рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

КОНСПЕКТ ЛЕКЦИЙ Первоначально термодинамика решала достаточно ограниченный круг задач

КОНСПЕКТ ЛЕКЦИЙ Первоначально термодинамика решала достаточно ограниченный круг задач - раздел Образование, Конспект Лекций  ...

КОНСПЕКТ ЛЕКЦИЙ

 

Овладение тепловой энергией позволило человечеству совершить первую научно-техническую революцию и перейти в качественно новый этап своего развития — построить индустриальное общество. Без знания законов, управляющих переходом теплоты в другие формы энергии и распространением ее в пространстве, это было бы невозможно.

Первоначально термодинамика решала достаточно ограниченный круг задач, связанных с чисто практическими расчетами тепловых (в основном паровых) машин. Однако методы анализа процессов, основанные на двух фундаментальных законах природы — законе сохранения энергии и законе роста энтропии — оказались настолько эффективны, что термодинамика проникла во все сферы науки и техники. Это произошло усилиями многих выдающихся ученых: Н.-Л. С. Карно, В. Томсона (лорда Кельвина), М. Планка, Р. Майера, М. В. Ломоносова, Н. И. Белоконя и других.

Термодинамика изучает взаимные переходы различных видов энергии друг в друга, т. е. рисует энергетическую картину мира и тех сил, которые движут им. В термодинамике обычно применяют один из двух методологических подходов: статистический и феноменологический. При статистическом подходе рабочее тело (газ) рассматривается как совокупность большого числа микро частиц, характеристики которых, например энергия или скорость, могут быть описаны с помощью законов математической статистики. Эти характеристики для различного числа частиц будут различны, поэтому можно говорить о неких средних свойствах, описываемых с помощью нормального или иного распределения. При феноменологическом подходе микроструктура вещества вообще не учитывается. Поведение рабочего тела оценивают только по внешнему балансу, т.е. при подведении энергии извне наблюдают за внешними эффектами. В таком случае рабочее тело можно представить как «чёрный ящик», на вход которого поступает некий сигнал, а на выходе наблюдают ответную реакцию. Именно такой подход принят в технической термодинамике, что обусловило специфические особенности её применения в инженерной практике. Для оценки работы тепловых двигателей или холодильных машин можно не знать, состоит ли рабочее тело из молекул и атомов, или микроструктура вещества неизвестна. Второй раздел курса — теплопередача — описывает процессы обмена теплотой в трех основных ее формах: теплопроводность, конвекция, излучение. Как правило, три эти формы в технических процессах действуют совместно. Задача грамотного специалиста — выделить в каждом данном процессе преобладающую форму и провести теплотехнические расчёты по законам, описывающим именно эту форму теплообмена. При совместном действии двух или трёх форм теплообмена необходимо понимать взаимное внимание их друг на друга и учитывать это при анализе тепловых процессов.

Хорошее знание законов теплопередачи позволяет увеличить эффективность использования энергоресурсов, повысить культуру производства и снизить энергоёмкость производства.

Не только для каждого инженера, но и для любого грамотного человека знакомство с этими фундаментальными законами Природы является абсолютно необходимым.

Авторы выражают искреннюю благодарность Бахмат Марине Геннадьевне и Виктору Геннадьевичу за техническую помощь в подготовке работы к изданию.


ТЕРМОДИНАМИКА

Содержание и метод термодинамики

Термодинамика — наука, изучающая самые разнообразные явления природы, сопровождающиеся передачей или превращением энергии в различных физических, химических, механических и других процессах.

Как наука, термодинамика сложилась в середине XIX века в связи с развитием и использованием тепловых машин. Поэтому основное содержание термодинамики прошлого столетия — изучение свойств газов и паров, исследование циклов тепловых машин с точки зрения повышения их к.п.д.. В силу этого основным методом термодинамики XIX века был метод круговых процессов. С этим этапом развития термодинамики связаны имена ее основателей: С. Карно, Б. Клапейрона, Р. Майера, Д. Джоуля, В. Томпсона (Кельвина), Р. Клаузиуса, Г. И. Гесса и др.

В XX веке наиболее актуальной задачей становится разработка теории истечения паров и газов в связи с развитием паровых турбин. Исследуются термодинамические свойства паров, жидкостей, твердых тел. Появляются десятки уравнений состояния вещества, изучаются фазовые равновесия и фазовые превращения, ведется исследование электрических, магнитных процессов, лучистой энергии, химических реакций, термодинамики реальных тел. Указанные области исследований термодинамики связаны с именами Ван-дер-Ваальса, Дюгема, Г. Кирхгофа, М. Планка, Л. Больцмана, В. Гиббса, Н. С. Курнакова, М. П. Вукаловича, Н. И. Белоконя, В. А. Кириллина и др. ученых.

В настоящее время развитие термодинамики идет в области изучения реальных тел (сжатых газов, жидкостей, твердых тел), исследования дисперсных систем, химических процессов в сплавах и растворах, оптических явлений и космических процессов, развивается термодинамика биологических процессов и т. д.

Термодинамика — наука дедуктивная, определяющая свое содержание на базе математического развития нескольких исходных экспериментально установленных физических истин или законов, которые и носят поэтому название начал термодинамики.

Основу всех построений термодинамики составляют следующие ее постулаты:

I постулат: Энергия изолированной системы сохраняет неизменную величину при всех изменениях, происходящих внутри данной системы. Невозможно построить двигатель, который мог бы совершать работу без заимствования энергии извне. Этот постулат является частным случаем общего абсолютного закона природы — закона сохранения и превращения энергии, а также основанием первого начала термодинамики.

II постулат: Между телами и элементами тел, не находящимися в тепловом равновесии, невозможен одновременный самопроизвольный переход теплоты от тел более нагретых к телам менее нагретым и обратно. Невозможно одновременное превращение (полное) теплоты в работу и работы — в теплоту. Этот постулат является основанием второго начала термостатики — закона, утверждающего существование абсолютной температуры и энтропии тела и системы тел.

III постулат: Теплота самопроизвольно переходит от тел более нагретых к телам менее нагретым. Температура является единственной функцией состояния, определяющей направление самопроизвольных процессов. Этот постулат положен в основу второго начала термодинамики — принципа возрастания энтропии и указывает на неизменный рост энтропии изолированной системы.

Основные понятия термодинамики

Состояние любого вещества принято характеризовать величинами, которые в термодинамике называются параметрами состояния. Наиболее распространенные параметры состояния — плотность или удельный объем тела, давление, температура. Кроме этого, в термодинамике широко пользуются такими понятиями, как работа, теплота, масса, сила и т. д.

Масса тела (М) характеризует свойство его инертности, т. е. свойство тела сохранять приобретенное движение или состояние покоя. Массу тела определяют взвешиванием его на рычажных весах. Единица измерения массы — 1 кг.

Сила (F) — это векторная величина, равная произведению постоянной массы на ускорение, которое сообщает этой массе рассматриваемая сила. Единица измерения любой силы — ньютон (Н). Силу определяют с помощью пружинных весов.

Истинный вес (F) — это сила, равная произведению массы этого тела на истинное ускорение притяжения, действующее на эту массу:

F=M×g. (3.1)

Стандартный вес (G) — это вес тела при некотором принятом (стандартном) ускорении притяжения gn и определяется как результат взвешивания на рычажных весах при сопоставлении с эталоном (гирей):

G=gn×M0, (3.2)

где M0 — масса в состоянии покоя,

gn=9,8×м/с2 [МКСС], gn=1 [СИ].

Удельный объем (υ) — это величина отношения объема тела к его стандартному весу:

υ=V/G=V/M03/кг). (3.3)

Удельный вес (g) — это отношение стандартного веса тела к его объему:

g=G/V (кг/м3); g=1/υ. (3.4)

Плотность(ρ) — есть масса единицы объема:

ρ=M/V [кг/м3]; ρ=1/υ. (3.5)

Соотношение удельного веса и плотности равно стандартному ускорению притяжения γ/ρ=G/V×V/M=gn. В системе СИ они совпадают, т. к. gn=1.

Часто в термодинамике используются понятия относительной плотности или относительного удельного веса d=D=g/g0=r/r0. Это отношение удельного веса или плотности рассматриваемого вещества (g, r) к удельному весу или плотности стандартного вещества (g0, r0) в определенных физических условиях. В качестве стандартного вещества обычно берется вода при t=+4°С и р=760 мм рт. ст. или воздух при 0°С и р=760 мм рт. ст.

Моль — количество вещества, стандартный вес которого численно равен его молекулярной массе (μ).

Удельный мольный вес () — количество вещества в химии, равное отношению стандартного веса к его молекулярному весу:

. (3.6)

Удельный мольный объем — это объем моля вещества, который равен отношению объема тела к количеству вещества в молях:

. (3.7)

Давление (Р) — это предел отношения нормальной составляющей силы к площади, на которую действует эта сила (рис. 3.1):

. (3.8)

Различают два вида приборов для измерения давления: приборы для измерения абсолютного давления Рабс и приборы манометрического типа для измерения избыточного или манометрического давления (Рманизб) (рис. 3.2). Абсолютное давление

 

Рис. 3.1. К определению давления Рабсман00±gF×H, (3.9)

где В0 — барометрическое давление.

Единица измерения давления в системе СИ — паскаль [Па] = [Н/м2]. Внесистемные единицы измерения: 1[кг/см2] = 1[ат] = 104[кг/м2] =104. 9,8 » 105[Н/м2] = 10 м вод. ст. = 735,66 мм рт. ст.

 

Рис. 3.2. К определению абсолютного и манометрического давлений

Температура — есть единственный параметр состояния вещества, определяющий направление самопроизвольного теплообмена между телами. Для любого тела существует функциональная зависимость между температурой и остальными параметрами, характеризующими состояние вещества.

В настоящее время используют различные температурные шкалы: Цельсия, Фаренгейта, Реомюра, Ренкина. Наиболее употребительной является шкала Цельсия, в которой интервал температур от точки плавления льда до точки кипения воды при атмосферном давлении разбит на 100 равных частей, называемых градусами (˚С). Особо важную роль в термодинамике играет термодинамическая шкала температур. Нуль этой шкалы называют абсолютным нулем, а деление шкалы — кельвинами (К). Связь между шкалой Кельвина (Т) и Цельсия (t) устанавливается соотношением: Т=t+273,16.

Внутренней энергией тела (U) называется полный запас энергии внутреннего состояния тела, изменяющийся в процессах теплообмена и выполнения работы, определяемый значением его внутреннего состояния. U измеряется в джоулях (Дж), удельная внутренняя энергия u — в (Дж/кг). Внутренняя энергия определяется в зависимости от температуры и деформационных координат системы: U=U(t, x1, x2, …, xn).

Для простых тел внутренняя энергия — это функция только 2-х переменных, например, t и υ (х1=υ). Внутренняя энергия является функцией состояния системы, поэтому дифференциал внутренней энергии dU есть полный дифференциал функции состояния:

(3.10)

Это сумма кинетической и потенциальной энергий всех микрочастиц, составляющих тело.

Потенциальная функция (PV) характеризует энергию внешнего положения системы, измеряется в джоулях (Дж) или, если записать для единицы массы (т. е. вместо полного объема (V) взять удельный (υ)), — Рυ (Дж/кг). Потенциальная функция по физическому смыслу представляет собой потенциальную энергию связи данного тела с окружающей средой при осуществлении этой связи исключительно через внешнее давление, т. е. это работа, затраченная для введения тела объемом V (υ) во внешнюю среду с давлением Р, одинаковым во всех точках этой среды.

ЭнтальпияН=U+PV (Дж) или для единицы массы h=u+Pυ (Дж/кг) — полная энергия тела с учетом энергии внешнего (PV) и внутреннего (U) состояния системы. Устаревшее название энтальпии — теплосодержание.

Термодинамическая система или тело — это такая равновесная система, которая способна обмениваться с другими телами энергией и веществом.

Открытая термодинамическая система может обмениваться веществом с другими системами, а закрытая— не может.

Изолированная термодинамическая система — та, которая не может обмениваться энергией и веществом с другими системами.

Термодинамическое равновесие — такое состояние теплового, химического равновесия тела или системы, которое может сохраняться без внешнего воздействия как угодно долго. Характеризуется равенством параметров системы. Если хотя бы один из параметров системы меняется, то изменяется и состояние системы или, как принято говорить, осуществляется термодинамический процесс, представляющий собой непрерывную последовательность равновесных состояний.

Обратимый процесс — это процесс, который в условиях изолированной системы, т. е. без внешнего воздействия, допускает возврат системы в исходное состояние. Если направления прямого и обратного процессов совпадают, то процесс называют конфигуративным.

Круговой процес (цикл) хар-

актеризуется возвратом рабочего тела в исходное состояние (рис. 3.3). В этих процессах , где Z=P, υ, t, U… и т. д., т. е. дифференциалы функций состояния — это полные дифференциалы кругового процесса. Такие процессы

Рис. 3.3. Круговой процесс положены в основу тепловых машин.

Теплотаесть энергия, не связанная с переносом вещества и совершением работы.

Теплообмен — форма передачи энергии от одних тел к другим путем теплопроводности, конвекции и излучения. Теплообмен между телами осуществляется только в условиях, когда тела имеют разную температуру.

Тело или система тел содержит только внутреннюю энергию. Количество теплоты, получаемое телом, зависит от вида процесса, от пути, по которому система переходит из одного состояния в другое. Поэтому элементарные количества теплоты рассматриваются как бесконечно малые величины, не являющиеся полными дифференциалами: δQ ― элементарное количество теплоты, полученное телом; δq — элементарное количество теплоты, отнесенное к единице массы вещества.

δq=δQ/G. (3.11)

Знак δ указывает, что δQ и δq — неполный дифференциал. Количественные выражения теплоты имеют одинаковую единицу измерения с внутренней энергией — Дж и Дж/кг.

Работа.

Рис. 3.4. Определение элементарной работы . (3.12)

Газовые смеси

Различают два основных способа задания смеси: весовыми (массовыми) и мольными (объемными) концентрациями. Весовая (массовая) концентрация смеси mi представляет собой отношение… ; ; .

Законы идеальных газов

1. Закон Бойля — Мариотта(1622 г.). Если температура газа постоянна, то давление газа и его удельный объем связаны зависимостью: P1u1=P2u2=idem, или u2/u1=P1/P2. (3.25) 2. Закон Гей — Люссака(1802 г.). При постоянном давлении объем газа при нагревании изменяется прямо пропорционально…

Первое начало термодинамики

Первое начало термодинамики как математическое

Выражение закона сохранения энергии

Суть I начала термодинамики заключается в том, что работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Внутренняя… U2-U1=Q*1,2-AL*1,2; (3.31) Q*1,2=U2-U1+AL*1,2 (3.32)

Первое начало термодинамики простого тела

Для таких тел термодинамическая работа определяется как обратимая работа изменения объема: dL=P×dV; dl=dL/G=P×du. При изучении процессов перемещения газов или жидкостей из области одного давления в область другого в расчеты вводится…

Первое начало термодинамики для идеальных газов

Закон Майера

U=u(t); h=u+P×u=u(t)+RT=h(t). (3.43) В этих условиях упрощаются выражения теплоемкости: u=idem CV=(¶u/¶t)V=dU(t)/dt=CV(t);

Принцип существования энтропии идеального газа

(3.46)

Термодинамические процессы

Классификация термодинамических процессов

Термодинамическим процессом принято называть любое изменение системы в результате изменения одного или ряда определяющих ее параметров.

Уравнение процесса может быть задано условием о постоянном значении в этом процессе какой-либо функции состояния (например, U=idem, h=idem, P=idem, t=idem и т. п.) или условием о равенстве нулю какого-либо эффекта в этом термодинамическом процессе (например, dq=0; работа dl=0 и т. п.). С помощью уравнений термодинамики можно изучать разнообразные процессы, при этом интерес представляет изображение процесса изменения состояния в Р-u координатах (рис. 3.11).

Простейшими процессами в термодинамике являются: изохорный (u=idem), изобарный (Р=idem), изопотенциальный (Рu=idem). Обобщающим выражением этих процессов является уравнение политропы с постоянным показателем:

Рun=C=idem; (3.48)

P1/nu= =C1=idem,

где n — показатель политропы, для данного процесса величина постоянная, но может иметь любые численные значения от -¥ до +¥;

С, С1 ¾ постоянные, характеризующие прохождение процесса через какую-либо точку диаграммы: начальную, конечную или промежуточную.

 

Рис. 3.11. Показатель политропы в P-u и lg P-lg u координатах

 

Политропный процесс — это, в принципе, любой процесс, где одно-временно могут изменяться все параметры рабочего тела (P, u, T), осуществляться подвод и отвод теплоты и т. п. Все остальные термодинамические процессы являются частными случаями политропного:

так, при n=0 P=idem (изобарный),

n=±¥ V=idem (изохорный),

n=1 Pu=idem (изопотенциальный),

n=k Puk=idem (адиабатный).

 

 

Рис. 3.12. Изображение политропных процессов в Р-u координатах

Физический смысл показателя политропы n определяется при дифференцировании исходного уравнения политропы с постоянным показателем:

un×dP+n×un-1×P×du=0,

-u×dP=n×P×du.

dw=n×dl ® n=dw/dl;

в интегральной форме n=w/l. (3.49)

Показатель политропы равен отношению работ процесса — потен-циальной к термодинамической, а в логарифмических координатах n=tga. Процессы изменения состояния простых тел можно показать в зависимости от показателя политропы при -¥£n£+¥ (рис. 1.12).

Работа в термодинамических процессах

dw = -u×dP dl-dw=P×du+u×dP=d(Pu); dl = P×du n=dw/dl, тогда dl(1-n)=d(Pu); (3.50)

Круговые процессы (циклы)

Тепловые машины, понятие термического к.п.д.,

Холодильного коэффициента

Круговыми процессами или циклами тепловых машин называют непрерывную последовательность термодинамических процессов, в результате которых рабочее… Прямой термодинамический цикл — когда к рабочему телу подводится большее… Обратный термодинамический цикл — когда к рабочему телу подводится меньшее количество теплоты при меньшей температуре,…

Цикл Карно

В процессе 1-2 к рабочему телу с температурой Т1 подводится теплота от горячего источника, также имеющего температуру Т1. Рабочее тело (газ)… Рис. 3.14. Цикл Карно в P-V и T-S координатах

Второе начало термодинамики

Для круговых процессов

Термодинамические циклы двигателей внутреннего сгорания

В поршневых двигателях осуществляется рабочий процесс при непрерывном изменении объема; основным видом работы является термодинамическая. Основные… Для обозначения наименований циклов первым символом для поршневых ДВС будет…

Циклы поршневых двигателей внутреннего сгорания

    Рис. 3.16. Карбюраторные и газовые ДВС (3.61)

Циклы газотурбинных установок

(рис. 3.19); (3.64) б) цикл с подводом теплоты при P=idem (цикл Брайтона) (рис. 1.20). (3.65)

Параметры, уравнение состояния идеального газа

Задача 1. Ртутный вакууметр, присоединенный к сосуду с метаном СН4, показывает разряжение 0,056 МПа. Атмосферное давление по ртутному барометру составляет 768 мм рт. ст. (0,102 МПа). Определить абсолютное давление в сосуде и плотность метана, если температура в сосуде равна 20°С. Показания вакуумметра и барометра приведены к температуре 0°С.

Решение. Абсолютное давление в сосуде определяется по формуле Рабс0вак=0,102-0,056=0,046 МПа. Плотность газа находим из уравнения состояния, предварительно определив газовую постоянную:

Задача 2. Баллон с кислородом емкостью 20 л находится под давлением 1,0 МПа при t=15°С. После израсходования части кислорода давление понизилось до 0,76 МПа, а температура уменьшилась до 10°С. Определить массу израсходованного кислорода.

Решение. Из уравнения состояния PV=GRT находим, что до расходования кислорода его масса в баллоне была равна:

После израсходования части кислорода масса его в баллоне будет равна:

следовательно, расход кислорода составит:

Задача 3. Определить удельный объем пропана (С3Н8) как идеального газа при следующих условиях: температура газа t=20°С, манометрическое давление газа в баллоне 5,6 МПа, абсолютное давление газа в помещении равно 0,099 МПа.

Решение. Абсолютное давление газа в баллоне

Рабсман0=5,6+0,099=5,699 МПа;

удельная газовая постоянная пропана

абсолютная температура газа

Т=273+20=293 К;

удельный объем пропана в рассматриваемых условиях

удельный молярный объем пропана при тех же условиях равен:

или, что то же самое:

Газовые смеси

Решение. Молекулярные массы составляющих смеси газов находим по данным физических характеристик компонентов газа из справочных таблиц: =16,04; =30,07; =44,09; =58,12; =44,01; =28,02.

Первое начало термодинамики

Решение. Из уравнения первого начала термодинамики по внешнему балансу тепла и работы для потока в условиях, когда w*1,2=0, имеем Q*1,2=i2-i1=Cpm(T2-T1)=Cpm(t2-t1)=1,62(50-20)=48,6 кДж/кг. Снижение давления газа в газопроводе с 5,5 МПа до 3,1 МПа вызывает внутренний теплообмен в трубе. Вся работа,…

Процессы изменения состояния вещества

Решение. По уравнению состояния находим удельный начальный объем газа, предварительно определив газовую постоянную метана: Дж/(кг×К), м3/кг.

Термодинамические циклы

    Рис. 3.21. Цикл ГТУ в P-V и T-S координатах (к задаче 1) Решение.

Таблица результатов вычислений по процессам

Процессы l (кДж/кг) w (кДж/кг) Dh (кДж/кг) DU (кДж/кг) q (кДж/кг) DS (кДж/(кг×К))
1-2 -160 -223,9 223,9
2-3 0,623
3-4 416,9 -416,9 -298
4-1 -74,05 -259 -185 -259 -0,623
S

кДж/кг.

Тепло в цикле, превращенное в полезную работу

.

Термический к.п.д. цикла

3. Построение цикла в P-V и T-S координатах.

Процессы, изображенные в P-V и T-S координатах, необходимо строить не менее чем по трем точкам. Для нахождения параметров промежуточных точек вначале надо принять произвольно значение одного какого-либо параметра таким образом, чтобы это значение находилось между его численными значениями в крайних точках процесса.

Последующий параметр определяется из уравнения, характеризующего данный процесс, составленного для одной (любой) из крайних точек процесса и для промежуточной точки. По найденным значениям строится цикл в координатах P-V и T-S. Масштаб выбирается произвольно, исходя из численных значений параметров.

Задача 2. 1 кг воздуха совершает цикл Карно в пределах температур t1=627°C и t3=27°C, причем наивысшее давление равно 6 МПа, а наинизшее составляет 0,1 МПа. Определить параметры состояния воздуха в характерных точках цикла, работу, количество подведенного и отведенного тепла, термический к.п.д..

Решение.

1. Находим параметры крайних точек цикла.

Точка 1. Удельный объем точки 1 находим по уравнению состояния:

м3/кг.

Рис. 3.22. Цикл Карно в P-V и T-S координатах (к задаче 2)

 
 

Точка 2. Процесс 1-2 изотермический (T=idem), поэтому Т12=900 К. Процесс 2-3 адиабатный (q2,3=0), поэтому Р2 находим по уравнению адиабатного процесса:

МПа;

из уравнения изотермы 1-2:

м3/кг.

Точка 3. Процесс 3-4 изотермический Т34=300 К.

м3/кг.

Точка 4. Т43=300 К. Из уравнения адиабаты (процесс 4-1)

МПа;

из уравнения изотермы 3-4

м3/кг.

2. Подведенное количество тепла (процесс 1-2)

кДж/кг.

3. Отведенное количество тепла (процесс 3-4)

кДж/кг.

4. Полезная работа цикла l0=q1,2-q3,4=69,6-21,5=42,1 кДж/кг.

5. Термический к.п.д. цикла

Задача 3. На рис. 1.23 показан процесс работы двигателя, в котором рабочим телом является сжатый воздух. Определить необходимый массовый расход воздуха, если теоретическая мощность воздушного двигателя 10 кВт. Начальные параметры воздуха: Р1=1 МПа, t1=15°С. Процесс расширения воздуха принять политропным с показателем n=1,3. Конечное давление воздуха Р2=0,1 МПа.

Решение.

1. Работа 1 кг сжатого воздуха в двигателе изображается площадью 1234, т. е.

2. Значения удельных объемов V1 и V2 определяют из уравнений:

м3/кг;

Рис. 3.23. Расширение в двигателе

 

 

м3/кг.

Таким образом, Дж/кг.

3. Массовый расход воздуха кг/ч.

ТЕПЛОПЕРЕДАЧА

Наука, именуемая теплопередачей, изучает законы и формы распределения теплоты в пространстве. В отличие от термодинамики, которая имеет дело с… Под процессом переноса теплоты понимается обмен внутренней энергией между… Теплопроводность представляет собой процесс переноса теплоты структурными частицами вещества — молекулами, атомами,…

ТЕПЛОПРОВОДНОСТЬ

Температурное поле

t = ƒ(x, y, z, τ). (4.1) Уравнение (4.1) представляет математическое выражение температурного поля,… Если тепловой режим является установившимся, то температура в каждой точке пространства с течением времени остается…

Температурный градиент

    Рис. 4.1. Изотермы тела   По расположению изотерм тела можно оценить интенсивность изменения температуры в различных направлениях. На рис. 4.2…

Тепловой поток. Закон Фурье

В 1807 г. французский математик Фурье высказал гипотезу о прямой пропорциональности вектора теплового потока градиенту температуры. Впоследствии эта… , Дж. (4.5) Количество теплоты, проходящее через произвольную изотер-мическую поверхность Н в единицу времени, называется тепловым…

Коэффициент теплопроводности

, Вт/(м×К); (4.8) его значение зависит от большого числа факторов l=¦(P, t, r, влажности, рода… Для чистых металлов величина l изменяется в пределах от 20 до 410 Вт/(м×К). Самым теплопроводным металлом…

Дифференциальные уравнения теплопроводности

Решение задач по определению температурного поля осуществляется на основании дифференциального уравнения теплопроводности, выводы которого показаны в специальной литературе. В данном пособии приводятся варианты дифференциальных уравнений без выводов.

При решении задач теплопроводности в движущихся жидкостях, характеризующих нестационарное трехмерное температурное поле с внутренними источниками теплоты, используется уравнение

(4.10)

Уравнение (4.10) является дифференциальным уравнением энергии в декартовой системе координат (уравнение Фурье ¾ Кирхгофа). В таком виде оно применяется при изучении процесса теплопроводности в любых телах.

Если wx=wy=wz=0, т. е. рассматривается твердое тело, и при отсутствии внутренних источников теплоты qv=0, тогда уравнение энергии (4.10) переходит в уравнение теплопроводности для твердых тел (уравнение Фурье)

(4.11)

Величину l/С×r=a, м2/сек в уравнении (4.10) называют коэффициентом температуропроводности, который является физическим параметром вещества, характеризующим скорость изменения температуры в теле при неустановившихся процессах.

Если коэффициент теплопроводности характеризует способность тел проводить теплоту, то коэффициент температуропроводности является мерой теплоинерционных свойств тела. Из уравнения (4.10) следует, что изменение температуры во времени ¶t/¶t для любой точки пространства пропорционально величине «а», т. е. скорость изменения температуры в любой точке тела будет тем больше, чем больше коэффициент температу-ропроводности. Поэтому при прочих равных условиях выравнивание температур во всех точках пространства будет происходить быстрее в том теле, которое обладает большим коэффициентом температуропроводности. Коэффициент температуропроводности зависит от природы вещества. Например, жидкости и газы обладают большой тепловой инерционностью и, следовательно, малым коэффициентом температуропроводности. Металлы обладают малой тепловой инерционностью, так как они имеют большой коэффициент температуропроводности.

Для обозначения суммы вторых производных по координатам в уравнениях (4.10) и (4.11) можно использовать символ Ñ2, так называемый оператор Лапласа, и тогда в декартовой системе координат

Выражение Ñ2t в цилиндрической системе координат имеет вид

Для твердого тела в стационарных условиях с внутренним источником теплоты уравнение (4.10) преобразуется в уравнение Пуассона

(4.12)

Наконец, для стационарной теплопроводности и при отсутствии внутренних источников теплоты уравнение (4.10) принимает вид уравнения Лапласа

(4.13)

Дифференциальное уравнение теплопроводности в цилиндрических координатах с внутренним источником теплоты

(4.14)

Условия однозначности для процессов теплопроводности

а) геометрические условия, характеризующие форму и размеры тела, в котором протекает процесс; б) физические условия, характеризующие физические свойства среды и тела (l,… в) временные (начальные) условия, характеризующие распределение температур в изучаемом теле в начальный момент…

Отдельные задачи теплопроводности при стационарном

Режиме

В технике часто возникают задачи определения температурного поля тела и установления законов передачи теплоты. В результате решения дифференциального уравнения теплопроводности совместно с условиями однозначности можно найти температурное поле, а на основании закона Фурье ¾ соответствующие тепловые потоки. Следует отметить, что аналитическое решение поставленной задачи возможно только для тел правильной геометрической формы и при достаточно простых условиях однозначности. В остальных случаях эта задача решается численными или экспериментальными методами.

Рассмотрим несколько тел простой формы — таких, как плоская стенка и полая труба — в случае стационарного распространения теплоты, для которых уравнение теплопроводности значительно упрощается.

4.2.7.1. Теплопроводность через плоскую и цилиндрическую стенки.

Рассмотрим однородную плоскую однослойную стенку толщиной d, (рис. 4.4), имеющую неограниченную длину и ширину.

На наружных поверхностях стенки поддерживаются постоянные температуры t1 и t2. Коэффициент теплопроводности стенки постоянен и равен l. При стационарном режиме ¶t/¶t=0 и отсутствии внутренних источников теплоты qv=0 и с учетом того, что в этом случае температура будет изменяться только в направлении оси ОХ, дифференциальное уравнение теплопроводности примет вид

(4.22)

Интегрируя уравнение (4.22), находим

 
 

(4.23)

 

Рис. 4.4. Температурное поле плоской однослойной стенки

После второго интегрирования получаем общий вид уравнения распределения температур в плоских стенках:

t=C1x+C2. (4.24)

Постоянные С1 и С2 в уравнении (2.24) определяются из граничных условий:

при х=0 t=t1, C2=t1;

при х=d t=t2,

Подставляя значения постоянных С1 и С2 в уравнение (4.24), получаем уравнение распределения температуры в рассматриваемой плоской однослойной стенке

(4.25)

Уравнение (4.25) является уравнением прямой линии.

Плотность теплового потока, проходящего через стенку в соот-ветствии с законом Фурье, q = -l¶t/¶n. Учитывая, что

, получим . (4.26)

Отношение d/l (Вт/(м2×К)) называется тепловой проводимостью стенки, а обратная величина d/l (м2×К/Вт) — тепловым или термическим сопротивлением стенки. Последнее представляет собой изменение температуры в стенке на единицу плотности теплового потока.

Тепловой поток, который передается через полную поверхность стенки,

, Вт. (4.27)

Для многослойных стенок уравнение имеет вид

. (4.28)

Величина называется полным термическим сопротивлением теплопроводности многослойной стенки.

При сравнении переноса теплоты через многослойную стенку и стенку из однородного материала удобно ввести в рассмотрение эквивалентный коэффициент теплопроводности lэкв многослойной стенки. Он равен коэффициенту теплопроводности однородной стенки, толщина которой D равна толщине многослойной стенки , а термическое сопротивление равно термическому сопротивлению рассматриваемой стенки, т.е.:

.

Отсюда

(4.29)

Из уравнения (4.29) следует, что эквивалентный коэффициент теплопроводности lэкв зависит не только от теплофизических свойств слоев, но и от их толщины.

Графически распределение температур по сечению многослойной стенки представляется ломаной линией; температуры на границе соприкосновения слоев можно определить уравнением

(4.30)

При рассмотрении стационарного процесса теплопроводности в цилиндрической однослойной стенке (трубе) с внутренним радиусом r1 и наружным r2 (рис. 4.5) получаем уравнение распределения температуры:

или

. (4.31)

 

 
 

Рис. 4.5. Температурное поле однослойной цилиндрической стенки

Уравнение (4.31) представляет собой уравнение логарифмической кривой. То обстоятельство, что распределение температуры в цилиндрической стенке является криволинейным, можно объяснить следующим. В случае плоской стенки плотность теплового потока остается одинаковой для всех изотермических поверхностей и градиент температуры сохраняет для всех изотермических поверхностей постоянную величину. В случае цилиндрической стенки плотность теплового потока через любую изотермическую поверхность изменяется, т. к. величина поверхности зависит от радиуса (H=2prl), что приводит к изменению градиента температуры.

Для нахождения количества теплоты, проходящего через цилиндрическую поверхность величиной Н в единицу времени, можно воспользоваться законом Фурье

.

Подставляя значение градиента температуры и поверхности, получаем

, Вт. (4.32)

Из уравнения (4.32) следует, что количество теплоты, проходящее через цилиндрическую стенку в единицу времени, полностью определяется заданными граничными условиями.

Тепловой поток (4.32) может быть отнесен либо к единице длины трубы, либо к единице внутренней или внешней поверхности.

Расчетная формула для плотности теплового потока, проходящего через единицу длины трубы, запишется:

, Вт/м. (4.33)

Тепловой поток, отнесенный к единице трубы, измеряется в Вт/м и называется линейной плотностью теплового потока. Как видно из уравнения (4.33), при неизменном отношении d2/d линейная плотность теплового потока не зависит от поверхности цилиндрической стенки.

Тепловой поток через единицу внутренней поверхности запишется:

, Вт/м. (4.34)

Тепловой поток через единицу наружной поверхности запишется:

, Вт/м. (4.35)

На основании полученного уравнения теплового потока на единицу длины трубы (4.33) можно получить уравнение теплового потока многослойной цилиндрической стенки. В этом случае необходимо выразить разности температур слоев из указанного уравнения, а затем, аналогично примеру с плоской стенкой, сложить полученные результаты. В результате получаем уравнение теплового потока многослойной цилиндрической стенки:

, Вт/м. (4.36)

Величина, стоящая в знаменателе, называется полным термическим сопротивлением многослойной цилиндрической стенки. Уравнение (4.36) может быть использовано для определения температур на границах любого слоя:

. (4.37)

Таким образом, полученные уравнения температурного поля и теплового потока позволяют определить температуры в любой требуемой точке тела (пластины или цилиндра) и определить величину теплового потока.

Температурное поле для шаровой стенки имеет вид

. (4.38)

Тепловой поток определяется по уравнению

, Вт. (4.39)

Указанные уравнения можно использовать для расчета температур в агрегатах и узлах автомобиля. Например, распределение температур по толщине двигателя или стенки кабины можно считать по уравнениям плоских стенок; карданных валов — по уравнениям цилиндрических стенок; заднего моста, главной передачи — по уравнениям шаровых стенок.

КОНВЕКТИВНЫЙ ТЕПЛООБМЕН

Основные понятия и определения

Конвективный теплообмен ¾ это процесс передачи теплоты между твердой поверхностью и окружающей средой, который осуществляется через ламинарный пограничный слой, образующийся в любом случае, а в остальном объеме перенос теплоты осуществляется конвекцией. Различают два вида конвекции: свободную (естественную) и вынужденную. При свободной конвекции жидкость движется за счет разности плотностей, при вынужденной ¾ за счет внешних сил (насос, вентилятор, ветер). Основным уравнением конвективного теплообмена в любом случае является уравнение Ньютона, сводящееся к утверждению, что количество теплоты пропорционально поверхности Н и разности температур Dt:

Q=aH(t1 - t2), (4.40)

где a ¾ коэффициент пропорциональности ¾ коэффициент теплоотдачи (Вт/(м2×К)), характеризует величину удельного теплового потока, передаваемого единицей поверхности при градиенте в один градус.

Коэффициент теплоотдачи можно представить в виде

, (4.41)

где D — толщина ламинарного пограничного слоя.

В этом случае оказывается, что a зависит от большого количества факторов — аналогично D — и не имеет аналитического решения. Определение коэффициента теплоотдачи осуществляется экспериментально и это сообщает всему учению о конвективном теплообмене эмпирический характер. Применение теории подобия и теории размерностей дает возможность обобщить опытные данные и свести задачу конвективного теплообмена к зависимости параметров гидродинамического и теплового подобия и этим все учение о конвективном теплообмене приобретает полуэмпирический характер.

Теория размерностей

При экспериментальном определении a Вт/(м2×К) необходимо исследовать зависисмость a от шести переменных и провести число опытов , где А —… a = a(u, l, m, С, r, l). (4.42) Полный дифференциал a равен:

Таблица 4.1

Размерности и показатели степени при конвективном

Теплообмене

Исключаем размерности: 1 — (кг) iu + im + ir - ic = 0 2 — (м) il - 2iu - im - 3ir - il+ 2 = 0

Теория подобия

Для конвективного теплобмена (его математического описания) необходимо иметь: 1) дифференциальное уравнение движения вязкой несжимаемой жидкости —… Уравнение движения вязкой несжимаемой жидкости: (а)

Таблица 4.2

Главнейшие безразмерные критерии тепловых и гидродинамических процессов

Формула Название критерия Величины, входящие в критерий Значение критерия
Критерий Рейнольдса (критерий режима движения) w - скорость потока, м/сек; d - эквивалентный диаметр канала; n - коэффициент кинематической вязкости, м2/сек. Характеризует гидродинамический режим движения
Критерий Эйлера (критерий падения давления) DР - перепад давления, Н/м2; r - плотность жидкости, кг/м3. Характеризует безразмерную величину падения давления
Критерий Прандтля (критерий физических свойств жидкости)   Характеризует физические свойства жидкости и способность распространения тепла в жидкости
Критерий Пекле   Является мерой отношения молекулярного и конвективного переноса тепла в потоке
Критерий Нуссельта (критерий теплоотдачи) a - коэффициент конвективной теплоотдачи, Вт/(м2×град) Характеризует отношение между интенсивностью теплоотдачи и температурным полем в пограничном слое потока
Критерий Био l - характерный размер тела, м; lм - коэффициент теплопроводности твердого тела, Вт/(м×град) Характеризует соотношение между внутренним и внешним термическим сопротивлениями
Критерий Фурье (безразмерное время) t - время, сек Характеризует связь между скоростью изменения температурного поля, физическими константами и размерами тела
Критерий Грасгофа (критерий подъемной силы) b - коэффициент объемного расширения, 1/град; Dt - разность температур в двух точках системы потока и стенки, град Характеризует кинематическое подобие при свободном движении жидкости

 

Критериальные уравнения

При установлении функциональной связи между коэффициентом теплоотдачи и параметрами конвективного теплообмена можно перейти от размерных функций к безразмерным и тогда, используя эксперимент, определять функции типа

Nu=¦(Re, Pr, Gr, Fo). (4.67)

Формула (4.67) называется критериальным уравнением. Количество переменных (которыми здесь являются критерии подобия), входящих в такую зависимость, всегда значительно меньше, чем в случае установления зависимости в размерном виде. Имея конкретный вид функции (4.67), легко определить величину коэффициента теплоотдачи. Вычисление критериев подобия Re, Pr, Gr и др. не представляет значительных трудностей.

Практическое использование критериальных уравнений и в тепловых расчетах ДВС заключается в определении с их помощью коэффициента теплоотдачи:

(4.68)

Некоторые случаи теплообмена

Nu=¦(Re, Gr, Pr). (4.69) В случае вынужденного движения жидкости и при развитом турбулентном режиме… Nu=¦(Re, Pr). (4.70)

Расчетные зависимости конвективного теплообмена

y = Axm×un×np. (4.73) Она наиболее проста и гибка. Подробно математическая обработка результатов… Установившийся конвективный теплообмен в общем случае описывается следующим уравнением подобия (капельные жидкости): …

Теплообмен при естественной конвекции

Nu=C(Gr×Pr)n. (4.75) Значения коэффицента С и показателя степени «n» в зависимости от произведения… В качестве определяющей температуры принята средняя температура пограничного слоя:

Таблица 4.3

Значения величин С и n

Условия движения Gr×Pr C n
На горизонтальной трубе 103…109 0,50 0,25
Вдоль вертикальной стенки 103…109 0,75 0,25
Вдоль вертикальной стенки свыше 1010 0,15 0,33

 

Довольно часто приходится рассчитывать теплообмен естественной конвекции в узких глухих каналах. Как показывает эксперимент, большинство случаев теплопереноса в таких условиях (даже не подобных — например, в вертикальных, горизонтальных, кольцевых щелях) можно приближенно объединить общей расчетной методикой. Среднюю плотность теплового потока q между поверхностями, разделенными прослойкой газа или жидкости толщиной δ, можно рассчитывать как в случае переноса теплоты теплопроводностью через плоскую стенку:

(4.77)

где tc1 и tc2 — большая и меньшая температуры ограждающих поверхностей;

λэ — эквивалентный коэффициент теплопроводности, учитывающий и конвективный перенос теплоты.

При (Gr×Pr)<103 естественную конвекцию можно вообще не учитывать, считая λэж. При (Gr×Pr)>103 значение λэ становится заметно больше, чем λж, и рассчитывается по формуле λэк×λж. Величина поправки на конвекцию определяется зависимостью

eк=0,18 (Gr×Pr)0,25. (4.78)

Определяющий размер при расчете Gr — толщина прослойки δ, а определяющая температура ― средняя между поверхностями:

tср=0,5 (tc1+tc2).

Теплоотдача при вынужденном движении жидкости

В трубах и каналах

(4.79) Уравнение (4.79), предложенное академиком М.А. Михеевым, используется для… dэ=4F/P, (4.80)

Таблица 4.4

Значение коэффициента εl

el 1,9 1,7 1,44 1,28 1,18 1,13 1,05 1,02

 

При турбулентном режиме жидкость в потоке весьма интенсивно перемешивается и естественная конвекция практически не оказывает влияния на интенсивность теплообмена. Для определения среднего по длине трубы коэффициента теплоотдачи при развитом турбулентном движении (Re³104) академик М.А. Михеев рекомендовал следующее уравнение подобия:

. (4.81)

В уравнение (4.81) не входит критерий Грасгофа, так как свободное движение не оказывает влияния на теплоотдачу. Уравнение (4.81) справедливо для различной формы поперечного сечения канала, в том числе для кольцевого (d2/d1=1¸5,6) и щелевого (а/b=1¸40).

За определяющую температуру в уравнениях (4.81) и 4.79) принята средняя температура потока жидкости. За определяющий геометрический размер — диаметр трубы или эквивалентный диаметр канала любой формы.

Для воздуха формула (4.81) упрощается:

Nu=0,018×Re0,8. (4.82)

При переходном режиме течения теплоотдача не может быть описана единым уравнением подобия, так как при этих условиях характер движения и теплообмена зависит от многих факторов, трудно подда-ющихся количественной оценке. При Re=idem соотношение между возможными максимальными коэффициентами теплоотдачи составляет 20¸100. Поэтому для этой области режимов теплообмена можно определить только наиболее вероятные значения коэффициентов теплоотдачи по уравнению

(4.83)

Величина к0 выбирается в зависимости от величины критерия Re.

Таблица 4.5

Значение величины к0

Re×10-3 2,2 2,3 2,5 3,0 3,5
к0 2,2 3,6 4,9 7,5 12,2 16,5

 

Теплоотдача при поперечном обтекании труб

Для определения коэффициента теплоотдачи при поперечном омывании одиночной трубы используют следующие уравнения подобия: при Re=5¸103 ; (4.84)

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ

Основные понятия и определения

Тепловое излучение представляет собой процесс распространения внутренней энергии нагретого тела путем электромагнитных волн. Возбудителями этих волн являются электрически заряженные материальные частицы, т. е. электроны и ионы, входящие в состав вещества. Помимо волновых свойств излучение обладает также корпускулярными свойствами. Корпускулярные свойства состоят в том, что лучистая энергия излучается и поглощается веществом не непрерывно в виде бесконечной электромагнитной волны, а в виде определенных порций, так называемых квантов энергии излучения. По современным представлениям, носителями этих порций (квантов) электромагнитной энергии являются элементарные частицы излучения — фотоны, обладающие энергией, количеством движения и электромагнитной массой.

Таким образом, излучение обладает волновой и корпускулярной (квантовой) природой. Согласно этому, энергия и импульсы сосредотачиваются в фотонах, а вероятность нахождения их в том или ином месте пространства — в волнах. Соответственно этому излучение характеризуется длиной волны (λ) или частотой колебаний (ν=с/λ). Все виды электромагнитного излучения имеют одинаковую природу и различаются лишь длиной волны, в зависимости от которой различают космическое, γ- излучение, рентгеновское, ультрафиолетовое, видимое (световые лучи), инфракрасное и т. д.

Для теплообмена имеет значение излучение, энергия которого при поглощении его веществом превращается в тепловую и наоборот. В наибольшей степени такими свойствами обладает излучение с длиной волн от 0,4 до 800 мкм. Это излучение называют тепловым. Оно состоит из видимого (светового) излучения (от 0,4 до 0,8 мкм) и из инфракрасного излучения (от 0,8 до 800 мкм). В области температур до 2000˚С основную роль в теплообмене играет второе, т. е. инфракрасное излучение.

Тепловое излучение — сложный процесс, связанный с двойным преобразованием энергии: сначала переход тепловой энергии в излучение электромагнитных волн, затем движение волн (фотонов) и, наконец, поглощение электромагнитных колебаний поглощающей средой или телом (абсорбция) — еще одно преобразование энергии.

Большинство твердых и жидких тел имеет сплошной (непрерывный) спектр излучения, т. е. излучает энергию всех длин волн от 0 до ¥. К твердым телам, имеющим непрерывный спектр излучения, относятся непроводники и полупроводники электричества, металлы с окисленной шероховатой поверхностью. Некоторые тела излучают энергию только в определенных интервалах длин волн, т. е. излучают энергию с прерывистым спектром. К ним относятся чистые металлы, газы и пары, которые характеризуются выборочным или селективным излучением.

Виды лучистых потоков

Лучистый поток Q, падающий на тело, частично им поглощается QA, частично отражается QR, частично проходит сквозь тело QD (рис. 4.6).      

Законы теплового излучения

4.4.3.1. Закон Планка Разрабатывая квантовую теорию излучения, М. Планк (1900 г.) теоретически… , (4.91)

Особенности излучения паров и реальных газов

Излучение и поглощение газов носит характер избирательного (селективного) излучения, т. е. газы излучают и поглощают энергию лишь в определенных…   Твердые тела для тепловых лучей непрозрачны, поэтому можно считать, что излучение и поглощение лучистой энергии…

ТЕПЛОПЕРЕДАЧА

Теплопередача между двумя теплоносителями через

Разделяющую их стенку

Передача теплоты от одной подвижной среды (жидкости или газа) к другой через разделяющую их твердую стенку любой формы называется теплопередачей.

Расчетная формула теплопередачи для стационарного режима имеет следующий вид:

Q=кH(tж1-tж2). (4.104)

Для однослойной плоской стенки коэффициент теплопередачи определяется следующим образом:

. (4.105)

Величина, обратная коэффициенту теплопередачи, называется полным термическим сопротивлением теплопередачи:

. (4.106)

Для многослойной плоской стенки коэффициент теплопередачи для стационарного теплового режима следующий:

, (4.107)

где — термическое сопротивление многослойной стенки.

Для многослойной цилиндрической стенки линейный коэффициент теплопередачи определяется:

. (4.108)

Величина кl называется линейным коэффициентом теплопередачи, который численно равен количеству теплоты, проходящей через стенку трубы длиной в 1 м в единицу времени при разности температур между горячей и холодной средами в 1˚С.

Оптимизация (регулирование) процесса теплопередачи

При изоляции поверхностей любой геометрической формы задача в заключительной части решается технико-экономическим расчетом. Однако при изоляции… (4.109) При a1=idem; d1=idem; l=cоnst; a2=idem полное термическое сопротивление теплопередачи будет зависеть от внешнего…

Теплопередача при переменных температурах

Теплообменным аппаратом (ТА) называется устройство, предназначенное для передачи теплоты от одной среды к другой. Общие вопросы по ТА достаточно… Так, например, система охлаждения ДВС состоит из комплекса устройств. В… Для определения конструктивных размеров и оценки эффективности теплообменных аппаратов выполняют тепловой и…

– Конец работы –

Используемые теги: Конспект, лекций, Первоначально, термодинамика, решала, достаточно, ограниченный, Круг, задач0.13

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: КОНСПЕКТ ЛЕКЦИЙ Первоначально термодинамика решала достаточно ограниченный круг задач

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

История мировых религий: конспект лекций История мировых религий. Конспект лекций ЛЕКЦИЯ № 1. Религия как феномен культуры Классификация религий
История мировых религий конспект лекций... С Ф Панкин...

Конспект лекций по дисциплине Экономика недвижимости: конспект лекций
Государственное бюджетное образовательное учреждение... высшего профессионального образования... Уральский государственный экономический университет...

Психиатрия. Конспект лекций. ЛЕКЦИЯ № 1. Общая психопатология Психиатрия: конспект лекций
Психиатрия конспект лекций... Текст предоставлен литагентом http litres ru...

Психодиагностика. Конспект лекций ЛЕКЦИЯ № 1. Истоки психодиагностики Психодиагностика: конспект лекций
Психодиагностика конспект лекций... А С Лучинин...

КОНСПЕКТ ЛЕКЦИЙ по курсу Архитектурное материаловедение Конспект лекций по курсу Архитектурное материаловедение
ФГОУ ВПО ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ... ИНСТИТУТ Архитектуры и искусств... КАФЕДРА ИНЖЕНЕРНО строительных ДИСЦИПЛИН...

Термодинамика. Конспект лекций
Термодинамика активных сред химических лазеров. Конспект лекций. Составитель: Д.т.н., профессор А.В. Савин...

Расчетно-графическое задание состоит из четырех задач. Для задач 1,2,3 имеется два варианта, для задачи 4 – вариант для каждого студента.
На сайте allrefs.net читайте: Расчетно-графическое задание состоит из четырех задач. Для задач 1,2,3 имеется два варианта, для задачи 4 – вариант для каждого студента....

КОНСПЕКТ ЛЕКЦИЙ ПО УПРАВЛЕНЧЕСКОМУ УЧЕТУ Лекция 1. Управленческий учет: цели и задачи. Основы управленческой отчетности
Лекция Управленческий учет цели и задачи Основы управленческой... Задачи управленческого учета...

- содержательная постановка задачи коммивояжёра, транспортной задачи, задачи распределения ресурсов в ТЭС;
На сайте allrefs.net читайте: - содержательная постановка задачи коммивояжёра, транспортной задачи, задачи распределения ресурсов в ТЭС;...

Социология и психология управления -- программа курса и конспект лекций
На сайте allrefs.net читайте: "Социология и психология управления -- программа курса и конспект лекций"

0.034
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам