имеют смысл на отрезке Определение 1. Говорят, что система функцийлинейно зависима на отрезке , если существуют постоянные , не равные

Структура общего решения однородного дифференциального уравнения
  Рассмотрим однородное линейное дифференциальное уравнение   Докажем следующий важный результат. Теорема 5. Пусть функции являются

Структура общего решения неоднородного уравнения. Метод вариации произвольных постоянных Лагранжа
  Пусть дано неоднородное дифференциальное уравнение   Докажем следующее утверждение. Теорема 1(о структуре общего решения неоднородно

Метод вариации произвольных постоянных Лагранжа
  Согласно теореме 1 поиск общего решения неоднородного дифференциального уравнения (1) сводится к двум процедурам: 1) построение фундаментальной системы решений соответствую

Комплексные решения дифференциальных уравнений. Линейная независимость комплексных решений
  Напомним, что комплексными числами называют числа вида где и – действительные числа, --- мнимая единица ( ). При этом называется действительной частью, а – м

Построение общего решения однородного дифференциального уравнения в случае кратных корней характеристического уравнения
  Напомним сначала, что корень характеристического многочлена называется корнем кратности если   Полезно заметить, что если полином имеет различных корне

Алгоритм 1.
1) По уравнению (1) составляем характеристическое уравнение , заменив в (1) производные на степени ( ). 2) Найдем корни характеристического уравнения и установим их кратности. 3)

Построение общего решения неоднородного уравнения с постоянными коэффициентами. Метод подбора частного решения неоднородного уравнения
  Для неоднородного уравнения   с непрерывными на отрезке коэффициентами и неоднородностью был изложен метод вычисления частного решения называемый методом в

Извлечение корня й степени из комплексного числа. Множества в комплексной плоскости
  Равенство (1) называется формулой Муавра. Используя его, можно вывести формулу извлечения корня й степени из комплексного числа. Однако для этого надо ввести сначала понятие

Предел и непрерывность функции комплексной переменной
  Ниже везде, если не оговорено противное, все функции считаются однозначными. Кроме того, запись автоматически предполагает, что и – действительные величины. Ниже везде, есл

Производная функции комплексного переменного. Условия Коши-Римана. Аналитичность функции
  Пусть функция определена в точке и некоторой ее окрестности Сместимся из точки в точку Тогда аргумент функции получит приращение , а сама функция -- приращение Опре

Геометрический смысл модуля и аргумента производной
  Пусть функция дифференцируема в точке и При отображении вектор исходящий из точки переходит в бесконечно малый вектор исходящий из точки а гладкая кривая переходит в гладкую кривую

Первообразная функции комплексных переменных
  Функция называется первообразной функции в области в области если дифференцируема в и Теорема 1. Если однозначная функция дифферен

Степенные ряды. Ряды Тейлора и Лорана
  Функциональные ряды вида где (коэффициенты ряда) и (центр ряда) – постоянные, переменная, называются степенными рядами. Ясно, что если мы научимся вычислять область сходимост

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги