рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Предметом геологии является пространственно-временные модели развития геологических процессов

Предметом геологии является пространственно-временные модели развития геологических процессов - раздел Геология, Геология – Это Наука О Строении Земли, Ее Происхождении И Развитии, Основанна...

Геология – это наука о строении Земли, ее происхождении и развитии, основанная на изучении горных пород и земной коры в целом всеми доступными методами с привлечением данных астрономии, астрофизики, физики, химии, биологии и других наук.

Основным объектом изучения геологии является литосфера (литос – камень), представляющая твердую наружную оболочку Земли. Главными объектами изучения геологии являются минералы, горные породы, геологические тела, вымершие организмы (окаменелости), газовые и жидкие среды, физические поля.

Предметом геологии является пространственно-временные модели развития геологических процессов.

2Земля имеет форму сплюснутого по полюсам шара. Радиус полярный = 6356.78км

Радиус экваториальный = 6378.56км. Площадь земного геоида=

Геоид - фигура сложной формы, образованная поверхностью уровня вод Мирового океана, продолженной под материками. Эта поверхность во всех точках перпендикулярна (нормальна) вектору силы тяжести. Отвес направлен перпендикулярно поверхности геоида, а не к центру Земли! Это связано с тем, что плотность Земли распределена неравномерно.

Площадь земного геоида= 510 млн квкм. объем = 61.082 млрд кубкм

  Показатели   Атмосфера   Гидросфера   Литосфера   Мантия   Ядро Земли  
Глубина (толщина), км 1000—3000 средняя Средняя для океана 3,8. Максимум 11,022 (по др. данным, 11,034) Средняя ок.17, континенты в среднем 35 (до 70), под океанами 5—7 До 2900 2900—6371
Объем, 1018 м 3 1,4 10,2 896,6 175,2
Плотность, г/см3 У поверхности Земли 10-3 на вы- соте 750 км —10-16 0,99—,03 2,7—3,32 3,32- 5,68 9,43—17,20
Масса, 1021г 5,15—5,9 1455,8 5*104 405*104 188*104
Процент от общей массы Земли Около 10-6 0,02 0,48 67,2 32,3

Земная кора — верхняя часть литосферы. В масштабах всего земного шара её можно сравнить с тончайшей плёнкой — столь незначительна её мощность. Но даже эту самую верхнюю оболочку планеты мы знаем не очень хорошо. Как же можно узнать о строении земной коры, если даже самые глубокие скважины, пробуренные в коре, не выходят за первый десяток километров? На, помощь учёным приходит сейсмолокация. Расшифровывая скорость прохождения сейсмических волн через разные среды, можно получить данные о плотности земных слоёв, сделать вывод об их составе. Под континентами и океаническими впадинами строение земной коры различно.

ОКЕАНИЧЕСКАЯ КОРА

Срединно-океанические хребты возвышаются над дном океанов на несколько километров, а их протяженность достигает 80 тыс. км. Хребты рассекаются…

КОНТИНЕНТАЛЬНАЯ КОРА

Шельф — подводная окраина материка — также имеет континентальную кору. То же относится и к крупным островам — Новой Зеландии, островам Калимантан,… Говорить о базальтовом и гранитном слоях континентальной коры можно лишь…

Складки

Складкой называется волнообразный изгиб слоя, без разрыва его сплошности.

Рис. 1. Сопряжённые складки

Элементы складки

Элементы складки лучше всего представить в виде рисунка (рис. 1).
1 - Крыло. 2 - Замок. 3 - Ядро. 4 - Осевая поверхность. 5 - Шарнир. .

Текстовые определения

  Наверх  

Складки. Классификации.

  • по соотношению пород
    • синклинальные, у которых ядро сложено более молодыми породами
    • антиклинальные, у которых ядро сложено более древними породами

При этом необходимо отдавать себе отчет в том, что синклинали и антиклинали могут быть перевернутыми, то есть синклинальные складки необязательно обращены замком вниз, а антиклинальные - вверх. Замыкание (схождение) крыльев антиклинальной складки (или ее окончание по простиранию) называют периклиналью, а синклинальной – центриклиналью. Для периклинали характерно погружение шарнира, а для центриклинали - воздымание.

  • По положению осевой поверхности различают (рисунок 2) следующие типы складок:

Рис. 2. Классификация складок по наклону осевой поверхности

    1. прямые, или симметричные, у которых осевая поверхность(ось) вертикальна или субвертикальна и углы падения крыльев одинаковые;
    2. наклонные, или ассиметричные, у которых осевая поверхность наклонна, а крылья падают под разными углами в противоположные стороны;
      опрокинутые, когда осевая поверхность наклонна, а крылья падают в одну сторону, но под разными углами.
    3. лежачие, у которых осевая поверхность субгоризонтальна;
    4. ныряющие, у которых осевая поверхность изгибается.
  • по углу складки
    • тупые, с углом складки, равным или бóльшим 90°;
    • острые, с углом складки, меньшим 90°;
    • веерообразные, характеризующиеся пережатым ядром и веерообразным расположением слоев;
    • штамповые (син. коробчатые), у которых замок широкий и почти плоский, не считая областей перехода к крыльям.
  • по форме замка, соотношению замка и крыльев
    • концентрические, у которых замок широкий, а крылья малы и даже могут почти отсутствовать. Мощности слоев в этом случае необходимо выдерживать на всем протяжении складки.
    • штамповые (син. коробчатые), у которых замок широкий и почти плоский, не считая областей перехода к крыльям.
    • изоклинальные, у которых замок узкий и четко выраженное крыло с единым углом наклона границ слоев. Мощности слоев в этом случае необходимо выдерживать на крыльях складки, а в замке она может значительно возрастать.
    • диапировые (син. складки протыкания), у которых ...
  • По отношению на карте длинной оси складки (длины) к короткой ее оси (ширина) выделяют линейные, брахиформные и куполовидные складки.
    • мульды или купола, у которых длина примерно равна ширине
    • брахискладки (брахиантиклинали и брахисинклинали), у которых длина примерно в 3-5 раз превышает ширину
    • линейные, у которых длина много больше ширины

К складчатым деформациям относят также флексуры, так называют коленообразные изгибы слоев на фоне общего горизонтального или наклонного залегания пород. Направление падения слоев до изгиба, в месте изгиба и после него сохраняется общим.

8РАЗРЫВ (РАЗРЫВНОЕ НАРУШЕНИЕ)

— общее назв. многих видов тект. нарушений, сопровождаемых перемещением разорванных частей геол. тел друг относительно друга. Трещина (сместитель) Р. представляет собой поверхность разной формы (в частном случае плоскость), на которой наблюдаются зеркала скольжения с бороздками, штриховкой и ступеньками, позволяющими определять направление относительного смещения крыльев. Расстояние между некогда смежными точками, разъединенными Р., называется амплитудой Р. Последняя может быть измерена по падению сместителя (вертикальная амплитуда) и по его простиранию (горизонтальная амплитуда). Общее смещение определяется по правилу параллелограмма. В результате смещения по Р. могут иметь место явления сдваивания или зияния пластов. Р. классифицируются в зависимости от перемещения крыльев и положения сместителя

Среди Р. различают: взброс, надвиг, поддвиг, раздвиг, сброс, сдвиг, сдвиго-сброс и сбросо-сдвиг, шарьяж (покров тектонический).

Различные виды Р. нередко сменяют друг друга по простиранию или по падению. Иногда это связано лишь с изменением падения сместителя, т. е. с его кривизной; в др. случаях изменение вида Р. связано с усложненным характером смещения (шарнирный или вращательный Р.). Морфологическая классификация Р. имеет в известной мере генетический смысл, разделяя их на образованные в условиях либо сжатия, либо растяжения земной коры. К первым относятся взбросы, надвиги, сдвиги, покровы (шарьяжи), ко вторым — сбросы (нормальные сбросы — см. Сброс) и раздвиги, что вытекает прежде всего из самой геометрии Р. Иногда характеристика Р. дополняется введением представления об активном блоке, или крыле Р. Так, поддвигом называют взброс или надвиг, если считается, что у него активно двигалось опущенное крыло.

. Различают также Р. межпластовые (вдоль поверхности контакта пластов 2 разнородных п.), внутрипластовые, межформационные. Последние приурочены к поверхности контакта г. п. 2 разл. форм., причем особенно часто к поверхностям несогласия; иногда они сопровождаются внедрением межформационных интрузий. По отношению ко времени формирования рассекаемых толщ выделяются Р. конседиментационные и постседиментационные. Первые распознаются по различиям мощности и (или) фаций одновозрастных осадков по обе стороны Р. Весьма обычны сочетания нескольких Р. (ветвящиеся). В некоторых случаях главный Р. выделить трудно или невозможно (при множественном ветвлении). В простейшем и достаточно частом (вблизи места разветвления) случае амплитуда главного Р. равна сумме (алгебраической) амплитуд его ответвлений. Р. оперяющие помогают в ряде случаев установить направление смещения по основному нарушению. Нередко встречаются системы кулисообразных Р., приблизительно параллельных, но закономерно смещенных в одну сторону относительно друг друга в направлении их простирания. Вообще закономерно построенные системы Р., как правило, связаны общностью происхождения. Все такие Р. называются сопряженными. Суворов (1961) предложил называть динамопарой 2 перпендикулярных друг другу разлома, вдоль одного из которых развивается сдвиг, сменяющийся у разлома, перпендикулярного первому, надвигом. Ограничение крупных пологих надвигов с боков сдвигами установлено во многих р-нах (Альпы, Кавказ, Аппалачи и др.). Образование динамопар является одним из способов компенсации горизонтальных смещений при затухании надвига по простиранию.

9Общая характеристика магматизма

Магматизмом называют явления, связанные с образованием, изменением состава и движением магмы из недр Земли к ее поверхности. Магма представляет собой природный высокотемпературный расплав, образующийся в виде отдельных очагов в литосфере и верхней мантии (главным образом, в астеносфере). Основной причиной плавления вещества и возникновения магматических очагов в литосфере является повышение температуры. Подъем магмы и прорыв ее в вышележащие горизонты происходят вследствие так называемой инверсии плотностей, при которой внутри, литосферы появляются очаги менее плотного, но мобильного расплава. Таким образом, магматизм — это глубинный процесс, обусловленный тепловым и гравитационным полями Земли.

В зависимости от характера движения магмы различают магматизм интрузивный и эффузивный. При интрузивном магматизме (плутонизме) магма не достигает земной поверхности, а активно внедряется во вмещающие вышележащие породы, частично расплавляя их, и застывает в трещинах и полостях коры. При эффузивном магматизме (вулканизме) магма через подводящий канал достигает поверхности Земли, где образует вулканы различных типов, и застывает на поверхности. В обоих случаях при застывании расплава образуются магматические горные породы. Температуры магматических расплавов, находящихся внутри земной коры, судя по экспериментальным данным и результатам изучения минерального состава магматических пород, находятся в пределах 700—1100°С. Измеренные температуры магм, излившихся на поверхность, в большинстве случаев колеблются в интервале 900—1100°С, изредка достигая 1350 °С. Более высокая температура наземных расплавов обусловлена тем, что в них протекают процессы окисления под воздействием атмосферного кислорода.

Эффузивный магматизм

Эффузивный магматизм проявляется в обстановке дробления земной коры и образования разломов, по которым магма поднимается и изливается на поверхность Земли. Магма, излившаяся на поверхность, превращается в лаву. Лава отличается от, магмы тем, что почти не содержит летучих компонентов, которые при падении давления отделяются от магмы и уходят в атмосферу.

При излиянии магмы на поверхности образуются вулканы различного типа. По характеру пространства, занимаемого поднимающейся магмой, вулканы подразделяются на площадные, трещинные и центральные. Площадные вулканы существовали только на самых ранних этапах истории Земли, когда земная кора была тонкой (и на отдельных участках могла целиком расплавиться) и излияния магмы происходили на обширных площадях. Практически площадные вулканы — это моря расплавленной лавы. Трещинные вулканы представляют собой излияния лав по протяженным трещинам. Вулканизм трещинного типа в отдельные отрезки времени достигал очень широких масштабов, в результате чего на поверхность Земли выносилось огромное количество вулканического материала. На современном этапе трещинные вулканы распространены ограниченно, хотя и встречаются в отдельных районах, например, вулкан Лаки в Исландии, Толбачинский на Камчатке и др. Большинство современных вулканов относится к центральному типу. При извержении таких вулканов обычно образуются конусообразные постройки.

Иногда на склонах конуса возникают маленькие конусы. Они образуются в месте выхода побочных каналов, ответвляющихся от основного. Такие маленькие конусы получили название побочных, или паразитических.

С течением времени конус вулкана, сложенный лавами и туфами, может быть полностью или частично разрушен процессами денудации. Особенно часто это наблюдается у потухших древних вулканов. При этом на вершине конуса возникает обширная депрессия (впадина) округлых очертаний — кальдера. Как правило, эти депрессии имеют крутые внутренние стенки и довольно плоское дно.

Извержения вулканов носят различный характер: могут сопровождаться взрывами и землетрясениями или протекают спокойно. Взрывы часто происходят в результате закупорки центрального канала вязкими лавами и скопления газов под образовавшейся пробкой. Жидкие лавы спокойно переливаются через край кратера и растекаются по окружающей местности. В целом при извержениях продукты вулканической деятельности могут быть газообразными, жидкими и твердыми

потоки. Лава изливается из боковых трещин и устремляется по склонам конуса.

Пелейский тип - извержения вулкана Мон-Пеле, расположенного на о-ве Мартиника (рис. 45, г). Извержениям этого. типа обычно предшествуют сильные подземные толчка Магма вулканов чрезвычайно вязкая и содержит много газов Извержение сопровождается сильными взрывами, а магма пробивает себе путь через боковые трещины, так как жерло перекрыто куполом. При выходе на поверхность лава вследствие значительной вязкости выдавливается вверх в виде огромной пробки, образующей обелиск. При этом из-под пробки вырываются нагретые газы, капельки лавы и пепла, образующие «палящую» тучу раскаленных продуктов извержения.

Как показали наблюдения, характер извержения одного и того же вулкана со временем может измениться. Обычно это бывает связано с изменением химического состава магм, питающих вулкан.

На поверхности земного шара лишь небольшое число вулканов постоянно находится в действии. Большая их часть проявляется периодически, долгое время находясь в состоянии покоя. В этом случае все признаки вулканической деятельности исчезают и лишь иногда происходит выделение водяного пара и фумарол. К потухшим вулканам относят те, которые не возобновляли своей деятельности в течение истории человечества. В настоящее время на суше известно более 700 действующих вулканов. Число подводных вулканов практически не поддается учету - только в Тихом океане предполагается наличие не менее 10 тыс. конусов и центров излияния лав.

Извержения вулканов — грозные явления природы, часто сопровождающиеся человеческими жертвами и значительными разрушениями. Одно из сильнейших извержений произошло в 1815 г на о-ве Сумбава в Индонезии, когда взорвался вулкан Тамбора. Из кратера было выброшено около 100 км3 пепла на высоту до 20 км. При этом на удалении до 40 км были разбросаны бомбы диаметром 13 м, а в 150 км от вулкана толщина слоя выпавшего пепла достигала 0,5 м. При взрыве иот его последствий погибло 100 тыс. человек.

Другими крупными извержениями в истории являются извержение вулкана Кракатау в Индонезии (1883 г.), при котором погибло 36 тыс., человек; извержение вулкана Мон-Пеле на о-ве Мартиника (1902 г.) с 30 тыс. жертв; извержение Везувия (79 г.н.э.), вулкана Лаки (Исландия, 1783 г.), вулкана Унзедоке (Япония, 1792 г.) и др. Катастрофическим по своим последствия было извержение вулкана Арепас в Колумбии в ноябре 1985 г., когда погибло более 20 тыс. человек.

Существенно сказывается деятельность вулканов и на глобальном климате, поскольку в атмосферу выбрасывается огромное количество пыли, в результате чего снижается прозрачность атмосферы и соответственно происходит похолодание. Так, в результате извержения вулкана Тамбора в 1815 г. практическими не было лета: в Лондоне отмечалось снижение среднегодовой температуры на 2—3 °С, в Северной Америке вообще не созрел урожай.

Рис. 46. Схема размещения областей активной тектонической и вулканической деятельности
а — действующие вулканы; б — основные области землетрясений.
Вулканы: 1 — Килауэа; 2 — Мауна-Лоа; 3 — Долина Десяти Тысяч Дымов; 4 — Катмай; 5 — Парикутин;
6 — МонПеле; 7 — Суртсей; 8 — Вулькано; 9 — Везувий; 10 — Стромболи; 11 — Этна; 12 — Килманджаро;
13 — Тристан-да-Кунья; 14 — Безымянный; 15 — Фудзияма; 16 — Тааль; 17 — Кракатау

В целом результаты воздействия на климат могут ощущаться в течение нескольких лет.

Газообразные продукты, или фумаролы, характеризуются высокой температурой и разнообразным составом. В них содержатся водяные пары, углекислый газ, азот, сернистый газ, водород, оксид углерода, хлор и др. Газовый состав фумарол во многом определяется их температурой. В зависимости от температуры выделяются сухие, кислые и щелочные фумаролы.

Сухие фумаролы отличаются высокой температурой, порядка 500 °С. Обычно они не содержат водяных паров, но зато насыщены хлористыми соединениями, в первую очередь такими, как хлористый натрий, хлористый калий, хлористое железо и др.

Кислые фумаролы обладают достаточно высокой температурой, достигающей 300—400 °С. В отличие от сухих они содержат водяные пары, хлористый водород и сернистый ангидрид.

Щелочные фумаролы характеризуются средними температурами, немного выше 180 °С, и содержат главным образом хлористый аммоний, при разложении которого выделяется свободный аммиак.

Газовые выделения с температурой около 100-180°С называются сольфатарами; они состоят преимущественно из водяных паров и сероводорода. Газовые выделения с температурой ниже 100 °С называются мофетами; они представлены главным образом углекислым газом и водяными парами.

В ряде случаев выделение вулканических газов достигает грандиозных масштабов. Наличие газов в магме замедляет ее остывание, а их потеря приводит к быстрому затвердеванию жидких продуктов извержения.

Жидкие продукты, или лавы, при извержении характеризуются высокими температурами, колеблющимися в пределах 600—1200 °С. Как отмечалось ранее, лава представляет собой магму, в значительной степени потерявшую газовые компоненты. Лавы, как и магмы, различаются по химическому составу, определяющему их физические свойства. В зависимости от содержания SiO2 выделяют лавы кислые (риолитовые) и основные (базальтовые).

Кислые (риолитовые) лавы светлые, окрашены обычно в серые тона, вязкие, тугоплавкие, медленно остывают и содержат много газов. Основные (базальтовые) лавы, наоборот, окрашены в темные тона, имеют большую плотность, жидкую консистенцию, легкоплавкие, быстро остывают и содержат мало газов. При застывании лав образуются эффузивные, или излившиеся горные породы.

Поскольку лавы обладают различными физическими свойствами, то при излиянии их на поверхность Земли образуются эффузивные тела разной формы: купола (конусы), покровы и потоки.

Покровы возникают при излиянии лав основного, базальтового состава и нередко занимают огромные площади. Лавовые потоки значительно меньше по площади, образуются в тех случаях, когда лава движется по ущельям, речным или ледниковым долинам. При сравнительно небольшой ширине лавовые потоки в ряде случаев бывают вытянуты на десятки километров. Остывание лавовых тел таких размеров происходит неравномерно, поэтому в их теле появляются характерные трещины, зависящие от состава лавы, размеров лавового потока и характера его остывания. По этим трещинам происходит своеобразное растрескивание лав; это явление называется отдельностью. Различают отдельность столбчатую, матрацевидную, шаровую и др.

 

Помимо газообразных и жидких продуктов во время извержения вулкана выбрасывается большое количество твердых продуктов, которые представлены обломками горных пород или кусками успевшей застыть лавы. Твердые продукты, выбрасываемые в воздух, падают на различном расстоянии от кратера. При этом наблюдается определенная закономерность: более крупные обломки падают у края кратера и скатываются вниз по его внешнему и внутреннему склонам, более мелкие выбрасываются на прилегающие равнины или откладываются у подножия конуса. В зависимости от величины обломков твердые продукты вулканических извержений подразделяются на вулканические бомбы, лапилли, вулканический песок и пепел.

Вулканические бомбы — это крупные, от нескольких сантиметров до 1 м и более в диаметре куски затвердевшей или частично затвердевшей лавы. Форма бомб самая различная — от шаровидной до веретенообразной. Встречаются бомбы менее правильной формы. Лапилли (лат. «лапиллис» — камешек) - представляют собой обломки шлака величиной до 1,5— 3 см в диаметре. Форма лапиллей, как и бомб, весьма разнообразная. Вулканическим песком называются твердые продукты извержения, размер которых не превышает 1—5 мм. Вулканический пепел состоит из мельчайших (менее 1 мм) частиц лавы, вулканического стекла и других пород. Пепел оседает на склонах конуса или разносится на большие расстояния; при накоплении и уплотнении пепла формируются породы, называемые вулканическим туфом. Из скоплений вулканического материала различных размеров образуются породы, получившие название агломерата, или вулканической брекчии.

После наиболее активной фазы извержения деятельность вулканов постепенно ослабевает, но может еще продолжаться длительное время в особых формах, объединяемых общим понятием поствулканических процессов или явлений, характеризующих или промежуточную между извержениями стадию, или окончательное затухание вулкана. Поствулканические процессы проявляются в виде продолжающегося сравнительно спокойного выделения газов, главным образом из трещин на склонах и у подножия вулкана, в виде образования небольших грязевых вулканов, извергающих время от времени потоки жидкой грязи, или в виде образования горячих водных источников, в том числе и ритмично фонтанирующих гейзеров.

В первом случае выделяющиеся из кратера и боковых трещин пары воды и газы знаменуют собой фумарольную или сольфатарную фазы, которые могут продолжаться от нескольких месяцев до сотен и тысяч лет. Так, например, деятельность вулкана Сольфатара недалеко от Неаполя более 2000 лет ограничивается только выходом сернистых газов, от которых, кстати, получил название и сам вулкан. Наконец, приближение полного угасания вулканической деятельности выражается в мофеттах, выделяющих преимущественно углекислый газ. Выделения мофетт часто превращают многие долины и пещеры в «долины и пещеры смерти» вследствие удушающего действия на мелких животных накапливающейся углекислоты.

В большинстве вулканических кратеров и боковых выходов фумарольные и сольфатарные газы вступают в химические реакции друг с другом и с лавой и образуют вещества, называемые возгонами или сублиматами, которые отлагаются в виде натеков, инкрустаций и порошков на прилегающих холодных поверхностях лавы. Самыми существенными из этих образований несомненно являются желтая кристаллическая или порошковатая сера, белый “хлористый аммоний, желтый хлорид железа и борная кислота. Часто в виде сублиматов выделяются окиси металлов и соли. В инкрустациях вокруг фумарол в «Долине десяти тысяч дымов» (Северная Америка) были обнаружены соединения свинца, меди, олова и цинка, а в отложениях серы в кратере вулкана Ла-Суфраль в Колумбии было найдено даже золото. В тех случаях, когда скопления сублиматов представляют количественный интерес, они разрабатываются как месторождения полезных ископаемых.

Если восходящие фумарольные или сольфатарные газы и пары воды по пути встречают насыщенные водой рыхлые продукты, то они выбрасывают или выталкивают последние в виде грязи, образующей небольшие конусы или чашеобразные углубления, известные под названием грязевых вулканов или салъз. Из конусов сальз иногда изливаются сплошные миниатюрные грязевые потоки, а в чашеобразных сальзах время от времени грязь клокочет, как при кипении, и даже взлетает вверх. Вулканические сальзы характеризуются постоянно высокой температурой газов, представленных обычными газами фумарол и сольфатар с обильными парами воды, но вовсе или почти не содержат метана как продукта разложения органических веществ. Вулканические сальзы проявляются только в вулканических областях и располагаются обычно у подошвы действующего или затухающего вулкана. Последней стадией их деятельности является образование и излияние потоков грязи с умеренной температурой мофетт.

Вулканические сальзы не следует смешивать с внешне сходными тектоническими грязевыми вулканами или вулканоидами (например, грязевыми вулканами Керченского полуострова). Последние проявляются вследствие тектонических процессов в нефтеносных областях и никакой генетической связи не имеют с процессами магматизма, в том числе и вулканическими явлениями. Заключительной стадией в жизни вулканов является образование горячих водных источников. Одни из них представляют собой свободно и спокойно вытекающие на поверхность струи и потоки теплой и горячей воды, иногда с обильными пузырьками газов, другие выходят на поверхность в виде пароводяных столбов и фонтанов. Последние известны под названием гейзеров.

Горячие источники широко распространены на земной поверхности и приурочены к областям .как действующих, так и недавно потухших вулканов Они различаются по температуре, достигающей у некоторых источников точки кипения, а также по составу растворенных газов и минеральных солей. Последние придают горячим источникам целебные свойства, которые широко используются при санаторно-курортном лечении.

Гейзеры впервые изучались и были описаны в районе Гейзир в Исландии, откуда и получили свое название. Они по характеру своей деятельности напоминают настоящие ритмично действующие вулканы, только продуктами извержений являются вода и пар. Извержения большинства гейзеров происходят через строго определенные интервалы (минуты, десятки минут, часы). Такая ритмичность объясняется наличием вертикальных у поверхности и зигзагообразных или коленчатых на глубине выводных каналов, соединяющих подземный резервуар пара с поверхностью, а также высокой температурой воды, близкой к температуре кипения.

Процесс извержения состоит в том, что вода, накопившаяся в вертикальной части канала по крайней мере до его второго изгиба, сдерживает давление пара в резервуаре, а это приводит к перегреву воды в нижней части канала; с увеличением давления воды выталкивается вверх за изгибы. Остающаяся в резервуаре перегретая вода от уменьшения давления быстро превращается в пар, который с большей или меньшей силой вырывается наружу, выталкивая всю воду из вертикального канала, и бьет какое-то время в виде пароводяного фонтана. Выброшенная в воздух вода частично падает обратно в кратер гейзера, называемый грифоном, но уже охлажденная, и понижает температуру воды под грифоном в вертикальной части выводного канала. Извержение на время прекращается до тех пор, пока вода вновь не перегреется и давление пара не достигнет силы, достаточной для повторения процесса. Сила давления водяных паров у некоторых гейзеров столь велика, что выталкиваемые столбы воды взлетают фонтанами до 100 м высотой. Большинство гейзеров фонтанирует на высоту от 1 до 10 м. Воды гейзеров и горячих источников почти всегда содержат вещества, избыток которых при охлаждении раствора отлагается на окружающей выход поверхности в виде накипи. Накипь кремнистого состава отлагается главным образом около гейзеров и называется гейзеритом.

Наиболее известными областями распространения гейзеров являются острова Исландия и Новая Зеландия, Йеллоустонский национальный парк в Северной Америке и Камчатка, где в долине рч. Гейзерной гейзер Великан фонтанирует через каждые 2 ч 50 мин, выбрасывая столб воды до 40 м и столб пара до 400 м.

Изучение распространения действующих вулканов показывает, что вулканическая деятельность приурочена к тектонически активным участкам земного шара — областям современного горообразования и развития глубинных разломов (рис. 46). Из анализа приведенной карты следует, что большая часть действующих в настоящее время вулканов (около 60 %) сосредоточена на побережье Тихого океана, в зоне так называемого Тихоокеанского «огненного» кольца. Вулканы известны здесь на Аляске и западном побережье Северной Америки, далее цепь их протягивается вдоль Тихоокеанского побережья Южной Америки до Огненной Земли. На западном побережье Тихого океана вулканы непрерывной цепочкой тянутся от Новой Зеландии через острова Фиджи, Соломоновы до Новой Гвинеи, далее через Филиппинские острова, Японию и Курильские острова на Камчатку, где сосредоточено большое количество действующих и потухших вулканов. В северной части Тихого океана известны многочисленные вулканы Алеутских островов, которые, протягиваются от Камчатки к Аляске, как бы замыкая «огненное» кольцо.

Другой зоной повышенной интенсивности вулканической деятельности является Средиземноморско-Гималайский пояс. Эта зона прослеживается в широтном направлении от Альп через Апеннины, Кавказ до гор Малой Азии. Здесь расположены такие вулканы, как Везувий, Этна, вулканы Липарских островов и Эгейского моря, Эльбрус, Казбек, Арарат и др.

Менее обширной зоной распространения вулканов является субмеридиональная Антлантическая зона, которая прослеживается от Исландии через Азорские и Канарские острова до островов Зеленого Мыса. Большинство вулканов здесь потухшие. Наиболее известен действующий вулкан Гекла в Исландии.

Небольшая группа вулканов приурочена к Восточно-Африканской зоне разломов. Здесь расположены вулканы Кения и Килиманджаро.

Интрузивный магматизм

Формы проявления магматизма зависят от геологической обстановки образования и внедрения магмы и тесно связаны с тектоническими движениями земной коры. Если поднимающаяся магма не достигает поверхности Земли, а застывает внутри коры, образуются глубинные магматические тела — интрузии. Форма интрузивных тел может быть очень разнообразной и, в свою очередь, определяется характером дробления вмещающих пород и физическими свойствами магмы.

Существуют два основных механизма внедрения магмыво вмещающую толщу. Магма может проникать по плоскостям напластования осадочных пород или по трещинам, пересекающим вмещающую толщу. В первом случае она может поднимать пласты кровли или, наоборот, вызывать прогибание подстилающих пластов, воздействуя своей массой.

При внедрении крупных масс расплава он прокладывает себе дорогу вверх путем обрушения пород кровли, которые тонут в нем и ассимилируются с ним, В последнем случае магма сама формирует пространство, которое она занимает. От механизма внедрения магмы зависит не только форма, но и контакт интрузивных тел с вмещающими осадочными породами; физические свойства магмы, главным образом ее вязкость, также влияют на форму тел.

В зависимости от соотношения с вмещающей осадочной толщей интрузивные тела подразделяются на согласные и несогласные (классификация Р.Дэли). Согласные интрузивные тела образуются, как правило, в результате внедрения магмы по плоскостям напластования осадочных пород. К этому классу интрузии относятся силлы, лакколиты, лополиты и факолиты.

Рис. 43. Интрузивные тела:
а – силл; б – лакколит;
в – лополит; г - факолит

Силл — пластообразное интрузивное тело, размеры которого могут варьировать в широких пределах, но мощность всегда меньше занимаемой им площади (рис. 43,а). Силлы являются широко распространенной формой залегания основных магматических пород, поскольку подвижные основные массы легко проникают по плоскостям напластования. Как правило, они залегают группами и встречаются в толщах недислоцированных или слабодислоцированных осадочных пород.

Лакколит — тело, имеющее плоское основание и куполообразный свод (рис. 43, б). Лакколиты, как правило, образуются при внедрении кислой магмы, которая вследствие большой вязкости с трудом проникает по плоскостям наслоения, скапливается на одном участке и приподнимает породы кровли. Форма лакколитов в плане округлая, с диаметром от сотен метров до нескольких километров.

Лополит — чашеобразное тело, вогнутая форма которого обусловлена прогибанием подстилающих пластов под тяжестью магмы (рис. 43, в). Лополиты чаще всего сложены породами основного или ультраосновного состава и представляют собой очень крупные интрузивные тела, площадь которых достигает десятков тысяч квадратных километров.

Факолит — линзообразное тело, залегающее в ядре антиклинальной или синклинальной складки (рис. 43,г), факолиты имеют небольшие размеры, встречаются редко и только в складчатых областях. Образуются они одновременно со складками.

Несогласные интрузивные тела формируются при заполнении магмой трещин во вмещающей толще и при внедрении магмы путем обрушения пород кровли. К ним относятся дайки, жилы, штоки и батолиты.

Дайка — плитообразное тело, мощность которого несоизмеримо меньше протяженности по падению (рис. 44, а). Дайки образуются при заполнении трещин и ориентированы в земной коре вертикально или наклонно. Размеры их колеблются в очень широких пределах. Самая крупная из известных даек — «Большая дайка» Родезии — имеет мощность около 5 км и протяженность около 500 км. Различают особую разновидность даек — кольцевые дайки, которые возникают при заполнении магмой трещин, появляющихся при опускании цилиндрических блоков горных пород. Как правило, дайки сложены породами основного состава и встречаются группами, составляя серии параллельных или радиальных тел. Жила отличается от дайки меньшими размерами и невыдержанной извилистой формой (рис. 44, б).

Рис. 44. Интрузивные тела:
а – дайка; б –жила;
в - шток; г - батолит

Шток — тело неправильной формы, приближающейся к цилиндрической, с крутопадающими или вертикальными контактовыми поверхностями (рис. 44, б). В плане очертания его неправильные, изометричные. Корни штоков уходят на большие глубины, площадь поперечного сечения не превышает 100 км2. Штоки представляют собой широко распространенную форму залегания магматических пород различного состава.

Батолит — самое крупное интрузивное тело. Площадь, занимаемая батолитами, измеряется десятками и сотнями тысяч квадратных километров. Один из крупнейших батолитов, обнаруженный в Северо-Американских Кордильерах, имеет длину около 2000 км и ширину около 200 км. Форма батолитов в плане несколько вытянута в соответствии с направлением осей складчатых структур, контактовые поверхности крутые, кровля куполообразная с выступами и впадинами (рис. 44, г). В виде батолитов залегают граниты и породы близкого к ним состава. Относительно условий их образования не существует единого мнения. В результате исследований В. С.Коптева-Дворникова, Н. А. Елисеева и др. доказано, что большинство тел этого типа сформировались в результате многократного повторного внедрения магм и являются полихронными образованиями.

18 Метаморфизм – процесс приспособления горной породы к новым физико-химическим условиям, которые отличаются от условий образования первичной породы.

1) Метаморфизм не равномерен в пространстве и времени

2) Метаморфизм связан с зонами активных движений земной коры

3) Это длительный процесс

4) Температура процесса должна превышать фоновую температуру

Типы метаморфизма:

1) Экзогенный (космогенный) – возникает при метеоритной бомбардировке

2) Эндогенный:

а) Региональный – охватывает большие территории

б) Локальный – распространяется на меньших площадях

- контактовый – на границе контакта интрузии и вмещающей породы

- приразломный

Классификация метаморфических процессов:

1) Прогрессивный метаморфизм происходит при возростании температуры

2) Регрессивный метаморфизм происходит при уменьшении температуры

Ретроградный метаморфизм (диафторез) – низкотемпературный метаморфизм, накладывающийся на породы, подвергавшиеся более высокотемпературным изменениям.

3) Изохимический процесс – без химического изменения пород

4) Аллохимический процесс – с изменением химического состава пород:

а) собственно метаморфизм (ΔV ≠ const)

б) метасоматоз (ΔV = const)

Факторы метаморфизма:

Температура

Литостатическое давление

Флюидное давление

1) восстановленные, горячие (на глубине) 2) Окисленные, менее горячие 3) Нейтральные F2

– Конец работы –

Используемые теги: Предметом, геологии, является, пространственно-временные, модели, развития, геологических, процессов0.109

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Предметом геологии является пространственно-временные модели развития геологических процессов

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Предметом геологии является пространственно-временные модели развития геологических процессов
Основным объектом изучения геологии является литосфера литос камень представляющая твердую наружную оболочку Земли Главными объектами изучения... Предметом геологии является пространственно временные модели развития... Земля имеет форму сплюснутого по полюсам шара Радиус полярный км...

Предмет и методы геологии. Принцип актуализма: униформизм и актуалистический подход. Предмет и методы геологии. Специфика геологии. Разделы современной геологии. Специфика геологии:
Актуализм основополагающий принцип геологии Утверждает что в геологическом прошлом процессы происходили по таким же законам что и сейчас... Примеры актуализма знаки ряби в результате штормов знаки ряби в... Предмет и методы геологии Специфика геологии Разделы современной геологии...

Предмет и методы геологии. Специфика геологии. Разделы современной геологии
Актуализм основополагающий принцип геологии Утверждает что в геологическом прошлом процессы происходили по таким же законам что и сейчас... Примеры актуализма знаки ряби в результате штормов знаки ряби в... Предмет и методы геологии Специфика геологии Разделы современной геологии...

Устранение слабых сторон заводского технологического процесса, а также снижения трудоемкости и себестоимости технологического процесса механической обработки путем перевода технологического процесса с устаревших моделей оборудования на более современные
Графическая часть содержит 10 листов формата А1, в качестве приложений приведены спецификации на разработанные нами приспособления и… Объектом разработки является технологический процесс механической обработки… Эффективность данного производства, его технический прогресс, качество выпускаемой продукции во многом зависят от…

Предмет геологии, её цели и задачи составные части геологии и предмет их изучения
Геология это наука о строении Земли ее происхождении и развитии основанная на изучении горных пород и земной коры в целом всеми доступными... Основным объектом изучения геологии является литосфера литос камень... Предметом геологии является пространственно временные модели развития геологических процессов...

Геология как наука. История геологии. Разделы геологии. Вклад отечественных ученых в развитие геологии.Геология, как наука
Геология наука о происхождении строении и истории развития Земли Изучая г п слагающие земную кору а также происходящие в ней процессы... Разделы геологии... Минералогия р г изучающий минералы как природные образования относительно постоянного хим состава и...

Лекция 1. ВВЕДЕНИЕ. ПРЕДМЕТ ГИДРАВЛИКИ И КРАТКАЯ ИСТОРИЯ ЕЕ РАЗВИТИЯ 1.1. Краткая история развития гидравлики
Лекция ВВЕДЕНИЕ ПРЕДМЕТ ГИДРАВЛИКИ И КРАТКАЯ ИСТОРИЯ ЕЕ РАЗВИТИЯ... Лекция ОСНОВЫ ГИДРОСТАТИКИ Гидростатическое давление Основное уравнение гидростатики Давление...

Критические точки – это точки, контролируемые при переходе от процесса к процессу. Для описываемого процесса критическими точками являются:
На сайте allrefs.net читайте: Критические точки – это точки, контролируемые при переходе от процесса к процессу. Для описываемого процесса критическими точками являются:...

Лекция 1. Предмет, задачи и методы педагогической психологии. Предмет и задачи педагогической психологии. Психология и педагогика. История развития педагогической психологии в России и за рубежом
План... Предмет и задачи педагогической психологии Психология и педагогика... История развития педагогической психологии в России и за рубежом...

Что такое объект и предмет науки? Что является объектом и предметом формальной логики
Ответ Предмет... Вещь конкретный материальный объект... В науке предмет часть объекта определ нный его аспект исследуемый в каком либо конкретном случае Например...

0.036
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам