рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Безопасность жизнедеятельности

Безопасность жизнедеятельности - раздел Образование, Безопасность Жизнедеятельности ...

Безопасность жизнедеятельности

 

Учебник

Белов С.В., Сивков В.П., Ильницкая А.В., Морозова Л.Л. и др

 

Предисловие

 

В учебнике впервые обобщены научные и практические достижения в новой области знаний – безопасности жизнедеятельности. Он подготовлен в соответствии с примерными программами дисциплины «Безопасность жизнедеятельности» (БЖД) для всех специальностей и направлений бакалавриата высшего профессионального образования. Основа программ разработана кафедрой «Промышленная экология и безопасность» МГТУ им. Н.Э. Баумана еще в 1989 г.

Авторы учебника имеют опыт чтения курса лекций по дисциплине БЖД на факультетах машиностроительного и приборостроительного профиля, а также опыт написания конспекта лекций «Безопасность жизнедеятельности», изданного в двух частях в 1992–1993 гг. Всесоюзной ассоциацией специалистов по охране труда (ВАСОТ) и предназначенного для преподавателей технических вузов (0.1, 0.3).

Основу научных и практических знаний, содержащихся в учебнике БЖД, составляют знания, ранее излагавшиеся в отдельных курсах: «Охрана труда», «Охрана окружающей среды» и «Гражданская оборона», имевших выраженную прикладную направленность. Целевое предназначение указанных курсов и их основное содержание сводились к изучению средств и методов защиты человека и природной среды от негативных факторов техногенного происхождения.

Вводимая в настоящее время в высших учебных заведениях, средних специальных учебных заведениях и средней школе дисциплина «Безопасность жизнедеятельности» призвана интегрировать на общей методической основе в единый комплекс знания, необходимые для обеспечения комфортного состояния и безопасности человека во взаимодействии со средой обитания. Предпосылкой такого подхода является значительная общность в указанных выше курсах целей, задач, объектов и предметов изучения, а также средств познания и принципов реализации теоретических и практических задач.

Объединение курсов позволяет расширить и углубить познания в области анатомо-физиологических свойств человека и его реакциях на воздействие негативных факторов; комплексного представления об источниках, количестве и значимости травмирующих и вредных факторов среды обитания; принципов и методов качественного и количественного анализа опасностей; сформулировать общую стратегию и принципы обеспечения безопасности; подойти к разработке и применению средств защиты в негативных ситуациях с общих позиций.

Учебник создан преподавателями кафедры «Промышленная экология и безопасность» МГТУ им. Н.Э. Баумана. Введение, гл. 2, пп. 6.1, 6.2, 6.5, гл. 7 написаны С.В. Беловым, гл.1 –В.П. Сивковым, гл. 3 –А.В. Ильницкой (главным специалистом МНИИ гигиены им. Ф.Ф. Эрисмана) и Л.Л. Морозовой, гл. 4, п. 6.6 –И.В. Переездчиковым, пп. 6.3, 6.4 –Г.П. Павлихиным, пп. 5.1, 5.6, гл. 8 –Д.М. Якубовичем, пп. 5.2–5.5, гл. 9 –А.Ф. Козьяковым.

Авторы будут благодарны всем, кто сочтет целесообразным высказать замечания и пожелания по содержанию учебника, которые следует направлять по адресу: 101430, г. Москва, ГСП-4, Неглинная ул., д.29/14, издательство «Высшая школа».

Авторы


ВВЕДЕНИЕ

ОСНОВЫ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ.

ОСНОВНЫЕ ПОНЯТИЯ, ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Жизнедеятельность – это повседневная деятельность и отдых, способ существования человека. Приступая к изучению основ безопасности жизнедеятельности человека в…  

Год ............... 1982 1983 1984 1988

Расходы, млрд. долларов ..... 187,4 214,8 245,3 300

Военная промышленность является одним из активных стимуля­торов развития техники и роста энергетического и промышленного производства:

Год ............... 1970* 1980 1990 2000

Производство электроэнергии в ми­ре, % к 1950 г. .......... 173 234 318 413

* Произведено 6600 кВт. ч, в том числе в США — 2200, в СССР — 700,

Оценивая экологические последствия развития энергетики, следует иметь в виду, что во многих странах это достигалось преимуществен­ным использованием тепловых электрических станций (ТЭС), сжига­ющих уголь, мазут или природный газ. Об этом свидетельствует и структура производства электроэнергии в СССР (1985 г.): ТЭС—1196 млрд. кВт.ч (74,5%), ГЭС—216 млрд. кВт.ч (13,5%), АЭС—193 млрд. кВт.ч (12%). Выбросы ТЭС наиболее губительны для биосферы.

Во второй половине XX в. каждые 12...15 лет удваивалось промыш­ленное производство ведущих стран мира, обеспечивая тем самым удвоение выбросов загрязняющих веществ в биосферу. В СССР в период с 1940 по 1980 гг. возросло производство электроэнергии в 32 раза; стали —в 7,7; автомобилей —в 15 раз; увеличилась добыча угля в 4,7, нефти —в 20 раз. Аналогичные или близкие к ним темпы роста наблюдались во многих других отраслях народного хозяйства. Значи­тельно более высокими темпами развивалась химическая промышлен­ность, объекты цветной металлургии, производство строительных материалов и др.

Постоянно увеличивался мировой автомобильный парк: с 1960 по 1990 гг. он возрос с 120 до 420 млн. автомобилей.

Необходимо отметить, что развитие промышленности и техниче­ских средств сопровождалось не только увеличением выброса загряз­няющих веществ, но и вовлечением в производство все большего числа химических элементов:

Год ............... 1869 1906 1917 1937 1985

Известно ............ 62 84 85 89 104

Использовалось ......... 35 52 64 73 90

К настоящему времени в окружающей среде накопилось около 50 тыс. видов химических соединений, не разрушаемых деструкторами экосистем (отходы пластмасс, пленок, изоляции и т.п.)

Развитие сельского хозяйства. Вторая половина XX в. связана с интенсификацией сельскохозяйственного производства. В целях по­вышения плодородия почв и борьбы с вредителями в течение многих лет использовались искусственные удобрения и различные токсиканты, что не могло не влиять на состояние компонент биосферы. В 1986 г. среднее количество минеральных удобрений на 1 га пашни в мире составило около 90 кг, в СССР и США —более 100 кг, в Европе — 230 кг. При избыточном применении азотных удобрений почва пере­насыщается нитратами, а при внесении фосфорных удобрений — фтором, редкоземельными элементами, стронцием. При использова­нии нетрадиционных удобрений (отстойного ила и т.п.) почва перена­сыщается соединениями тяжелых металлов. Избыточное количество удобрений приводит к перенасыщению продуктов питания токсичны­ми веществами, нарушает способность почв к фильтрации, ведет к загрязнению водоемов, особенно в паводковый период.

Пестициды, применяемые для защиты растений от вредителей, опасны и для человека. Установлено, что от прямого отравления пестицидами в мире ежегодно погибает около 10 тыс. человек, гибнут леса, птицы, насекомые. Пестициды попадают в пищевые цепи, пить­евую воду. Все без исключения пестициды обнаруживают либо мутагенное, либо иное отрицательное воздействие на человека и живую природу. В настоящее время отмечаются высокие загрязнения почв фосфорорганическими пестицидами (фозалоном, метафосом), гербицидами (2,4-Д, трефланом, трихлорацетатом натрия) и др.

Техногенные аварии и катастрофы. До серединыXX в. человек не обладал способностью инициировать крупномасштабные аварии и катастрофы и тем самым вызывать необратимые экологические изменения регионального и глобального масштаба, соизмеримые со стихийными бедствиями.

Происшествие – событие, состоящее из негативного воздействия с причинением ущерба людским, природным или материальным ресурсам.

Авария – происшествие в технической системе, не сопровождающееся гибелью людей, при котором восстановление технических средств невозможно или экономически нецелесообразно.

Катастрофа – происшествие в технической системе, сопровождающееся гибелью или пропажей без вести людей.

Стихийное бедствие–происшествие, связанное со стихийными явлениями на Земле и приведшее к разрушению биосферы, гибели или потери здоровья людей.

Появление ядерных объектов и высокая концентрация прежде всего химических веществ и их производств сделали человека способным оказывать разрушительное воздействие на экосистемы. Примером тому служат трагедии в Чернобыле, Бхопале.

Огромное разрушительное воздействие на биосферу оказывается при испытании ядерного (в г. Семипалатинске, на о. Новая Земля) и других видов оружия. Для испытания химического оружия необходим полигон размером около 500 тыс. га. Иллюстрацией негативного экологического влияния современных локальных войн являются итоги войны в зоне Персидского залива (огромные проливы нефти в залив, пожары на нефтяных скважинах).

Из приведенного выше видно, что XX столетие ознаменовалось потерей устойчивости в таких процессах, как рост населения Земли и его урбанизация. Это вызвало крупномасштабное развитие энергетики, промышленности, сельского хозяйства, транспорта, военного дела и обусловило значительный рост техногенного воздействия. Во многих странах оно продолжает нарастать и в настоящее время. В результате активной техногенной деятельности человека во многих регионах нашей планеты разрушена биосфера и создан новый тип среды обитания – техносфера.

Биосфера–область распространения жизни на Земле, включающая нижний слой атмосферы, гидросферу и верхний слой литосферы, не испытавших техногенного воздействия.

Техносфера–регион биосферы, в прошлом преобразованный людьми с помощью прямого или косвенного воздействия технических средств в целях наилучшего соответствия своим материальным и социально-экономическим потребностям (техносфера – регион города или промышленной зоны, производственная или бытовая среда).

Регион – территория, обладающая общими характеристиками состояния биосферы или техносферы.

Производственная среда – пространство, в котором совершается трудовая деятельность человека.

Создавая техносферу, человек стремился к повышению комфортности среды обитания, к росту коммуникабельности, к обеспечению защиты от естественных негативных воздействий. Все это благоприятно отразилось на условиях жизни и в совокупности с другими факторами (улучшение медицинского обслуживания и др.) сказалось на продолжительности жизни людей:

Век Продолжительность жизни человека, лет
Медный, бронзовый, железный………………………………
К началу XIX в ………………………………………………… 35-40
В конце XX в . ....………………………………………………. 60–63

 

Однако созданная руками и разумом человека техносфера, призванная максимально удовлетворять его потребности в комфорте и безопасности, не оправдала во многом надежды людей. Появившиеся производственная и городская среды оказались далеки по уровню безопасности и экологичности от допустимых требований.

Появление техносферы привело к тому, что биосфера во многих регионах нашей планеты стала активно замещаться техносферой (табл. 0.1). Данные табл. 0.1 показывают, что на планете осталось мало территорий с ненарушенными экосистемами. В наибольшей степени экосистемы разрушены в развитых странах – в Европе, Северной Америке, Японии. Здесь естественные экосистемы сохранились в основном на небольших площадях, они представляют собой небольшие пятна биосферы, окруженные со всех сторон нарушенными деятельностью человека территориями, и поэтому подвержены сильному техносферному давлению.

 

Таблица 0.1. Состав площадей на некоторых континентах Земли

 

Континент Ненарушенная территория, % Частично нарушенная территория, % Нарушенная территория. %
Европа Азия Северная Америка 15.6 43.6 56.3 19,6 27.0 18,8 64,9 29,5 24,9

 

Техносфера – детище XX в., приходящее на смену биосфере.

К новым техносферным относятся условия обитания человека в городах и промышленных центрах, производственные, транспортные и бытовые условия жизнедеятельности. Практически все урбанизированное население проживает в техносфере, где условия обитания существенно отличаются от биосферных прежде всего повышенным влиянием на человека техногенных негативных факторов. Характерное состояние системы «человек–среда обитания», совокупность и направленность воздействия негативных факторов в регионах техносферы показаны на рис. 0.3.

Рис. 0.3. Негативные факторы воздействия в системе «человек – среда обитания»:

1 – естественные стихийных явлений; 2 – производственной среды на работающего; 3 – производственной среды на городскую среду (среду промышленной зоны); 4 – человека (ошибочные действия) на производственную среду; 5 – городской среды на человека, производственную и бытовую среду; 6 – бытовой среды на городскую; 7 – бытовой среды на человека; 8 – человека на бытовую среду; 9 – городской среды или промышленной зоны на биосферу; 10 – биосферы на городскую, бытовую и производственную среду; 11 – человека на городскую среду; 12 – человека на биосферу; 13 – биосферы на человека

 

Взаимодействие человека и техносферы. Человек и окружающая его среда (природная, производственная, городская, бытовая и др.) в процессе жизнедеятельности постоянно взаимодействуют друг с другом. При этом «жизнь может существовать только в процессе движения через живое тело потоков вещества, энергии и информации» (Закон сохранения жизни, Ю.Н. Куражковский [0.8]).

Человек и окружающая его среда гармонично взаимодействуют и развиваются лишь в условиях, когда потоки энергии, вещества и информации находятся в пределах, благоприятно воспринимаемых человеком и природной средой. Любое превышение привычных уровней потоков сопровождается негативными воздействиями на человека и/или природную среду. В естественных условиях такие воздействия наблюдаются при изменении климата и стихийных явлениях.

В условиях техносферы негативные воздействия обусловлены элементами техносферы (машины, сооружения и т.п.) и действиями человека. Изменяя величину любого потока от минимально значимой до максимально возможной, можно пройти ряд характерных состояний взаимодействия в системе «человек – среда обитания»:

– комфортное (оптимальное), когда потоки соответствуют оптимальным условиям взаимодействия: создают оптимальные условия деятельности и отдыха; предпосылки для проявления наивысшей работоспособности и как следствие продуктивности деятельности; гарантируют сохранение здоровья человека и целостности компонент среды обитания;

– допустимое, когда потоки, воздействуя на человека и среду обитания, не оказывают негативного влияния на здоровье, но приводят к дискомфорту, снижая эффективность деятельности человека. Соблюдение условий допустимого взаимодействия гарантирует невозможность возникновения и развития необратимых негативных процессов у человека и в среде обитания;

– опасное, когда потоки превышают допустимые уровни и оказывают негативное воздействие на здоровье человека, вызывая при длительном воздействии заболевания, и/или приводят к деградации природной среды;

– чрезвычайно опасное, когда потоки высоких уровней за короткий период времени могут нанести травму, привести человека к летальному исходу, вызвать разрушения в природной среде.

Из четырех характерных состояний взаимодействия человека со средой обитания лишь первые два (комфортное и допустимое) соответствуют позитивным условиям повседневной жизнедеятельности, а два других (опасное и чрезвычайно опасное) – недопустимы для процессов жизнедеятельности человека, сохранения и развития природной среды.

Взаимодействие человека со средой обитания может быть позитивным или негативным, характер взаимодействия определяют потоки веществ, энергий и информаций.

Опасности, вредные и травмирующие факторы. Результат взаимодействия человека со средой обитания может изменяться в весьма широких пределах: от позитивного до катастрофического, сопровождающегося гибелью людей и разрушением компонент среды обитания. Определяют негативный результат взаимодействия опасности – негативные воздействия, внезапно возникающие, периодически или постоянно действующие в системе «человек – среда обитания».

Опасность – негативное свойство живой и неживой материи, способное причинять ущерб самой материи: людям, природной среде, материальным ценностям.

При идентификации опасностей необходимо исходить из принципа «все воздействует на все». Иными словами, источником опасности может быть все живое и неживое, а подвергаться опасности также может все живое и неживое. Опасности не обладают избирательным свойством, при своем возникновении они негативно воздействуют на всю окружающую их материальную среду. Влиянию опасностей подвергается человек, природная среда, материальные ценности. Источниками (носителями) опасностей являются естественные процессы и явления, техногенная среда и действия людей. Опасности реализуются в виде энергии, вещества и информации, они существуют в пространстве и во времени.

Опасность – центральное понятие в безопасности жизнедеятельности.

Различают опасности естественного и антропогенного происхождения. Естественные опасности обусловливают стихийные явления, климатические условия, рельеф местности и т.п. Ежегодно стихийные явления подвергают опасности жизнь около 25 млн. человек. Так, например, в 1990 г. в результате землетрясений в мире погибло более 52 тыс. человек. Этот год стал наиболее трагичным в минувшем десятилетии, учитывая, что за период 1980...1990 гг. жертвами землетрясений стали 57 тыс. человек.

Негативное воздействие на человека и среду обитания, к сожалению, не ограничивается естественными опасностями. Человек, решая задачи своего материального обеспечения, непрерывно воздействует на среду обитания своей деятельностью и продуктами деятельности (техническими средствами, выбросами различных производств и т.п.), генерируя в среде обитания антропогенные опасности.Чем выше преобразующая деятельность человека, тем выше уровень и число антропогенных опасностей, вредных и травмирующих факторов, отрицательно воздействующих на человека и окружающую его среду.

Вредный фактор – негативное воздействие на человека, которое приводит к ухудшению самочувствия или заболеванию.

Травмирующий (травмоопасный) фактор – негативное воздействие на человека, которое приводит к травме или летальному исходу.

Перефразируя аксиому о потенциальной опасности, сформулированную О.Н. Русаком в работе [0.9], можно констатировать:

Жизнедеятельность человека потенциально опасна.

Аксиома предопределяет, что все действия человека и все компоненты среды обитания, прежде всего технические средства и технологии, кроме позитивных свойств и результатов, обладают способностью генерировать травмирующие и вредные факторы. При этом любое новое позитивное действие или результат неизбежно сопровождается возникновением новых негативных факторов.

Справедливость аксиомы можно проследить на всех этапах развития системы «человек–среда обитания». Так, на ранних стадиях своего развития, даже при отсутствии технических средств, человек непрерывно испытывал воздействие негативных факторов естественного происхождения: пониженных и повышенных температур воздуха, атмосферных осадков, контактов с дикими животными, стихийных явлений и т.п. В условиях современного мира к естественным прибавились многочисленные факторы техногенного происхождения: вибрации, шум, повышенная концентрация токсичных веществ в воздухе, водоемах, почве; электромагнитные поля, ионизирующие излучения и др.

Антропогенные опасности во многом определяются наличием отходов, неизбежно возникающих при любом виде деятельности человека в соответствии с законом о неустранимости отходов (или) побочных воздействий производств [0.8|: «В любом хозяйственном цикле образуются отходы и побочные эффекты, они не устранимы и могут быть переведены из одной физико-химической формы в другую или перемещены в пространстве». Отходы сопровождают работу промышленного и сельскохозяйственного производств, средств транспорта, использование различных видов топлива при получении энергии, жизнь животных и людей и т.п. Они поступают в окружающую среду в виде выбросов в атмосферу, сбросов в водоемы, производственного и бытового мусора, потоков механической, тепловой и электромагнитной энергии и т.п. Количественные и качественные показатели отходов, а также регламент обращения с ними определяют уровни и зоны возникающих при этом опасностей.

Значительным техногенным опасностям подвергается человек при попадании в зону действия технических систем: транспортные магистрали; зоны излучения радио-и телепередающих систем, промышленные зоны и т.п. Уровни опасного воздействия на человека в этом случае определяются характеристиками технических систем и длительностью пребывания человека в опасной зоне. Вероятно проявление опасности и при использовании человеком технических устройств на производстве и в быту; электрические сети и приборы, станки, ручной инструмент, газовые баллоны и сети, оружие и т.п. Возникновение таких опасностей связано как с наличием неисправностей в технических устройствах, так и с неправильными действиями человека при их использовании. Уровни возникающих при этом опасностей определяются Энергетическими показателями технических устройств.

В настоящее время перечень реально действующих негативных факторов значителен и насчитывает более 100 видов. К наиболее распространенным и обладающим достаточно высокими концентрациями или энергетическими уровнями относятся вредные производственные факторы: запыленность и загазованность воздуха, шум, вибрации, электромагнитные поля, ионизирующие излучения, повышенные или пониженные параметры атмосферного воздуха (температуры, влажности, подвижности воздуха, давления), недостаточное и неправильное освещение, монотонность деятельности, тяжелый физический труд и др.

Даже в быту нас сопровождает большая гамма негативных факторов. К ним относятся: воздух, загрязненный продуктами сгорания природного газа, выбросами ТЭС, промышленных предприятий, автотранспорта и мусоросжигающих устройств; вода с избыточным содержанием вредных примесей; недоброкачественная пища; шум, инфразвук; вибрации; электромагнитные поля от бытовых приборов, телевизоров, дисплеев, ЛЭП, радиорелейных устройств; ионизирующие излучения (естественный фон, медицинские обследования, фон от строительных материалов, излучения приборов, предметов быта); медикаменты при избыточном и неправильном потреблении; алкоголь; табачный дым; бактерии, аллергены и др.

 
Рис. 0.4. Суточная миграция городского жителя в системе «человек – техносфера»: ВС – бытовая среда; ГС – городская среда; ПС – производственная среда

Мир опасностей, угрожающих личности, весьма широк и непрерывно нарастает. В производственных, городских, бытовых условиях на человека воздействует, как правило, несколько негативных факторов. Комплекс негативных факторов, действующих в конкретный момент времени, зависит от текущего состояния системы «человек – среда обитания». На рис. 0.4 показана характерная суточная миграция городского жителя (сотрудника промышленного предприятия) в системе «человек – техносфера», где размер радиуса условно соответствует относительной доле негативных факторов антропогенного происхождения в различных вариантах среды обитания.

Безопасность, системы безопасности. Все опасности тогда реальны, когда они воздействуют на конкретные объекты (объекты защиты). Объекты защиты, как и источники опасностей, многообразны. Каждый компонент окружающей среды может быть объектом защиты от опасностей. В порядке приоритета к объектам защиты относятся: человек, общество, государство, природная среда (биосфера), техносфера и т.п.

Основное желаемое состояние объектов защиты безопасное. Оно реализуется при полном отсутствии воздействия опасностей. Состояние безопасности достигается также при условии, когда действующие на объект защиты опасности снижены до предельно допустимых уровней воздействия.

Безопасность – состояние объекта защиты, при котором воздействие на него всех потоков вещества, энергии и информации не превышает максимально допустимых значений.

Следует отметить, что термин «безопасность» часто используют для оценки качества источника опасности, говоря о неспособности источника генерировать опасности. Настало время, когда для описания такого свойства источников опасности необходимо найти иной термин. Такими терминами могут быть: «неопасность», «совместимость», «экологичность» и т.п.

Экологичностъ источника опасности – состояние источника, при котором соблюдается его допустимое воздействие на техносферу и/или биосферу.

Говоря о реализации состояния безопасности, необходимо рассматривать объект защиты и совокупность опасностей, действующих на него.

Сегодня реально существуют следующие системы безопасности:

Вид опасности, поле опасностей Объект защиты Система безопасности
Опасности среды деятельности человека Человек Безопасность (охрана) труда
Опасности среды деятельности и отдыха, города и жилища–опасности тсхносферы Человек Безопасность жизнедеятельности человека
Опасности техносферы Природная среда Охрана природной среды
Чрезвычайные опасности биосферы и техносферы, в том числе пожары, ионизирущие воздействия Человек Природная среда Материальные ресурсы Защита в чрезвычайных ситуациях, пожарная и радиационная защита
Внешние и внутренние общегосударственные опасности Общество, нация Система безопасности страны, национальная безопасность
Опасности неконтролируемой и неуправляемой общечеловеческой деятельности (рост населения, оружие массового поражения, потепление климата и т.п.) Человечество Биосфера Техносфера Глобальная безопасность
Опасности космоса Человечество, планета Земля Космическая безопасность

 

Из вышесказанного следует, что системы безопасности по объектам защиты, реально существующие в настоящее время, распадаются на следующие основные виды:

– систему личной и коллективной безопасности человека в процессе его жизнедеятельности;

– систему охраны природной среды (биосферы);

– систему государственной безопасности;

– систему глобальной безопасности.

Историческим приоритетом обладают системы обеспечения безопасности человека, который на всех этапах своего развития постоянно стремился к обеспечению комфорта, личной безопасности и сохранению своего здоровья. Это стремление было мотивацией многих действий и поступков человека.

Создание надежного жилища не что иное, как стремление обеспечить себя и свою семью защитой от естественных негативных факторов: молнии, осадков, диких животных, пониженной и повышенной температуры, солнечной радиации и т.п. Но появление жилища грозило человеку возникновением новых негативных воздействий, например, обрушением жилища, при внесении в него огня – отравлением при задымлении, ожогами и пожарами.

Наличие в современных квартирах многочисленных бытовых приборов и устройств существенно облегчает быт, делает его комфортным и эстетичным, но одновременно вводит целый комплекс травмирующих и вредных факторов: электрический ток, электромагнитное поле, повышенный уровень радиации, шум, вибрации, опасность механического травмирования, токсичные вещества и т.п.

Прогресс в сфере производства в период научно-технической революции сопровождался и сопровождается в настоящее время ростом числа и энергетического уровня травмирующих, и вредных факторов производственной среды. Так, использование прогрессивных способов плазменной обработки материалов потребовало средств защиты работающих от токсичных аэрозолей, воздействия электромагнитного поля, повышенного шума, электрических сетей высокого напряжения.

Создание двигателей внутреннего сгорания решило многие транспортные проблемы, но одновременно привело к повышенному травматизму на дорогах, породило трудно решаемые задачи по защите человека и природной среды от токсичных выбросов автомобилей (отработавших газов, масел, продуктов износа шин и др.).

Таким образом, стремление человека к достижению высокой производительности своей деятельности, комфорта и личной безопасности в интенсивно развивающейся техносфере сопровождается увеличением числа задач, решаемых в системе «безопасность жизнедеятельности человека».

Значимость проблем в системах безопасности непрерывно увеличивается, поскольку растет не только число, но и энергетический уровень негативных воздействий. Если уровень влияния естественных негативных факторов практически стабилен на протяжении многих столетий, то большинство антропогенных факторов непрерывно повышает свои энергетические показатели (рост напряжений, давлений и др.) при совершенствовании и разработке новых видов техники и технологии (появление ядерной энергетики, концентрация энергоресурсов и т.п.).

В последние столетия неизмеримо выросли уровни энергии, которыми владеет человек. Если в конце XVIII в. он обладал лишь паровой машиной мощностью до 75 кВт, в конце XX в. в его распоряжении находятся энергетические установки мощностью 1000 МВт и более. Значительные энергетические мощности сосредоточены в хранилищах взрывчатых веществ, топлив и других химически активных веществ.

По мнению акад. Н. Н. Моисеева, «человечество вступило в новую эру своего существования, когда потенциальная мощь создаваемых им средств воздействия на среду обитания становится соизмеримой с могучими силами природы планеты. Это внушает не только гордость, но и опасение, ибо чревато последствиями.., которые могут привести к уничтожению цивилизации и даже всего живого на Земле».

Многие системы безопасности взаимосвязаны между собой как по негативным воздействиям, так и средствам достижения безопасности. Обеспечение безопасности жизнедеятельности человека в техносфере почти всегда неразрывно связано с решением задач по охране природной среды (снижение выбросов и сбросов и др.). Это хорошо иллюстрируют результаты работ по сокращению токсичных выбросов в атмосферу промышленных зон и, как следствие, по уменьшению негативного влияния этих зон на природную среду.

Обеспечение безопасности жизнедеятельности человека в техносфере – путь к решению многих проблем защиты природной среды от негативного влияния техносферы.

Рост антропогенного негативного влияния на среду обитания не всегда ограничивается нарастанием только опасностей прямого действия, например, ростом концентраций токсичных примесей в атмосфере. При определенных условиях возможно появление вторичных негативных воздействий, возникающих на региональном или глобальном уровнях и оказывающих негативное влияние на регионы биосферы и значительные группы людей. К ним относятся процессы образования кислотных дождей, смога, «парниковый эффект», разрушение озонового слоя Земли, накопление токсичных и канцерогенных веществ в организме животных и рыб, в пищевых продуктах и т.п.

Решение задач, связанных с обеспечением безопасности жизнедеятельности человека, – фундамент для решения проблем безопасности на более высоких уровнях: техносферном, региональном, биосферном, глобальном.

Теоретические основы и практические функции БЖД. Как отмечено выше, опасности техносферы во многом антропогенны. В основе их возникновения лежит человеческая деятельность, направленная на формирование и трансформацию потоков вещества, энергии и информации в процессе жизнедеятельности. Изучая и изменяя эти потоки, можно ограничить их величину допустимыми значениями. Если сделать это не удается, то жизнедеятельность становится опасной.

Мир опасностей в техносфере непрерывно нарастает, а методы и средства защиты от них создаются и совершенствуются со значительным опозданием. Остроту проблем безопасности практически всегда оценивали по результату воздействия негативных факторов – числу жертв, потерям качества компонент биосферы, материальному ущербу. Сформулированные на такой основе защитные мероприятия оказывались и оказываются несвоевременными, недостаточными и, как следствие, недостаточно эффективными. Ярким примером вышеизложенного является начавшийся в 70-е годы с тридцатилетним опозданием экологический бум, который по сей день во многих странах, в том числе и в России, не набрал необходимой силы.

Оценка последствий от воздействия негативных факторов по конечному результату – грубейший просчет человечества, приведший к огромным жертвам и кризису биосферы.

Где же выход? Он очевиден. Решение проблем безопасности жизнедеятельности необходимо вести на научной основе.

Наука – выработка и теоретическая систематизация объективных знаний о действительности.

В ближайшем будущем человечество должно научиться прогнозировать негативные воздействия и обеспечивать безопасность принимаемых решений на стадии их разработки, а для защиты от действующих негативных факторов создавать и активно использовать защитные средства и мероприятия, всемерно ограничивая зоны действия и уровни негативных факторов.

Реализация целей и задач в системе «безопасность жизнедеятельности человека» приоритетна и должна развиваться на научной основе.

Наука о безопасности жизнедеятельности исследует мир опасностей, действующих в среде обитания человека, разрабатывает системы и методы защиты человека от опасностей. В современном понимании безопасность жизнедеятельности изучает опасности производственной, бытовой и городской среды как в условиях повседневной жизни, так и при возникновении чрезвычайных ситуаций техногенного и природного происхождения. Реализация целей и задач безопасности жизнедеятельности включает следующие основные этапы научной деятельности:

– идентификация и описание зон воздействия опасностей техносферы и отдельных ее элементов (предприятия, машины, приборы и т.п.);

– разработка и реализация наиболее эффективных систем и методов защиты от опасностей;

– формирование систем контроля опасностей и управления состоянием безопасности техносферы;

– разработка и реализация мер по ликвидации последствий проявления опасностей;

– организация обучения населения основам безопасности и подготовки специалистов по безопасности жизнедеятельности.

Главная задача науки о безопасности жизнедеятельности – превентивный анализ источников и причин возникновения опасностей, прогнозирование и оценка их воздействия в пространстве и во времени.

Современная теоретическая база БЖД должна содержать, как минимум:

– методы анализа опасностей, генерируемых элементами техносферы;

– основы комплексного описания негативных факторов в пространстве и во времени с учетом возможности их сочетанного воздействия на человека в техносфере;

– основы формирования исходных показателей экологичности к вновь создаваемым или рекомендуемым элементам техносферы с учетом ее состояния;

– основы управления показателями безопасности техносферы на базе мониторинга опасностей и применения наиболее эффективных мер и средств защиты;

– основы формирования требований по безопасности деятельности к операторам технических систем и населению техносферы.

При определении основных практических функций БЖД необходимо учитывать историческую последовательность возникновения негативных воздействий, формирования зон их действия и защитных мероприятий. Достаточно долго негативные факторы техносферы оказывали основное воздействие на человека лишь в сфере производства, нынудив его разработать меры техники безопасности. Необходимость более полной защиты человека в производственных зонах привела к охране труда. Сегодня негативное влияние техносферы расширилось до пределов, когда объектами защиты стали также человек в городском пространстве и жилище, биосфера, примыкающая к промышленным зонам.

Нетрудно видеть, что почти во всех случаях проявления опасностей источниками воздействия являются элементы техносферы с их выбросами, сбросами, твердыми отходами, энергетическими полями и излучениями. Идентичность источников воздействия во всех зонах техносферы неизбежно требует формирования общих подходов и решений в таких областях защитной деятельности как безопасность труда, безопасность жизнедеятельности и охрана природной среды. Все это достигается реализацией основных функций БЖД. К ним относятся:

– описание жизненного пространства его зонированием по значениям негативных факторов на основе экспертизы источников негативных воздействий, их взаимного расположения и режима действия, а также с учетом климатических, географических и других особенностей региона или зоны деятельности;

– формирование требований безопасности и экологичности к источникам негативных факторов

– назначение предельно допустимых выбросов (ПДВ), сбросов (ПДС), энергетических воздействий (ПДЭВ), допустимого риска и др.;

– организация мониторинга состояния среды обитания и инспекционного контроля источников негативных воздействий;

– разработка и использование средств экобиозащиты;

– реализация мер по ликвидации последствий аварий и другихЧС;

– обучение населения основам БЖД и подготовка специалистов всех уровней и форм деятельности к реализации требований безопасности и экологичности.

Не все функции БЖД сейчас одинаково развиты и внедрены в практику. Существуют определенные наработки в области создания и применения средств экобиозащиты, в вопросах формирования требований безопасности и экологичности к наиболее значимым источникам негативных воздействий, в организации контроля состояния среды обитания в производственных и городских условиях. Вместе с тем, только в последнее время появились и формируются основы экспертизы источников негативных воздействий, основы превентивного анализа негативных воздействий и их мониторинг в техносфере.

Основными направлениями практической деятельности в области БЖД являются профилактика причин и предупреждение условий возникновения опасных ситуаций.

Анализ реальных ситуаций, событий и факторов уже сегодня позволяет сформулировать ряд аксиом науки о безопасности жизнедеятельности в техносфере [0.4]. К ним относятся:

Аксиома 1. Техногенные опасности существуют, если повседневные потоки вещества, энергии и информации в техносфере превышают пороговые значения.

Пороговые или предельно допустимые значения опасностей устанавливаются из условия сохранения функциональной и структурной целостности человека и природной среды. Соблюдение предельно допустимых значений потоков создает безопасные условия жизнедеятельности человека в жизненном пространстве и исключает негативное влияние техносферы на природную среду.

Аксиома 2. Источниками техногенных опасностей являются элементы техносферы.

Опасности возникают при наличии дефектов и иных неисправностей в технических системах, при неправильном использовании технических систем, а также из-за наличия отходов, сопровождающих эксплуатацию технических систем. Технические неисправности и нарушения режимов использования технических систем приводят, как правило, к возникновению травмоопасных ситуаций, а выделение отходов (выбросы в атмосферу, стоки в гидросферу, поступление твердых веществ на земную поверхность, энергетические излучения и поля) сопровождается формированием вредных воздействий на человека, природную среду и элементы техносферы.

Аксиома 3. Техногенные опасности действуют в пространстве и во времени.

Травмоопасные воздействия действуют, как правило, кратковременно и спонтанно в ограниченном пространстве. Они возникают при авариях и катастрофах, при взрывах и внезапных разрушениях зданий и сооружений. Зоны влияния таких негативных воздействий, как правило, ограничены, хотя возможно распространение их влияния и на значительные территории, например, при аварии на ЧЭАЭС.

Для вредных воздействий характерно длительное или периодическое негативное влияние на человека, природную среду и элементы техносферы. Пространственные зоны вредных воздействий изменяются в широких пределах от рабочих и бытовых зон до размеров всего земного пространства. К последним относятся воздействия выбросов парниковых и озоно-разрушающих газов, поступление радиоактивных веществ в атмосферу и т.п.

Природная среда   Рис. 0.5. Системы «человек –техносфера» и «техносфера – природная среда»

Аксиома 4. Техногенные опасности оказывают негативное воздействие на человека, природную среду и элементы техносферы одновременно.

Человек и окружающая его техносфера, находясь в непрерывном материальном, энергетическом и информационном обмене, образуют постоянно действующую пространственную систему «человек – техносфера» Одновременно существует и система «техносфера – природная среда» (рис. 0.5). Техногенные опасности не действуют избирательно, они негативно воздействуют на все составляющие вышеупомянутых систем одновременно, если последние оказываются в зоне влияния опасностей.

Аксиома 5. Техногенные опасности ухудшают здоровье людей, приводят к травмам, материальным потерям и к деградации природной среды.

Воздействие травмоопасных факторов приводит к травмам или гибели людей, часто сопровождается очаговыми разрушениями природной среды и техносферы. Для воздействия таких факторов характерны значительные материальные потери.

Воздействие вредных факторов, как правило, длительное, оно оказывает негативное влияние на состояние здоровья людей, приводит к профессиональным или региональным заболеваниям. Воздействуя на природную среду, вредные факторы приводят к деградации представителей флоры и фауны, изменяют состав компонент биосферы.

При высоких концентрациях вредных веществ или при высоких потоках энергии вредные факторы по характеру своего воздействия могут приближаться к травмоопасным воздействиям. Так, например, высокие концентрации токсичных веществ в воздухе, воде, пище могут вызывать отравления.

Аксиома 6. Защита от техногенных опасностей достигается совершенствованием источников опасности, увеличением расстояния между источником опасности и объектом защиты, применением защитных мер.

Уменьшить потоки веществ, энергий или информации в зоне деятельности человека можно, уменьшая эти потоки на выходе из источника опасности (или увеличением расстояния от источника до человека). Если это практически неосуществимо, то нужно применять защитные меры: защитную технику, организационные мероприятия и т.п.

Аксиома 7. Компетентность людей в мире опасностей и способах защиты от них – необходимое условие достижения безопасности жизнедеятельности.

Широкая и все нарастающая гамма техногенных опасностей, отсутствие естественных механизмов защиты от них, все это требует приобретения человеком навыков обнаружения опасностей и применения средств защиты. Это достижимо только в результате обучения и приобретения опыта на всех этапах образования и практической деятельности человека. Начальный этап обучения вопросам безопасности жизнедеятельности должен совпадать с периодом дошкольного образования, а конечный – с периодом повышения квалификации и переподготовки кадров во всех сферах экономики.

Из вышесказанного следует, что мир техногенных опасностей вполне познаваем и что у человека есть достаточно средств и способов защиты от техногенных опасностей. Существование техногенных опасностей и их высокая значимость в современном обществе обусловлены недостаточным вниманием человека к проблеме техногенной безопасности, склонностью к риску и пренебрежению опасностью. Во многом это связано с ограниченными знаниями человека о мире опасностей и негативных последствиях их проявления.

Принципиально воздействие вредных техногенных факторов может быть устранено человеком полностью; воздействие техногенных травмоопасных факторов – ограничено допустимым риском за счет совершенствования источников опасностей и применения защитных средств; воздействие естественных опасностей может быть ограничено мерами предупреждения и защиты.

Критерии комфортности и безопасности техносферы. Комфортное состояние жизненного пространства по показателям микроклимата и освещения достигается соблюдением нормативных требований. В качестве критериев комфортности устанавливают значения температуры воздуха в помещениях, его влажности и подвижности (например, ГОСТ 12.1.005–88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны»). Условия комфортности достигаются также соблюдением нормативных требований к естественному и искусственному освещению помещений и территорий (например, СНиП 23–05–95 «Естественное и искусственное освещение»). При этом нормируются значения освещенности и ряд других показателей систем освещения.

Критериями безопасности техносферы являются ограничения, вводимые на концентрации веществ, и потоки энергий в жизненном пространстве.

Концентрации регламентируют, исходя из предельно допустимых значений концентраций этих веществ в жизненном пространстве:

 

где Сi – концентрация i-го вещества в жизненном пространстве; ПДКi – предельно допустимая концентрация i-го вещества в жизненном пространстве; n – число веществ.

 
 

Для потоков энергии допустимые значения устанавливаются соотношениями:

 

где Ii – интенсивность i-го потока энергии; ПДУi – предельно допустимая интенсивность потока энергии.

Конкретные значения ПДК и ПДУ устанавливаются нормативными актами Государственной системы санитарно-эпидемиологического нормирования Российской Федерации. Так, например, применительно к условиям загрязнения производственной и окружающей среды электромагнитными излучениями радиочастотного диапазона действуют Санитарные правила и нормы СанПиН 2.2.4/2.1.8.055–96.

Для оценки загрязнения атмосферного воздуха в населенных пунктах регламентированы класс опасности и допустимые концентрации загрязняющих веществ.

Концентрация каждого вредного вещества в приземном слое не должна превышать максимально разовой предельно допустимой концентрации, т.е. С≤ ПДКmax, при экспозиции не более 20 мин. Если время воздействия вредного вещества превышает 20 мин, то С≤ ПДКсс.

При одновременном присутствии в атмосферном воздухе нескольких вредных веществ, обладающих однонаправленным действием, их концентрации должны удовлетворять условию (0.1) в виде:

 

 

ПДК и ПДУ лежат в основе определения предельно допустимых выбросов (сбросов) или предельно допустимых потоков энергии для источников загрязнения среды обитания.

Опираясь на значения ПДК и ПДУ и зная фоновые значения концентраций веществ (Сф) и потоков энергии (Iф) в конкретном жизненном пространстве, можно определить предельно допустимые выбросы (сбросы) примесей (энергии) для конкретных источников загрязнения среды обитания.

Так, например, при определении предельно допустимого выброса (ПДВ) вещества в атмосферный воздух источник загрязнения должен выполнить условие:

 

 

где С – концентрация вещества в жизненном пространстве, которая может быть создана источником загрязнения.

По значению концентрации С можно найти ПДВ для промышленного объекта. Требования к расчету содержатся в ГОСТ 17.2.3.02–78 и в ОНД–86.

Таким образом, наличие достаточно жесткой связи между концентрациями примесей в жизненном пространстве и потоком примесей, выделяемых источником загрязнения, позволяет реально управлять ситуацией, связанной с загрязнением жизненного пространства, за счет изменения количества выбрасываемых веществ (энергии).

Предельно допустимые выбросы (сбросы) и предельно допустимые излучения энергии источниками загрязнения среды обитания являются критериями экологичности источника воздействия на среду обитания. Соблюдение этих критериев гарантирует реализацию условий [0.1] – [0.2| и безопасность жизненного пространства.

В тех случаях, когда потоки масс и/или энергий от источника негативного воздействия в среду обитания могут нарастать стремительно и достигать чрезмерно высоких значений (например, при авариях), в качестве критерия безопасности принимают допустимую вероятность (риск) возникновения подобного события.

Риск – вероятность реализации негативного воздействия в зоне пребывания человека.

Вероятность возникновения чрезвычайных ситуаций применительно к техническим объектам и технологиям оценивают на основе статистических данных или теоретических исследований. При использовании статистических данных величину риска определяют по формуле

 

 

где R – риск; Nчс – число чрезвычайных событий в год; No – общее число событий в год; Rдоп – допустимый риск.

В настоящее время сложились представления о величинах приемлемого (допустимого) и неприемлемого риска. Неприемлемый риск имеет вероятность реализации негативного воздействия более 10-3, приемлемый – менее 10-6. При значениях риска от 10-3 до 10-6 принято различать переходную область значений риска.

Характерные значения риска естественной и принудительной смерти людей от воздействия условий жизни и деятельности приведены ниже:

 

Величина риска 10-2 10-3 Риск     Сердечно-сосудистые заболевания Злокачественные опухоли Зоны     Зона неприемлемого риска (R>10-3)
  10-4   10-5     10-6 Автомобильные аварии Несчастные случаи на производстве Аварии на железнодорожном, водном и воздушном транспорте; пожары и взрывы Проживание вблизи ТЭС (при нормальном режиме работы)     Переходная зона значений риска (10-6R<10-3)
10-7 10-8 Все стихийные бедствия Проживание вблизи АЭС (при нормальном режиме работы) Зона приемлемого риска (R<10-6)

 

Следует заметить, что, несмотря на то, что потоки масс и энергий при авариях технических систем формируются, как правило, спонтанно, наих величину и вероятность возникновения можно оказывать влияние ограничением запасов масс веществ и энергий в одном объекте, контролем за состоянием объекта, введением защитных зон, использованием предохранительных средств и др.

Показатели негативности техносферы. В тех случаях, когда состояние среды обитания не удовлетворяет критериям безопасности (0.1)– [0.3] и комфортности, неизбежно возникают негативные последствия. Для интегральной оценки влияния опасностей на человека и среду обитания используют ряд показателей негативности. К ним относят:

численность пострадавших Ттр от воздействия травмирующих факторов.

Для оценки травматизма в производственных условиях, кроме абсолютных показателей, используют относительные показатели частоты и тяжести травматизма.

Показатель частоты травматизма Кч определяет число несчастных случаев, приходящихся на 1000 работающих за определенный период:

 

 

где С – среднесписочное число работающих.

Показатель тяжести травматизма Кт характеризует среднюю длительность нетрудоспособности, приходящуюся на один несчастный случай:

 

 

где Д – суммарное число дней нетрудоспособности по всем несчастным случаям.

Для оценки уровня нетрудоспособности вводят показатель нетрудоспособности Кн = Д 1000 /С; нетрудно видеть, что Кн = Кч Кт;

численность пострадавших Тз, получивших профессиональные или региональные заболевания;

показатель сокращения продолжительности жизни (СПЖ) при воздействии вредного фактора или их совокупности. К показателям СПЖ относятся абсолютные значения СПЖ в сутках и относительные показатели СПЖ, определяемые по формуле СПЖ=(П-СПЖ/365)/П, где П –средняя продолжительность жизни, лет;

региональная младенческая смертность определяется числом смертей детей в возрасте до 1 года из 1000 новорожденных;

материальный ущерб. Например, экономические потери от стихийных бедствии в мире составляют:

Год ………………………………………………….
Потери, млрд.долларов…………………………….

 

Актуальность научных исследований и практической деятельности в области БЖД. Современный человек не всегда пребывает в комфортных или допустимых условиях Опасные и даже чрезвычайно опасные условия жизнедеятельности пока вероятны в условиях техносферы. Отклонение от допустимых условий деятельности всегда сопровождаются воздействием негативных факторов на человека и принуждает его к толерантности, что отрицательно влияет на производительность труда, ухудшает самочувствие, приводит к травмам и заболеваниям, а иногда и к гибели людей

Толерантность – способность организма переносить неблагоприятное влияние того или иного фактора среды.

О влиянии параметров микроклимата на самочувствие человека в состоянии покоя и при выполнении работ средней тяжести свидетельствуют данные табл. 0.3.

 

Таблица 0.3. Зависимость состояния человека от изменения параметров микроклимата

 

Состояние Температура рабочей зоны, С Влажность, % Частота пульса, 1/мин
Покой   Работа средней тяжести

С ростом температуры воздуха рабочей зоны сверхоптимального значения (16…18 ° С) снижается относительная работоспособность:

 

Температура воздуха рабочей зоны, ° С 16…18 25…27 30…32  
Относительная работоспособность (выполнение тяжелых работ при относительной влажности 100%)  
 
1,0 0,5 0,2  

 

Неудовлетворительное освещение является одной из причин повышенного утомления, особенно при напряженных зрительных работах. Продолжительная работа при недостаточном освещении приводит к снижению производительности труда, увеличению брака, повышению вероятности нарушения зрения. Е.А. Никитиной показано, что нормализация освещения снижает утомление в 1,5…2 раза, брак в работе на 3…5%, повышает производительность на 1,5…2%.

Воздействие вредных факторов на человека сопровождается ухудшением здоровья, возникновением профессиональных заболеваний, а иногда и сокращением продолжительности жизни.

Экспертная оценка условий труда в экономике России показала, что не соответствуют нормативно допустимым требованиям условия труда по ряду вредных факторов, основными из которых являются:

 

Вредные факторы Доля работающих в неблагоприятных условиях, %
Загазованность, запыленность    
Неблагоприятные температурные режимы   2,3  
Повышенный шум   1,8  
Недостаточное освещение   1.8  
Повышенная вибрация   0.5  

 

Долю заболевших вибрационной болезнью (%) в зависимости от профессии и стажа работы характеризуют данныеЮ.М. Васильева:

Стаж работы, лет            
Слесарь            
Формовщик   0.5   2.3        
Обрубщик            

 

В условиях повышенного шума нарушение слуха зависит от стажа работы и эквивалентного уровня звука:

 

Эквивалентный уровень звука, дБ А                      
Стаж работы, лет                      
Доля заболевших тугоухостью, %                      

 

Вследствие воздействия вредных производственных факторов в России в 1992 г получили инвалидность 11 тыс. человек.

Показатели сокращения продолжительности жизни (СПЖ) работающих или проживающих во вредных условиях пока еще редко используются для оценки негативного влияния этих условий. Некоторые их значения уже известны:

 

Условие обитания СПЖ, сут Относительное СПЖ
Курение по 20 сигарет в день в течение 45 лет 0,9
Работа в угольной шахте 0,951
Проживание в неблагоприятных условиях 0.978
Загрязнение воздуха в крупных городах 0,985

 

Оценочные данные свидетельствуют о том, что ежегодно в мире на производстве от травмирующих факторов погибают около 200 тыс. человек и получают травмы 120 млн. человек. В нашей стране травматизм с летальным исходом на производстве, автодорогах, в быту непрерывно нарастает. Так, в СССР от принудительной смерти в 1986 г. погибли 247,8, в 1989 г. – 287 тыс. человек. В России в 1992 г. на производстве погибли 8234 человек и получили инвалидность 14 тыс. человек.

Наибольшее число несчастных случаев отмечено на предприятиях и в организациях агропромышленного комплекса, угольной, лесной, бумажной промышленности. Тревогу вызывает рост травматизма с летальным исходом в отраслях, определяющих технический прогресс: машиностроении, радиоэлектронике, станкостроительной, оборонной промышленности. В машиностроении России в 1988 г. травмировано 58,3 тыс. человек, погибло 400 человек.

Негативное влияние региональных загрязнений на здоровье людей, продолжительность их жизни и младенческую смертность проявляется в крупных городах и промышленных центрах. По данным института географииРАН, в неблагоприятных условиях живет пятая часть населения России, в том числе 40% городских жителей. В условиях десятикратного превышения предельно допустимых концентраций (ПДК) токсичных веществ в атмосферном воздухе проживает население более 70 городов с общей численностью более 50 млн. человек.

Практически все города с населением более 1 млн. человек, а также Санкт-Петербург и Москва должны быть отнесены к I или II категории экологического неблагополучия, которые оцениваются как «наиболее высокое» и «очень высокое». В группе городов с численностью населения от 250 до 500 тыс. человек – таких городов лишь 25%. Причем, как правило, это крупные промышленные центры с наиболее опасными отраслями производства – металлургией, химией и нефтехимией.

Чрезвычайно высокая насыщенность крупных городов транспортом вносит очень весомый вклад в их загрязнение. Доля выбросов автотранспорта в загрязнении воздушного бассейна, как правило, составляет 40–50% и более, в Москве приближается к 80%. В связи с бурным развитием автомобилизации в последние годы проблема загрязнения воздушного бассейна обостряется. Большая интенсивность движения транспортных потоков в улично-дорожной сети городов, достигающая 1000–3000 авт./ч и более при несовершенстве и чрезвычайной загруженности улично-дорожной сети, особенно в центральных районах, определяет их повышенное загрязнение основными компонентами автомобильных выбросов – оксидами азота, бензопиреном, оксидом углерода.

С негативным воздействием транспорта связано и шумовое загрязнение городов. Около 40–50% населения крупных городов живут в условиях акустического дискомфорта. На наиболее загруженных городских магистралях, вдоль железных дорог и в зонах влияния аэропортов допустимые уровни шума превышаются на 30–40 дБ, что представляет опасность для здоровья населения.

Процесс урбанизации «наградил» крупные города факторами неблагополучия. Прежде всего, это нарушения микроклиматического режима, изменения режима подземных вод и определяемые этим процессы подтопления городских территорий, загрязнение подземных и поверхностных вод.

В результате значительных антропогенных нагрузок в большинстве городов происходит дальнейшая деградация растительности, что ухудшает состояние городской среды.

Загрязнение среды обитания вредными веществами неуклонно снижает качество потребляемых продуктов питания, воды, воздуха, способствует попаданию в организм человека вредных веществ, что сопровождается ростом числа отравлений и заболеваний, сокращением продолжительности жизни, ростом детской патологии и младенческой смертности.

 

Таблица 0.4. Отдельные случаи чрезмерно высоких загрязнений компонент биосферы и их последствия

 

Место и год Вредный фактор Патология, обусловленная загрязнением Число пострадавших
Лондон, Великобритания, 1952 Сильное загрязнение воздуха SО2 и взвешенными частицами серы Увеличение числа случаев заболеваний сердца и легких 3 тыс. случаев смерти
Минамата, Япония, 1956 Загрязнение моря и рыбных продуктов ртутью Неврологическое заболевание, «Болезнь Минамата» 200 случаев тяжелых заболеваний
Бхопал, Индия, 1985 Сильное загрязнение воздуха метилизоцианатом Острые заболевания легких 2 тыс. случаев смерти, 200 тыс. случаев отравлений

 

Число отравлений от недоброкачественных пищевых продуктов в СССР в 1988 г. достигло 1,8 млн. случаев, число отравлений с летальным исходом в быту и на производстве – 50 тыс. Причины отравлений различны, но наиболее характерными являются: недоброкачественные пищевые продукты, алкоголь, токсичные вещества и др.

Отравление – результат воздействия химического вещества на человека, приведший к заболеванию или летальному исходу.

Хорошо известны ситуации (табл. 0.4), когда загрязнение атмосферного воздуха или водоемов привело к заболеваниям или смерти значительного числа людей. В кризисных регионах в последние десятилетия появились приоритетные заболевания, о чем свидетельствуют данные табл. 0.5.

 

Таблица 0.5. Влияние состава атмосферного воздуха на здоровье людей

 

Группа болезней Показатели среднемесячной заболеваемости взрослого населения на 1 тыс. человек
средний показатель   г. Липецк   г. Березняки  
Злокачественные новообразования 0,25 0,48 0,32
Болезни эндокринной системы 0,26 1,09 0.30
Болезни органов пищеварения 1,9 12,11 6,64
Болезни органов дыхания 14,7   32,29   24,96  
Болезни системы кровообращения 3.06 18,85 11,70
Болезни кожи 0,76   2.4   1,3  
Болезни органов чувств 1.18   4,1   3,2  

 

Примечание. Превышение ПДК вредных веществ в воздухе г. Липецка достигало 2...6 раз; г.Березники – 2...4 раза.

 

Резюмируя рассмотренные выше данные, можно утверждать, что в крупных городах, промышленных центрах и вокруг них формируются очаги патологии человеческих популяций. По данным специалистов, здоровье населения ухудшается на 60...70% из-за низкого качества окружающей среды и продуктов питания; при этом ежегодно от экологических заболеваний на планете умирает 1,6 млн. человек.

Качество среды обитания – степень соответствия параметров среды потребностям людей и других живых организмов. Их требования к качеству среды обитания достаточно консервативны, поэтому техносфера по качеству не должна значительно отличаться от природной среды.

По данным ООН (1989 г.), средняя продолжительность жизни на Земле составляет 62 г. (63 –у женщин и 60 –у мужчин). По регионам и отдельным странам средняя продолжительность жизни людей различается весьма существенно:

Япония (1987):

мужчины .................. 75,2

женщины .................. 80,9

США (1990 г.) ................. 75

Африка (1990 г.) ................ 54

СССР, мужчины (1991 г.) ........... 65(63,9)

Северные районы СССР, мужчины (1991) г. . . 40...44*

 

*Данные М. Фишбаха и А. Френдли (США).

 

В России в 1995 г. продолжительность жизни женщин составила 71,7, мужчин – 58,3 года.

Младенческая смертность (данные ООН, 1989 г.) в мире составляет в среднем 71 случай на 1000 новорожденных. В развитых странах она существенно ниже и равна, например, в США –10, в скандинавских странах–12...14. В СССР младенческая смертность в 1988 г., по данным А.И. Кондрусева, составляла 24,7, а по данным М. Фешбаха и А. Френдли–40. В Москве в 1994 г. младенческая смертность составила 17,9.

Сокращение продолжительности жизни населения и рост младенческой смертности в последние годы привели к тому, что в 42 регионах России в 1991 г. рождаемость оказалась ниже смертности. По данным Госкомстата РФ в 1992 г. впервые за послевоенные годы произошло абсолютное сокращение численности жителей России: население уменьшилось более чем на 70 тыс. и составило 148,6 млн. человек.

По данным (1997 г.) Госкомитета РФ по статистике чаще всего россияне умирают от болезней системы кровообращения (55%) и от травм и отравлений (13,2%).

Материальный ущерб от региональных загрязнений среды обитания во многих странах также непрерывно нарастает. Так, в США ущерб от загрязнения атмосферы в 1950 г. составил 12,5, в 1968 – 16, а в 1977 –25 млрд. долларов. При этом менялись не только абсолютные показатели ущерба, но и его составляющие. Если в 1950 г. из 12,5 млрд. долларов лишь 1,5 млрд. долларов (12%) приходились на ухудшение здоровья населения, то в 1977 –уже 37%. В СССР в 1990–1991 гг. ежегодный ущерб от региональных загрязнений составлял около 50 млрд. рублей (в ценах 1991 г.)

Определенный вклад в показатели принудительной инвалидности и гибели людей вносят чрезвычайные ситуации. В 1997 г. в России зафиксировано более 150 тыс. чрезвычайных ситуаций, в которых погибли 1651 человек. Постоянно возрастает не только общее число чрезвычайных ситуаций, но и число крупных аварий и катастроф, приводящих к значительным материальным потерям и жертвам. Сегодня характерна тенденция: вероятность каждого отдельного происшествия уменьшается, а масштабы последствий заметно возрастают. Авиационная статистика утверждает: в ходе развития самолетостроения одновременно с уменьшением общего риска перевозок растет масштаб негативных последствий отдельных аварий. За последние 20 лет нашего столетия произошло 56% наиболее крупных происшествий в промышленности и на транспорте, а в 80-е годы – около 33%.

Несмотря на совершенствование технических средств, аварийность и ее последствия нарастают. Наиболее характерными авариями являются: взрывы котлов, газопроводов, горючих пылей, рудничного газа, паров растворителей; обрушения зданий, мостов, строительных площадок. Особую тревогу вызывает возрастающий травматизм при эксплуатации транспортных средств (потери в дорожно-транспортных происшествиях (ДТП) в 1988 г. составили 51,3, в 1990 –уже 63 тыс. человек, причем ранено еще 350 тыс. человек). В Англии из каждых 100 человек, попавших в ДТП, погибал 1; в США –1,5, в ФРГ –2, в СССР –13 человек.

В некоторых видах аварий и катастроф СССР принадлежит печальный приоритет. Так, катастрофа на Чернобыльской АЭС (1986 г.), по неокончательным данным, привела к материальному ущербу в 17 млрд. рублей, при этом погибло 30 и подверглось лучевым заболеваниям примерно 200 человек. Из-за опасности последующих облучений, вызванных воздействием радиоактивного йода и цезия, эвакуировано из опасной зоны около 100 тыс. человек. Взрыв водорода на бериллиевом производстве объединения «Ульбинский металлургический завод» в Усть-Каменогорске в 1990 г. привел к крупному выбросу бериллия. Превышение ПДК достигало 60...890 раз.

Для многих стран мира стало типичным аварийное загрязнение среды обитания токсичными химическими веществами. Так, в США за период 1980...1984 гг. произошло 295 крупных аварийных выбросов в природную среду, повлекших за собой эвакуацию населения. В это число входят 153 случая аварий при транспортировании химических соединений, 121 авария на промышленных объектах, семь выбросов с мест захоронения и свалок токсичных отходов. Аналогичная ситуация и в СССР: только в 1990 г. произошли выбросы бериллия в Усть-Каменогорске, пиробензола – в Вологодской области, фенола – в Уфе.

Ряд чрезвычайных экологических ситуаций создают военные ведомства (Семипалатинский полигон на о. Новая Земля, в районе Челябинска и др.). Как правило, в зонах испытательных полигонов возникает и длительно действует комплекс повышенных негативных факторов: повышенный радиационный и химический фон, загрязнения токсичными веществами поверхностных и грунтовых вод, почвы и т.п.

На пожарах в СССР в 1988 г. погибло 8,5 тыс. человек, получили травмы более 10 тыс. человек. Основная часть людей гибнет на пожарах (особенно крупных) вследствие отсутствия или загромождения путей эвакуации, из-за удушья, поскольку при строительстве все еще применяют быстрогорящие материалы, выделяющие при горении токсичные соединения. Каждый третий пожар возникает из-за неисправности бытовых приборов. При сгорании телевизора в помещение выделяются оксид углерода, стирол, формальгид, фенол. В 1988 г. по этой причине погибли 217 человек.

Чтобы правильно оценивать масштабность и реальную опасность воздействия негативных факторов в различных системах «человек – среда обитания», обратимся к данным табл. 0.6.

 

Таблица 0.6. Число погибших от воздействия негативных факторов в 1990 г., человек

 

Число негативных факторов В мире В Российской Федерации
Промышленное производство Региональное загрязнение воды, воздуха, продуктов питания Стихийные явления Чрезвычайные ситуации 200 000 1 600 000   140 000 – 8 234 (расчетные данные) – 1 224 (1993 г.)  

 

Качественное изменение значимости негативных факторов вXX в.показано на рис. 0.6. Производственные негативные факторы (кривая 2) заявили о себе еще в XIX в., в нашем столетии достигнута их стабилизация. В ряде стран производственный травматизм с летальным исходом в последние годы снижается, что является результатом эффективности принимаемых мер защиты.

Оценивая влияние негативных воздействий техносферы на человека и природную среду, не следует забывать, что ряд негативных факторов не ограничивает свое влияние только первичным воздействием. Некоторые факторы способны вызывать вторичные негативные явления в окружающей среде. К ним, в первую очередь, относят:

– разрушение озонового слоя;

– образование фотохимического смога;

– выпадение кислотных дождей;

– возникновение парникового эффекта.

 
Рис. 0.6. Тенденции изменения в XX в. численности погибших вследствие: 1 – стихийных бедствий; 2 – воздействия производственных негативных факторов; 3 – загрязнения техносферы и биосферы; 4–чрезвычайных ситуаций техногенного происхождения

 

Начиная с середины XX столетия резко возросло воздействие на людей региональных негативных факторов крупных городов и промышленных центров. Ряд негативных воздействий имеют уже глобальное влияние. Нарастает влияние и негативных факторов техногенного происхождения, действующих в чрезвычайных ситуациях.

Основы проектирования техносферы по условиям безопасности жизнедеятельности. Это достигается обеспечением комфорта в зонах жизнедеятельности; правильным расположением источников опасностей и зон пребывания человека; сокращением размеров опасных зон; применением экобиозащитной техники и средств индивидуальной защиты.

Комфортность техносферы. Наилучшие показатели работоспособности и отдыха достигаются при комфортном состоянии среды обитания и при рациональных режимах труда и отдыха.

Комфорт – оптимальное сочетание параметров микроклимата, удобств, благоустроенности и уюта в зонах деятельности и отдыха человека.

Комфортные и допустимые параметры воздушной среды в рабочих зонах регламентируются государственными стандартами и обеспечиваются в основном применением систем кондиционирования, вентиляции и отопления. Нормативные (оптимальные, допустимые) значения параметров микроклимата в рабочих зонах производственных помещениях зависят от категории выполняемых работ, периода года и некоторых других показателей (ГОСТ 12.1.005–88).

Важную роль в достижении эффективной деятельности играет искусственное освещение. Рационально выполненное освещение оказывает психофизиологическое воздействие на человека, способствует повышению эффективности деятельности, снижает напряженность органов зрения, повышает безопасность деятельности.

Эффективность деятельности человека в значительной степени зависит от организации рабочего места, в том числе от:

– правильного расположения и компоновки рабочего места;

– обеспечения удобной позы и свободы движений;

– использования оборудования, отвечающего требованиям эргономики.

Важное значение при достижении максимально эффективной деятельности играют режимы труда и отдыха. Сохранение высокой работоспособности достигается правильным чередованием режимов труда и отдыха.

Опасные зоны и зоны пребывания человека. Вредные и травмирующие воздействия, генерируемые техническими системами, образуют в жизненном пространстве техносферы опасные зоны, где не реализуются условия (0.1)–(0.3). Для этих зон характерны соотношения: С>ПДК, I > ПДУи R > Rдоп.

Одновременно с опасными зонами в жизненном пространстве существуют зоны деятельности (пребывания) человека. В быту – зона жилища, городская среда. В условиях производства – рабочая зона, рабочее место.

 
Рис. 0.7. Варианты взаимного положения зоны опасности (О) и зоны пребывания человека (Ч): I – безопасная ситуация; II–ситуация кратковременной или локальной опасности; III– опасная ситуация; IV–условная безопасная ситуация

Рабочая зона – пространство высотой 2 м над уровнем пола или площадки, на которой расположено рабочее место.

Рабочее место – зона постоянной или временной (более 50% или более 2 ч непрерывно) деятельности работающего.

Варьируя взаимным расположением опасных зон и зон пребывания человека в пространстве, можно существенно влиять на решение задач по обеспечению безопасности жизнедеятельности. Различают четыре принципиальных варианта взаимного расположения зон опасности и зоны пребывания человека (рис. 0.7).

Защита расстоянием. Полную безопасность гарантирует только I вариант взаимного расположения зон пребывания и действия негативных факторов – защита расстоянием, реализуемый при дистанционном управлении, наблюдении и т.п. Во II варианте негативное воздействие существует лишь в совмещенной части областей: если человек в этой части находится кратковременно (осмотр, мелкий ремонт и т.п.), то и негативное воздействие возможно только в этот период времени, в III варианте – негативное воздействие может быть реализовано в любой момент, а в IV варианте – только при нарушении функциональной целостности средств защиты зоны пребывания человека (как правило, средств индивидуальной защиты – (СИЗ), кабин наблюдения и т.п.).

Радикальным способом обеспечения безопасности является защита расстоянием –разведение в пространстве опасных зон и зон пребывания человека. Разводить опасные зоны и зоны пребывания человека можно не только в пространстве, но и во времени, реализуя чередование периодов действия опасностей и периодов наблюдения за состоянием технических систем.

К сожалению, защита расстоянием не всегда возможна на практике. Часто приходится решать вопросы безопасности при иных (//–IV) вариантах взаимного расположения опасных зон и зон пребывания (см. рис. 0.7).

Для обеспечения безопасности человека в этих случаях используют:

– совершенствование источников опасности с целью максимального снижения значимости генерируемых ими опасностей. Это не только снижает уровни опасностей, но и, как правило, сокращает размеры опасной зоны;

– введение защитных средств (экобиозащитная техника) для изоляции зоны пребывания человека от негативных воздействий;

– применение средств индивидуальной защиты человека от опасностей.

Сокращение размеров опасных зон. При воздействии вредных факторов сокращение размеров зон должно достигаться прежде всего совершенствованием технических систем, приводящим к уменьшению выделяемых ими отходов. Для ограничения вредного воздействия на человека и среду обитания к технической системе предъявляются требования по величине выделяемых в среду токсичных веществ в виде предельно допустимых выбросов или сбросов (ПДВ или ПДС), а также по величине энергетических загрязнений в виде предельно допустимых излучений в среду обитания. Значения ПДВ и ПДС определяют расчетом, исходя из значений ПДК в зонах пребывания человека. Величины предельных излучений находят, исходя из предельно допустимых уровней (ПДУ) воздействия загрязнения и расстояния между источником излучения и зоной пребывания человека.

Уменьшение отходов систем при их эксплуатациирадикальный путь к снижению воздействия вредных факторов.

Наибольшие трудности в ограничении размеров зон воздействия травмирующих факторов возникают при эксплуатации технических систем повышенной энергоемкости (хранилищ углеводородов, химических производств, АЭС и т.п.). При авариях на таких объектах травмоопасные зоны охватывают, как правило, не только производственные зоны, но и зоны пребывания населения. Основными направлениями в ограничении травмоопасности таких объектов являются:

– совершенствование систем безопасности объектов;

– дистанцирование промышленных и селитебных зон;

– активное использование защитных систем и устройств;

– непрерывный контроль источников опасности;

– достижение высокого профессионализма операторов технических систем.

Совершенство технической системы по травмоопасности оценивают величиной допустимого риска, который констатирует факт постоянного присутствия потенциального травмоопасного воздействия и определяет его нормативный уровень.

При создании технических систем оценка риска достигается анализом ее структурного строения, учета вероятности отказа отдельных ее элементов и возможных несанкционированных действий оператора при обслуживании технической системы или управления ею. Глубина анализа причин отказов технических систем и возможных ошибочных действий операторов способствует повышению безопасности (снижению риска) путем внедрения в техническую систему защитных средств и повышения требований к подготовке операторов.

Риском можно управлять. Европейское Сообщество в 1983 г. после крупной аварии в Севезо (Италия) приняло специальную «Директиву по Севезо», согласно которой все новые объекты должны иметь точное обоснование их безопасности. После 1983 г. число аварий в европейской промышленности стало резко снижаться:

 

Год …………………….. 1982 1983 1986 1988

Число аварий ………….. 350 400 160 50

Снижение травмоопасности технических систем достигается их совершенствованием с целью реализации допустимого риска.

Экобиозащитная техника. Если совершенствованием технических систем не удается обеспечить предельно допустимые воздействия на человека в зоне его пребывания, то необходимо применять экобиозащитную технику (пылеуловители, водоочистные устройства, экраны и др.). Для уменьшения зон действия травмирующих факторов технических систем применяют экобиозащитную технику в виде различных ограждений, защитных боксов и т.п. Принципиальная схема использования экобиозащитной техники показана на рис. 0.8. В тех случаях, когда возможности экобиозащитной техники (1, 2, 3) коллективного использования ограничены и не обеспечивают значений ПДК и ПДУ в зонах пребывания людей, для защиты применяют средства индивидуальной защиты.

Средства индивидуальный защиты. На ряде предприятий существуют такие виды работ или условия труда, при которых работающий может получить травму или иное воздействие, опасное для здоровья. Еще более опасные условия для людей могут возникнуть при авариях и при ликвидации их последствий. В этих случаях для защиты человека необходимо применять средства индивидуальной защиты. Их использование должно обеспечивать максимальную безопасность, а неудобства, связанные с их применением, должны быть сведены к минимуму. Номенклатура СИЗ включает обширный перечень средств, применяемых в производственных условиях (СИЗ повседневного использования), а также средств, используемых в чрезвычайных ситуациях (СИЗ кратковременного использования). В последних случаях применяют преимущественно изолирующие средства индивидуальной защиты (ИСИЗ).

 

 

Рис. 0.8. Варианты использования экобиозащитной техники для снижения вредных воздействий:

1–устройства, входящие в состав источника воздействий; 2–устройства, устанавливаемые между источником и зоной деятельности; 3–устройства для защиты зоны деятельности; 4–средства индивидуальной защиты человека

 

Роль инженера в обеспечении безопасности жизнедеятельности.Практическое обеспечение безопасности жизнедеятельности при проведении технологических процессов и эксплуатации технических систем во многом определяется решениями и действиями инженеров и техников. Руководитель производственного процесса обязан:

– обеспечивать оптимальные (допустимые) условия деятельности на рабочих местах подчиненных ему сотрудников;

– идентифицировать травмирующие и вредные факторы, сопутствующие реализации производственного процесса;

–обеспечивать применение и правильную эксплуатацию средств защиты работающих и окружающей среды;

– постоянно (периодически) осуществлять контроль условий деятельности, уровня воздействия травмирующих и вредных факторов на работающих;

– организовывать инструктаж или обучение работающих безопасным приемам деятельности;

– лично соблюдать правила безопасности и контролировать их соблюдение подчиненными;

– при возникновении аварий организовывать спасение людей, локализацию огня, воздействия электрического тока, химических и других опасных воздействий.

Разработчик технических средств и технологических процессов на этапе проектирования и подготовки производства обязан:

– идентифицировать травмирующие и вредные факторы, возникновение которых потенциально возможно при эксплуатации разрабатываемых технических систем и реализации производственных процессов в штатных и аварийных режимах работы;

– применять в технических системах и производственных процессах экобиозащитную технику с целью снижения вредных воздействий до допустимых значений;

– определить риск возникновения травмоопасного воздействия в системе и снизить его значение до допустимого уровня применением защитных устройств и других мероприятий;

– обеспечить конструктивными решениями непрерывный (периодический) контроль за состоянием защитных средств и параметров или процесса, влияющих на уровень их безопасности и экологичности;

– сформулировать требования к уровню профессиональной подготовки оператора технических систем или технологических процессов;

– при выборе технического решения обеспечить малоотходность производства и максимальную эффективность использования энергоресурсов.

Задачи специалиста в области безопасности жизнедеятельности сводятся к следующему;

– контроль и поддержание допустимых условий (параметры микроклимата, освещение и др.) жизнедеятельности человека в техносфере;

– идентификация опасностей, генерируемых различными источниками в техносферу;

– определение допустимых негативных воздействий производств и технических систем на техносферу;

– разработка и применение экобиозащитной техники для создания допустимых условий жизнедеятельности человека и его защиты от опасностей;

– обучение работающих и населения основам безопасности жизнедеятельности в техносфере.

Образование в области безопасности жизнедеятельности. Основы образования в области безопасности в нашей стране были положены в 30-х годах XX столетия, а подготовка специалистов в области БЖД начата недавно, лишь в 90-х годы.

Образование – процесс и результат усвоения систематизированных знаний, умений и навыков. Основной путь получения образования – обучение в учебных заведениях.

Сегодня образовательная структура выглядит следующим образом.

Первый общеобразовательный уровень, которым должен владеть каждый, обязан обеспечить подготовку на уровне знания и понимания проблем БЖД, он должен вооружить человека навыками и приемами личной и коллективной безопасности. Реализуется этот уровень подготовки введением в средней школе дисциплины «Основы БЖД».

Второй уровень образования по БЖД–подготовка инженерно-технических работников (ИТР) всех специальностей, поскольку создаваемая и эксплуатируемая техника и технология являются основными источниками травмирующих и вредных факторов, действующих в среде обитания. Разрабатывая новую технику, инженер обязан обеспечить не только ее функциональное совершенство, технологичность и приемлемые экономические показатели, но и достичь требуемых уровней ее экологичности и безопасности в техносфере. С этой целью инженер при проектировании или перед эксплуатацией техники должен выявить все негативные факторы, установить их значимость, разработать и применить в конструкции машин средства снижения негативных факторов до допустимых значений, а также средства предупреждения аварий и катастроф.

Поскольку повышение экологичности современных технических систем часто достигается применениями экобиозащитной техники, ИТР обязан знать, уметь применять и создавать новые средства защиты, особенно в области своей профессиональной деятельности. Вместе с тем ИТР обязан понимать, что в области охраны природы наибольшим защитным эффектом обладают малоотходные технологии и производственные циклы, включающие получение и переработку сырья, выпуск продукции, утилизацию и захоронение отходов, а в области безопасности – системы с высокой надежностью, безлюдные технологии и системы с дистанционным управлением.

Решение задач БЖД при проектировании и эксплуатации технических систем невозможно без знания инженером уровней допустимых воздействий негативных факторов на человека и природную среду, а также знания негативных последствий, возникающих при нарушении этих нормативных требований.

Рассмотренным выше блоком знаний в области БЖД должны владеть специалисты всех отраслей экономики, но прежде всего специалисты в области энергетики, транспорта, металлургии, химии и ряда других отраслей промышленного производства. Обучения этого уровня в вузах целесообразно вести на основе дисциплины «Безопасность жизнедеятельности» с изучением отдельных вопросов безопасности труда в базовых курсах специальности или специализации.

Третий уровень образования необходим для подготовки инженеров по безопасности жизнедеятельности – специалистов, профессионально работающих в области защиты человека и природной среды. К ним относятся прежде всего специалисты по контролю безопасности техносферы и экологичности технических объектов, мониторингу окружающей среды в регионах, эксперты по оценке безопасности техносферы и экологичности технических объектов, проектов и планов; инженеры-разработчики экобиозащитных систем и защитных средств. Основной задачей деятельности таких специалистов должна быть комплексная оценка технических систем и производств с позиций БЖД, разработка новых средств и систем экобиозащиты, управление в области БЖД на промышленном и региональном уровнях.

Для реализации этого уровня образования в нашей стране с 1994 г. введены новые специальности: 330100 «Безопасность жизнедеятельности», 330200 «Инженерная защита окружающей среды» (по отраслям), 330500 «Безопасность технологических процессов и производств» (по отраслям), 330600 «Защита в чрезвычайных ситуациях», а также направление 553500 «Защита окружающей среды». Вузы активно откликнулись на это решение. Уже открыта подготовка кадров более чем в 60 вузах, в том числе в Москве (МГТУ, МГАТУ, МИСиС, АГЗ, ГАНГ и др.), Санкт-Петербурге (С.-ПГТУ и др.), на Урале (УГТУ и др.) и в других регионах России. Государственные требования к минимуму учебных дисциплин по направлению 553500 и специальностям группы 330000 определены соответствующими государственными стандартами.

Четвертый уровень образования – внедрение как общего курса БЖД, так и специализированных курсов по безопасности и экологичности в системах МИПК и ФПК.

Перспективы развития безопасности жизнедеятельности. Негативное воздействие опасностей на человека в наибольшей степени проявляется в крупных городах и промышленных центрах. Картографическое описание патологии человека в регионах – одна из важнейших задач медицины в ближайшем будущем. Данные о характере заболевания населения будут одним из основных показателей для принятия решений в области безопасности жизнедеятельности.

Здоровье человека и информационная стратегия. Для достоверной оценки показателей негативности техносферы необходимо ясно представлять истинное состояние здоровья работающих на промышленном предприятии и различных групп населения города и региона. Оценка состояния здоровья, базирующая на данных обращаемости населения в медицинские учреждения, недостоверна и существенно отличается в лучшую сторону от реальной, получаемой при активной выявляемости заболеваний. Для иллюстрации сказанного достаточно сопоставить следующие цифры: у нас в стране ежегодно диагностируется около 7 тыс. случаев профессиональных заболеваний, а в США – более 450 тыс.

Данные свидетельствуют о низком уровне профилактических осмотров, проводимых сегодня на промышленных предприятиях. Что касается регулярных профилактических осмотров городского населения, то они практически отсутствуют.

Важнейшую роль в деле сохранения здоровья населения в ближайшем будущем будет играть информация об опасностях среды обитания. Такая информация должна содержать значения и прогноз величины критериев безопасности и показателей негативности среды обитания как в производственных помещениях, так и в регионах техносферы. Аналог подобной информации – прогнозы метеослужб. Наличие информации о среде обитания позволит населению рационально выбирать места деятельности и проживания, рационально пользоваться методами и средствами защиты от опасностей.

Задача сложная, но определенные успехи в этом направлении имеются: публикации (правда, нерегулярные) в газетах о состоянии окружающей среды; действующие в ряде городов (Вена и др.) специальные табло с указанием концентраций некоторых примесей в атмосферном воздухе и т.п.

Воздействие опасностей в условиях производства, города, жилища обычно происходит длительно (в течение суток, рабочего дня и т.п.), поэтому необходим постоянный контроль за параметрами выбросов, стоков и т.п., а также мониторинг состояния среды обитания по контролируемым вредным факторам.

Мониторинг – слежение за состоянием среды обитания и предупреждение о создающихся негативных ситуациях.

 

Рис. 0.9. Карта уровней концентраций токсичных веществ Волгоградского проспекта г. Москвы

 

Информационная стратегия государства по укреплениюздоровьяи профилактике болезней населения должна включать:

– регулярную информацию об опасностях среды обитания;

– регулярную информацию о токсикологических выбросах производства в окружающую среду;

– регулярную информацию работающих о негативных факторах производства и о их влиянии на здоровье;

– информацию о состоянии здоровья населения региона и профессиональных заболеваниях;

– информацию о методах и средствах защиты от опасностей;

– информацию об ответственности руководителей предприятий и служб безопасности за безопасное состояние среды обитания.

Внедрение указанных походов является чрезвычайно актуальным и своевременным. В настоящее время очевидно, что человеческое здоровье занимает одно из ведущих мест в системе социальных ценностей и должно приоритетно рассматриваться в ряду других ресурсов государства, таких как леса, почва, воды, полезные ископаемые и т.п.

Научные, технические и организационные задачи. К перспективным научно-техническим задачам в области БЖД относятся:

–описание жизненного пространства в критериях безопасности путем составления карт опасностей (карты концентраций токсичных веществ (рис. 0.9.), карты полей энергетического воздействия, карты полей риска);

– разработка требований экологичности к техническим системам с учетом состояния техносферы в зоне использования технических систем;

–совершенствование и разработка новых методов и способов обращения с отходами всех видов (выбросы, сбросы, энергетические поля и излучения), поступающими в техносферу;

– совершенствование и разработка новых средств экобиозащиты от опасностей.

К организационно-техническим задачам в области БЖД относятся:

– совершенствование экспертизы проектов по критериям безопасности и экологичности;

– совершенствование контроля показателей экологичности технических систем и безопасности среды обитания;

– оптимизация системы управления безопасностью жизнедеятельности на региональном и государственном уровнях.

Как наука БЖД находится в стадии своего формирования. Несомненно, что она должна опираться на научные достижения и практические разработки в области охраны труда, окружающей среды и защиты в чрезвычайных ситуациях, на достижения в профилактической медицине, биологии, основываться на законах и подзаконных актах.

Общее направление деятельности в области БЖД должно соответствовать программе действий «Повестка дня на 21 век» (Материалы Всемирного форума в Рио-де-Жанейро, 1992 г.), положившей основы дальнейшего развития Мира. В программе указано, что единственный способ обеспечить безопасное будущее–это комплексно решить проблемы развития экономики и сохранения окружающей среды. Основу решений должно составить устойчивое развитие всех процессов, всемирная экономия ресурсов, безопасные и экологичные технологии, просвещение и подготовка кадров в области безопасного взаимодействия с окружающей средой. Особое внимание в программе предлагается уделить подготовке будущих руководителей всех сфер деятельности.


Раздел I

ЧЕЛОВЕК И ТЕХНОСФЕРА

ОСНОВЫ ФИЗИОЛОГИИ ТРУДА И КОМФОРТНЫЕ УСЛОВИЯ ЖИЗНЕДЕЯТЕЛЬНОСТИ

 

КЛАССИФИКАЦИЯ ОСНОВНЫХ ФОРМ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

 

Характер и организация трудовой деятельности оказывают существенное влияние на изменение функционального состояния организма человека. Многообразные формы трудовой деятельности делятся на физический и умственный труд.

Физический труд характеризуется в первую очередь повышенной нагрузкой на опорно-двигательный аппарат и его функциональные системы (сердечно-сосудистую, нервно-мышечную, дыхательную и др.), обеспечивающие его деятельность. Физический труд, развивая мышечную систему и стимулируя обменные процессы, в тоже время имеет ряд отрицательных последствий. Прежде всего это социальная неэффективность физического труда, связанная с низкой его производительностью, необходимостью высокого напряжения физических сил и потребностью в длительном – до 50 % рабочего времени – отдыхе.

Умственный труд объединяет работы, связанные с приемом и переработкой информации, требующей преимущественного напряжения сенсорного аппарата, внимания, памяти, а также активизации процессов мышления, эмоциональной сферы. Для данного вида труда характерна гипокинезия, т.е. значительное снижение двигательной активности человека, приводящее к ухудшению реактивности организма и повышению эмоционального напряжения. Гипокинезия является одним из условий формирования сердечно-сосудистой патологии у лиц умственного труда. Длительная умственная нагрузка оказывает угнетающее влияние на психическую деятельность: ухудшаются функции внимания (объем, концентрация, переключение), памяти (кратковременной и долговременной), восприятия (появляется большое число ошибок).

В современной трудовой деятельности чисто физический труд не играет существенной роли. В соответствии с существующей физиологической классификацией трудовой деятельности различают формы труда, требующие значительной мышечной активности, механизированные формы труда, формы труда, связанные с полуавтоматическим и автоматическим производством, групповые формы труда (конвейеры), формы труда, связанные с дистанционным управлением, и формы труда интеллектуального (умственного) труда.

Формы труда, требующие значительной мышечной активности, имеют место при отсутствии механизации. Эти работы характеризуются в первую очередь повышенными энергетическими затратами. Особенностью механизированных форм труда являются изменения характера мышечных нагрузок и усложнения программы действий. В условиях механизированного производства наблюдается уменьшение объема мышечной деятельности, в работу вовлекаются мелкие мышцы конечностей, которые должны, обеспечить большую скорость и точность движений, необходимых для управления механизмами. Однообразие простых и большей частью локальных действий, однообразие и малый объем воспринимаемой в процессе труда информации приводит к монотонности труда. При этом снижается возбудимость анализаторов, рассеивается внимание, снижается скорость реакций и быстро наступает утомление.

При полуавтоматическом производстве человек выключается из процесса непосредственной обработки предмета труда, который целиком выполняет механизм. Задача человека ограничивается выполнением простых операций на обслуживании станка подать материал для обработки, пустить в ход механизм, извлечь обработанную деталь. Характерные черты этого вида работ–монотонность, повышенный темп и ритм работы, утрата творческого начала.

Конвейерная форма труда определяется дроблением процесса труда на операции, заданным ритмом, строгой последовательностью выполнения операций, автоматической подачей деталей к каждому рабочему месту с помощью конвейера. При этом чем меньше интервал времени, затрачиваемый работающими на операцию, тем монотоннее работа, тем упрощеннее ее содержание, что приводит к преждевременной усталости и быстрому нервному истощению.

При формах труда, связанных с дистанционным управлением производственными процессами и механизмами, человек включен в системы управления как необходимое оперативное звено. В случаях, когда пульты управления требуют частых активных действий человека, внимание работника получает разрядку в многочисленных движениях или речедвигательных актах. В случаях редких активных действий работник находится главным образом в состоянии готовности к действию, его реакции малочисленны.

Формы интеллектуального труда подразделяются на операторский, управленческий, творческий, труд медицинских работников, труд преподавателей, учащихся, студентов. Эти виды различаются организацией трудового процесса, равномерностью нагрузки, степенью эмоционального напряжения.

Работа оператора отличается большой ответственностью и высоким нервно-эмоциональным напряжением. Например, труд авиадиспетчеpa характеризуется переработкой большого объема информации за короткое время и повышенной нервно-эмоциональной напряженностью. Труд руководителей учреждений, предприятий (управленческий труд) определяется чрезмерным объемом информации, возрастанием дефицита времени для ее переработки, повышенной личной ответственностью за принятые решения, периодическим возникновением конфликтных ситуаций.

Труд преподавателей и медицинских работников отличается постоянными контактами с людьми, повышенной ответственностью, часто дефицитом времени и информации для принятия правильного решения, что обусловливает степень нервно-эмоционального напряжения. Труд учащихся и студентов характеризуется напряжением основных психических функций, таких как память, внимание, восприятие; наличием стрессовых ситуаций (экзамены, зачеты).

Наиболее сложная форма трудовой деятельности, требующая значительного объема памяти, напряжения, внимания, – это творческий труд. Труд научных работников, конструкторов, писателей, композиторов, художников, архитекторов приводит к значительному повышению нервно-эмоционального напряжения. При таком напряжении, связанном с умственной деятельностью, можно наблюдать тахикардию, повышение кровяного давления, изменение ЭКГ, увеличение легочной вентиляции и потребления кислорода, повышение температуры тела человека и другие изменения со стороны вегетативных функций.

Энергетические затраты человека зависят от интенсивности мышечной работы, информационной насыщенности труда, степени эмоционального напряжения и других условий (температуры, влажности, скорости движения воздуха и др.). Суточные затраты энергии для лиц умственного труда (инженеров, врачей, педагогов и др.) составляют 10,5... 11,7 МДж; для работников механизированного труда и сферы обслуживания (медсестер, продавщиц, рабочих, обслуживающих автоматы) –11,3...12,5 МДж; для работников, выполняющих работу средней тяжести (станочников, шахтеров, хирургов, литейщиков, сельскохозяйственных рабочих и др.), –12,5...15,5 МДж; для работников, выполняющих тяжелую физическую работу (горнорабочих, металлургов, лесорубов, грузчиков), –16,3...18 МДж.

Затраты энергии меняются в зависимости от рабочей позы. При рабочей позе сидя затраты энергии превышают на 5–10 % уровень основного обмена; при рабочей позе стоя–на 10...25 %, при вынужденной неудобной позе–на 40...50 %. При интенсивной интеллектуальной работе потребность мозга в энергии составляет 15...20 % общего обмена в организме (масса мозга составляет 2 % массы тела). Повышение суммарных энергетических затрат при умственной работе определяется степенью нервно-эмоциональной напряженности. Так, при чтении вслух сидя расход энергии повышается на 48 %, при выступлении с публичной лекцией –на 94 %, у операторов вычислительных машин –на 60... 100 %.

Уровень энергозатрат может служить критерием тяжести и напряженности выполняемой работы, имеющим важное значение для оптимизации условий труда и его рациональной организации. Уровень энергозатрат определяют методом полного газового анализа (учитывается объем потребления кислорода и выделенного углекислого газа). С увеличением тяжести труда значительно возрастает потребление кислорода и количество расходуемой энергии.

Тяжесть и напряженность труда характеризуются степенью функционального напряжения организма. Оно может быть энергетическим, зависящим от мощности работы,–при физическом труде, и эмоциональным –при умственном труде, когда имеет место информационная перегрузка.

Физическая тяжесть труда – это нагрузка на организм при труде, требующая преимущественно мышечных усилий и соответствующего энергетического обеспечения. Классификация труда по тяжести производится по уровню энергозатрат с учетом вида нагрузки (статическая или динамическая) и нагружаемых мышц.

Статическая работа связана с фиксацией орудий и предметов труда в неподвижном состоянии, а также с приданием человеку рабочей позы. Так, работа, требующая нахождения работающего в статической позе 10...25 % рабочего времени, характеризуется как работа средней тяжести (энергозатраты 172...293 Дж/с); 50 % и более–тяжелая работа (энергозатраты свыше 293 Дж/с).

Динамическая работа –процесс сокращения мышц, приводящий к перемещению груза, а также самого тела человека или его частей в пространстве. При этом энергия расходуется как на поддержание определенного напряжения в мышцах, так и на механический эффект. Если максимальная масса поднимаемых вручную грузов не превышает 5 кг для женщин и 15 кг для мужчин, работа характеризуется как легкая (энергозатраты до 172 Дж/с); 5...10 кг для женщин и 15...30 кг для мужчин –средней тяжести; свыше 10 кг для женщин или 30 кг для мужчин –тяжелая.

Напряженность труда характеризуется эмоциональной нагрузкой на организм при труде, требующем преимущественно интенсивной работы мозга по получению и переработке информации. Кроме того, при оценке степени напряженности учитывают эргономические показатели: сменность труда, позу, число движений и т.п. Так, если плотность воспринимаемых сигналов не превышает 75 в час, то работа характеризуется как легкая; 75...175–средней тяжести; свыше 176– тяжелая работа.

В соответствии с гигиенической классификацией труда (Р.2.2.013– 94) условия труда подразделяются на четыре класса: 1–оптимальные; 2–допустимые; 3–вредные; 4–опасные (экстремальные).

Оптимальные условия труда обеспечивают максимальную производительность труда и минимальную напряженность организма человека. Оптимальные нормативы установлены для параметров микроклимата и факторов трудового процесса. Для других факторов условно применяют такие условия труда, при которых уровни неблагоприятных факторов не превышают принятых в качестве безопасных для населения (в пределах фона).

Допустимые условия труда характеризуются такими уровнями факторов среды и трудового процесса, которые не превышают установленных гигиеническими нормативами для рабочих мест. Изменения функционального состояния организма восстанавливаются во время регламентированного отдыха или к началу следующей смены, они не должны оказывать неблагоприятное воздействие в ближайшем и отдаленном периоде на здоровье работающего и его потомства. Оптимальный и допустимый классы соответствуют безопасным условиям труда.

Вредные условия труда характеризуются уровнями вредных производственных факторов, превышающими гигиенические нормативы и оказывающими неблагоприятное воздействие на организм работающего и (или) его потомство.

Экстремальные условия труда характеризуются такими уровнями производственных факторов, воздействие которых в течение рабочей смены (или ее части) создает угрозу для жизни, высокий риск возникновения тяжелых форм острых профессиональных поражений.

Вредные условия труда (3-й класс) подразделяют на четыре степени вредности. Первая степень (3.1) характеризуется такими отклонениями от гигиенических нормативов, которые, как правило, вызывают обратимые функциональные изменения и обусловливают риск развития заболевания. Вторая степень (3.2) определяется такими уровнями производственных факторов, которые могут вызывать стойкие функциональные нарушения, приводящие в большинстве случаев к росту заболеваемости, временной утрате трудоспособности, повышению частоты общей заболеваемости, появлению начальных признаков профессиональной патологии.

При третьей степени (3.3) воздействие уровней вредных факторов приводит, как правило, к развитию профессиональной патологии в легких формах, росту хронической общесоматической патологии, в том числе к повышению уровня заболеваемости с временной утратой трудоспособности. В условиях труда четвертой степени (3.4) могут возникнуть выраженные формы профессиональных заболеваний; отмечается значительный рост хронической патологии и высокие уровни заболеваемости с временной утратой трудоспособности.

Степень вредности 3-го класса по гигиенической классификации устанавливают в баллах. Число баллов по каждому фактору Хфi, проставляют в карте условий труда с учетом продолжительности его действия в течение смены: Xфi = ХстiТi, где Хстiстепень вредности фактора или тяжести работ по гигиенической классификации труда; Тiфipc – отношение времени действия факторов τф к продолжительности рабочей смены τрс, если τфi≥τрс , то Тi= 1,0.

Для определения конкретных размеров доплат условия труда оценивают по сумме значений фактических степеней вредности, тяжести и напряженности труда Хфак = Хф1 + Хф2 +…+хфn =


 

ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ТРУДОВОЙ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Эффективность трудовой деятельности человека в значительной степени зависит от предмета и орудий труда, работоспособности организма, организации… Работоспособность – величина функциональных возможностей организма человека,… – фаза врабатывания, или нарастающей работоспособности; в этот период уровень работоспособности постепенно повышается…

ФИЗИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ НА ЧЕЛОВЕКА

Теплообмен человека с окружающей средой. Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение нормальных… Жизнедеятельность человека сопровождается непрерывным выделением теплоты в… Одним из важных интегральных показателей теплового состояния организма является средняя температура тела (внутренних…

Таблица 1.1. Количество влага, выделяемое с поверхности кожи и из легких человека, г/мин

 

Характеристика выполняемой работы (по Н.К. Витте) Температура воздуха, °С
Покой, J = 100 Вт 0,6 0,74 1,69 3,25 6,2
Легкая, J =200 Вт 1,8 2,4 3,0 5,2 8,8
Средней тяжести, J 350 Вт 2,6 3,0 5,0 7,0 11,3
Тяжелая, J = 490 Вт 4,9 6,7 8,9 11,4 18,6
Очень тяжелая, J = 695 Вт 6,4 10,4 11,0 16,0 21,0

 

В процессе дыхания воздух окружающей среды, попадая в легочный аппарат человека, нагревается и одновременно насыщается водяными парами. В технических расчетах можно принимать (с запасом) что выдыхаемый воздух имеет температуру 37 °С и полностью насыщен.

Количество теплоты, расходуемой на нагревание вдыхаемого воздуха,

 

 

где Vобъем воздуха, вдыхаемого человеком в единицу времени, «легочная вентиляция», м3/с; ρвд – плотность вдыхаемого влажного воздуха, кг/м3 ; Ср–удельная теплоемкость вдыхаемого воздуха, Дж/ (кг • ˚С); tвыд –температура выдыхаемого воздуха, °С; tад –температура вдыхаемого воздуха, °С.

«Легочная вентиляция» определяется как произведение объема воздуха вдыхаемого за один вдох, Vв-в, м3 на частоту дыхания в секунду п:V^в=Vв-вn. Частота дыхания человека непостоянна и зависит от состояния организма и его физической нагрузки. В состоянии покоя она составляет 12... 15 вдохов-выдохов в минуту, а при тяжелой физической нагрузке достигает 20...25. Объем одного вдоха-выдоха является функцией производимой работы. В состоянии покоя с каждым вдохом в легкие поступает около 0,5 л воздуха. При выполнении тяжелой работы объем вдоха-выдоха может возрастать до 1,5...1,8 л.

Среднее значение легочной вентиляции в состоянии покоя примерно 0,4...0,5 л/с, а при физической нагрузке в зависимости от ее напряжения может достигать 4 л/с.

Таким образом, количество теплоты, выделяемой человеком с выдыхаемым воздухом, зависит от его физической нагрузки, влажности и температуры окружающего (вдыхаемого) воздуха: Q^=f(J;φ;tос). Чем больше физическая нагрузка и ниже температура окружающей среды, тем больше отдается теплоты с выдыхаемым воздухом. С увеличением температуры и влажности окружающего воздуха количество теплоты отводимой через дыхание, уменьшается.

Анализ приведенных выше уравнений позволяет сделать вывод что тепловое самочувствие человека, или тепловой баланс в системе человек –среда обитания зависит от температуры среды, подвижности и относительной влажности воздуха, атмосферного давления, температуры окружающих предметов и интенсивности физической нагрузки организма Qтп=f(toc;w;ψ;B;Tоп;J).

Параметры–температура окружающих предметов и интенсивность физической нагрузки организма–характеризуют конкретную производственную обстановку и отличаются большим многообразием. Остальные параметры–температура, скорость, относительная влажность и атмосферное давление окружающего воздуха –получили название параметров микроклимата.

Влияние параметров микроклимата на самочувствие человека.Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. Например, понижение температуры и повышение скорости воздуха способствуют усилению конвективного теплообмена и процесса теплоотдачи при испарении пота, что может привести к переохлаждению организма. Повышение скорости воздуха ухудшает самочувствие, так как способствует усилению конвективного теплообмена и процессу теплоотдачи при испарении пота.

При повышении температуры воздуха возникают обратные явления. Исследователями установлено, что при температуре воздуха более 30 °С работоспособность человека начинает падать. Для человека определены максимальные температуры в зависимости от длительности их воздействия и используемых средств защиты. Предельная температура вдыхаемого воздуха, при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116 °С. На рис. 1.1 представлены ориентировочные данные о переносимости температур, превышающих 60 °С. Существенное значение имеет равномерность температуры. Вертикальный градиент ее не должен выходить за пределы 5 °С.

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела. Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при tос > 30 °С, так как при этом почти все выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое проливное течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу.

Недостаточная влажность воздуха также может оказаться неблагоприятной для человека вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания и растрескивания, а затем и загрязнения болезнетворными микроорганизмами. Поэтому при длительном пребывании людей в закрытых помещениях рекомендуется ограничиваться относительной влажностью в пределах 30...70 %.

 

Рис. 1.1. Переносимость высоких температур в зависимости от длительности их воздействия:

1 – верхняя граница выносливости; 2 –среднее время выносливости;
3 – граница появления симптомов перегрева

 

Вопреки установившемуся мнению величина потовыделения мало зависит от недостатка воды в организме или от ее чрезмерного потребления. У человека, работающего в течение 3 ч без питья, образуется только на 8 % меньше пота, чем при полном возмещении потерянной влаги. При потреблении воды вдвое больше потерянного количества наблюдается увеличение потовыделения всего на 6 % по сравнению со случаем, когда вода возмещалась на 100 %. Считается допустимым для человека снижение его массы на 2...3 % путем испарения влаги – обезвоживание организма. Обезвоживание на 6 % влечет за собой нарушение умственной деятельности, снижение остроты зрения; испарение влаги на 15...20 % приводит к смертельному исходу.

Вместе с потом организм теряет значительное количество минеральных солей (до 1 %, в том числе 0,4...0,6 NaCI). При неблагоприятных условиях потеря жидкости может достигать 8–10 л за смену и в ней до 60 г поваренной соли (всего в организме около 140 г NaCI). Потеря соли лишает кровь способности удерживать воду и приводит к нарушению деятельности сердечно-сосудистой системы. При высокой температуре воздуха легко расходуются углеводы, жиры, разрушаются белки.

Для восстановления водного баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной (около 0,5 % NaCI) газированной питьевой водой из расчета 4...5 л на человека в смену. На ряде заводов для этих целей применяют белково-витаминный напиток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или чай.

Длительное воздействие высокой температуры особенно в сочетании с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня –гипертермии –состоянию, при котором температура тела поднимается до 38...39 °С. При гипертермии и как следствие тепловом ударе наблюдаются головная боль, головокружение, общая слабость, искажение цветового восприятия, сухость во рту, тошнота, рвота, обильное потовыделение. Пульс и дыхание учащены, в крови увеличивается содержание азота и молочной кислоты. При этом наблюдается бледность, синюшность, зрачки расширены, временами возникают судороги, потеря сознания.

Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма гипотермии. В начальный период воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличивается, изменяется углеводный обмен. Прирост обменных процессов при понижении температуры на 1 °С составляет около 10 %, а при интенсивном охлаждении он может возрасти в 3 раза по сравнению с уровнем основного обмена. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задер­живать снижение температуры внутренних органов. Результатом дей­ствия низких температур являются холодовые травмы.

Параметры микроклимата оказывают существенное влияние и на производительность труда. Так, повышение температуры с 25 до 30 °С в прядильном цехе Ивановского камвольного комбината привело к снижению производительности труда и составило 7 % (Ю.А. Шиков, 1972 г.). Институт гигиены труда и профзаболеваний АМН СССР (1980 г.) установил, что производительность труда работников машинострои­тельного предприятия при температуре 29,4 °С снижается на 13 %, а при температуре 33,6°С на 35 % по сравнению с производительностью при 26°С.

В горячих цехах промышленных предприятий большинство техно­логических процессов протекает при температурах, значительно пре­вышающих температуру воздуха окружающей среды. Нагретые поверхности излучают в пространство потоки лучистой энергии, кото­рые могут привести к отрицательным последствиям. При температуре до 500°С с нагретой поверхности излучаются тепловые (инфракрасные) лучи с длиной волны 740...0,76 мкм, а при более высокой температуре наряду с возрастанием инфракрасного излучения появляются видимые световые и ультрафиолетовые лучи.

Длина волны лучистого потока с максимальной энергией теплового излучения определяется по закону смещения Вина (для абсолютного черного тела) λEmax=2,9∙103/T. У большинства производственных источников максимум энергии приходится на инфракрасные лучи (λEmax > 0,78 мкм).

Инфракрасные лучи оказывают на организм человека в основном тепловое действие. Под влиянием теплового облучения в организме происходят биохимические сдвиги, уменьшается кислородная насы­щенность крови, понижается венозное давление, замедляется кровоток и как следствие наступает нарушение деятельности сердечно-сосуди­стой и нервной систем.

По характеру воздействия на организм человека инфракрасные лучи подразделяются на коротковолновые лучи с длиной волны 0,76...1,5 мкм и длинноволновые с длиной более 1,5 мкм. Тепловые излучения коротковолнового диапазона глубоко проникают в ткани и разогревают их, вызывая быструю утомляемость, понижение внимания, усиленное потовыделение, а при длительном облучении —тепловой удар. Длинноволновые лучи глубоко в ткани не проникают и погло­щаются в основном в эпидермисе кожи. Они могут вызвать ожог кожи и глаз. Наиболее частым и тяжелым поражением глаз вследствие воздействия инфракрасных лучей является катаракта глаза.

Кроме непосредственного воздействия на человека лучистая теп­лота нагревает окружающие конструкции. Эти вторичные источники отдают теплоту окружающей среде излучением и конвекцией, в резуль­тате чего температура воздуха внутри помещения повышается.

Общее количество теплоты, поглощенное телом, зависит от размера облучаемой поверхности, температуры источника излучения и рассто­яния до него. Для характеристики теплового излучения принята величина, названная интенсивностью теплового облучения. Интенсивность теплового облучения JE —это мощность лучистого потока, приходя­щаяся на единицу облучаемой поверхности.

Облучение организма малыми дозами лучистой теплоты полезно, но значительная интенсивность теплового излучения и высокая тем­пература воздуха могут оказать неблагоприятное действие на человека. Тепловое облучение интенсивностью до 350 Вт/м2 не вызывает непри­ятного ощущения, при 1050 Вт/м2 уже через 3...5 мин на поверхности кожи появляется неприятное жжение (температура кожи повышается на 8...10°С), а при 3500 Вт/м2 через несколько секунд возможны ожоги. При облучении интенсивностью 700...1400 Вт/м2 частота пульса увели­чивается на 5...7 ударов в минуту. Время пребывания в зоне теплового облучения лимитируется в первую очередь температурой кожи, болевое ощущение появляется при температуре кожи 40...45 ˚С (в зависимости от участка).

Интенсивность теплового облучения на отдельных рабочих местах может быть значительной. Например, в момент заливки стали в форму она составляет 12 000 Вт/м2; при выбивке отливок из опок 350...2000 Вт/м2, а при выпуске стали из печи в ковш достигает 7000 Вт/м2.

Атмосферное давление оказывает существенное влияние на про­цесс дыхания и самочувствие человека. Если без воды и пищи человек может прожить несколько дней, то без кислорода — всего несколько минут. Основным органом дыхания человека, посредством которого осуществляется газообмен с окружающей средой (главным образом О2. и СO2), является трахибронхиальное дерево и большое число легочных пузырей (альвеол), стенки которых пронизаны густой сетью капилляр­ных сосудов. Общая поверхность альвеол взрослого человека составляет 90...150 м2. Через стенки альвеол кислород поступает в кровь для питания тканей организма.

Наличие кислорода во вдыхаемом воздухе —необходимое, но не­достаточное условие для обеспечения жизнедеятельности организма. Интенсивность диффузии кислорода в кровь определяется парциаль­ным давлением кислорода в альвеолярном воздухе (po2,мм рт. ст.).

Экспериментально установлено:

 
 

где В—атмосферное давление вдыхаемого воздуха,мм рт. ст.; 47— парциальное давление насыщенных водяных паров в альвеолярном воздухе,мм рт. ст.; Vco2объем кислорода, содержащийся в альвео­лярном воздухе, %; р со2 —парциальное давление углекислого газа в альвеолярном воздухе; р co2 ≈ 40мм рт. ст.

Наиболее успешно диффузия кислорода в кровь происходит при парциальном давлении кислорода в пределах 95...120мм рт. ст. Изменение Po2 вне этих пределов приводит к затруднению дыхания и увеличению нагрузки на сердечно-сосудистую систему. Так, на высоте 2...3 км (Po2 ≈ 70мм рт. ст.) насыщение крови кислородом снижается до такой степени, что вызывает усиление деятельности сердца и легких. Но даже длительное пребывание человека в этой зоне не сказывается существенно на его здоровье, и она называется зоной достаточной компенсации. С высоты 4 км (Po2 ≈60мм рт. ст.) диффузия кислорода из легких в кровь снижается до такой степени, что, несмотря на большое содержание кислорода (Vo2 ≈21 %), может наступить кислородное голодание – гипоксия. Основные признаки гипоксии – головная боль, головокружение, замедленная реакция, нарушение нормальной работы органов слуха и зрения, нарушение обмена веществ.

Как показали исследования, удовлетворительное самочувствие человека при дыхании воздухом сохраняется до высоты около 4 км, чистым кислородом (VO2 = 100 %) до высоты около 12 км. При длительных полетах на летательных аппаратах на высоте более 4кмприменяют либо кислородные маски, либо скафандры, либо герметизацию кабин. При нарушении герметизации давление в кабине резко снижается. Часто этот процесс протекает так быстро, что имеет характер своеобразного взрыва и называется взрывной декомпрессией. Эффект воздействия взрывной декомпрессии на организм зависит от начального значения и скорости понижения давления, от сопротивления дыхательных путей человека, общего состояния организма.

В общем случае чем меньше скорость понижения давления, тем легче она переносится. В результате исследований установлено, что уменьшение давления на 385 мм рт. ст. за 0,4 с человек переносит без каких-либо последствий. Однако новое давление, которое возникает в результате декомпрессии, может привести к высотному метеоризму и высотным эмфиземам. Высотный метеоризм –это расширение газов, имеющихся в свободных полостях тела. Так, на высоте 12 км объем желудка и кишечного тракта увеличивается в 5 раз. Высотные эмфиземы, или высотные боли – это переход газа из растворенного состояния в газообразное.

В ряде случаев, например при производстве работ под водой, в водонасыщенных грунтах работающие находятся в условиях повышенного атмосферного давления. При выполнении кессонных и глубоководных работ обычно различают три периода: повышения давления – компрессия; нахождения в условиях повышенного давления и период понижения давления –декомпрессия. Каждому из них присущ специфический комплекс функциональных изменений в организме.

Избыточное давление воздуха приводит к повышению парциального давления кислорода в альвеолярном воздухе, к уменьшению объема легких и увеличению силы дыхательной мускулатуры, необходимой для производства вдоха-выдоха. В связи с этим работа на глубине требует поддержания повышенного давления с помощью специального снаряжения или оборудования, в частности кессонов или водолазного снаряжения.

При работе в условиях избыточного давления снижаются показатели вентиляции легких за счет некоторого урежения частоты дыхания и пульса. Длительное пребывание при избыточном давлении приводит к токсическому действию некоторых газов, входящих в состав вдыхаемого воздуха. Оно проявляется в нарушении координации движений, возбуждении или угнетении, галлюцинациях, ослаблении памяти, расстройстве зрения и слуха.

Наиболее опасен период декомпрессии, во время которого и вскоре после выхода в условиях нормального атмосферного давления может развиться декомпрессионная (кессонная) болезнь. Сущность ее состоит в том, что в период компрессии и пребывания при повышенном атмосферном давлении организм через кровь насыщается азотом. Полное насыщение организма азотом наступает через 4 ч пребывания в условиях повышенного давления.

В процессе декомпрессии вследствие падения парциального давления в альвеолярном воздухе происходит десатурация азота из тканей. Выделение азота осуществляется через кровь и затем легкие. Продолжительность десатурации зависит в основном от степени насыщения тканей азотом (легочные альвеолы диффундируют 150 мл азота в минуту). Если декомпрессия производится форсированно, в крови и других жидких средах образуются пузырьки азота, которые вызывают газовую эмболию и как ее проявление–декомпрессионную болезнь. Тяжесть декомпрессионной болезни определяется массовостью закупорки сосудов и их локализацией. Развитию декомпрессионной болезни способствует переохлаждение и перегревание организма. Понижение температуры приводит к сужению сосудов, замедлению кровотока, что замедляет удаление азота из тканей и процесс десатурации. При высокой температуре наблюдается сгущение крови и замедление ее движения.

Терморегуляция организма человека. Основными параметрами, обеспечивающими процесс теплообмена человека с окружающей средой, как было показано выше, являются параметры микроклимата. В естественных условиях на поверхности Земли (уровень моря) эти параметры изменяются в существенных пределах. Так, температура окружающей среды изменяется от -88 до +60 °С; подвижность воздуха –от 0 до 100 м/с; относительная влажность–от 10 до 100% и атмосферное давление –от 680 до 810 мм рт. ст.

Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Условия, нарушающие тепловой баланс, вызывают в организме реакции, способствующие его восстановлению. Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются терморегуляцией. Она позволяет сохранять температуру внутренних органов постоянной, близкой к 36,5 °С. Процессы регулирования тепловыделений осуществляются в основном тремя способами: биохимическим путем; путем изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем заключается в изменении интенсивности происходящих в организме окислительных процессов. Например, мышечная дрожь, возникающая при сильном охлаждении организма, повышает выделение теплоты до 125...200Дж/с.

 

Рис. 1.2. Зависимость кровоснабжения тканей организма от температуры окружающей среды

 

Терморегуляция путем изменения интенсивности кровообращения заключается в способности организма регулировать подачу крови (которая является в данном случае теплоносителем) от внутренних органов к поверхности тела путем сужения или расширения кровеносных сосудов. Перенос теплоты с потоком крови имеет большое значение вследствие низких коэффициентов теплопроводности тканей человеческого организма–0,314...1,45 Вт/(м'°С) При высоких температурах окружающей среды кровеносные сосуды кожи расширяются, и к ней от внутренних органов притекает большое количество крови и, следовательно, больше теплоты отдается окружающей среде. При низких температурах происходит обратное явление: сужение кровеносных сосудов кожи, уменьшение притока крови к кожному покрову и, следовательно, меньше теплоты отдается во внешнюю среду (рис. 1.2). Как видно из рис. 1.2, кровоснабжение при высокой температуре среды может быть в 20...30 раз больше, чем при низкой. В пальцах кровоснабжение может изменяться даже в 600 раз.

Терморегуляция путем изменения интенсивности потовыделения заключается в изменении процесса теплоотдачи за счет испарения. Испарительное охлаждение тела человека имеет большое значение. Так, при tос=18 °С, φ = 60 %, w = О количество теплоты, отдаваемой человеком в окружающую среду при испарении влаги, составляет около 18 % общей теплоотдачи. При увеличении температуры окружающей среды до +27 °С доля Qп возрастает до 30 % и при 36,6 °С достигает 100%.

Терморегуляция организма осуществляется одновременно всеми способами. Так, при понижении температуры воздуха увеличению теплоотдачи за счет увеличения разности температур препятствуют такие процессы, как уменьшение влажности кожи, и следовательно, уменьшение теплоотдачи путем испарения, снижение температуры кожных покровов за счет уменьшения интенсивности транспортирования крови от внутренних органов, и вместе с этим уменьшение разности температур.

 

   
Рис. 1.3. Тепловой баланс работающего человека и зависимости от нагрузки (v –скорость езды на велосипеде, Р–нагрузка, O1– тепловыделение, Q2–теплоотдача): 1–изменение общей затраты энергии организма; 2 – механическая работа; 3 – тепловыделения; 4 – изменение суммарной теплоотдачи (Ок. Qт. Ол); 5– теплота, отданная при испарении пота с поверхности тела Рис. 1.4. Тепловой баланс работающего человека в зависимости от температуры среды (Q1–тепловыделение, Q2– теплоотдача): 1–суммарная энергии организма; 2–мускульная работа, 3–выделенная теплота; 4 –теплота, переданная теплопроводностью и конвекцией; 5–теплота, переданная излучением; 6–теплота, отданная при испарении пота; 7–теплота, потерянная с каплями пота

 

На рис. 1.3 и 1.4 приведены тепловые балансы человека при различных объемах производимой работы в разных условиях окружающей среды. Тепловой баланс, приведенный на рис. 1.3, составлен по экспериментальным данным для случая езды на велосипеде при температуре воздуха 22,5 °С и относительной влажности 45 %; на рис. 1.4 приведен тепловой баланс человека, идущего со скоростью 3,4 км/ч при различных температурах окружающего воздуха и постоянной относительной влажности 52 %. Приведенные на рис. 1.3 и 1.4 примеры процесса теплообмена человека с окружающей средой построены при условии соблюдения теплового баланса Qтп=Qто, поддержанию которого способствовал механизм терморегуляции организма. Экспериментально установлено, что оптимальный обмен веществ в организме и соответственно максимальная производительность труда имеют место, если составляющие процесса теплоотдачи находятся в следующих пределах: Qк+Qт≈30%; Q^≈45%; Qп≈20% и Q^≈5 %. Такой баланс характеризует отсутствие напряженности системы терморегуляции.

Параметры микроклимата воздушной среды, которые обусловливают оптимальный обмен веществ в организме и при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными. Зона, в которой окружающая среда полностью отводит теплоту, выделяемую организмом и нет напряжения системы терморегуляции, называется зоной комфорта. Условия, при которых нормальное тепловое состояние человека нарушается, называются дискомфортными.При незначительной напряженности системы терморегуляции и небольшой дискомфортности устанавливаются допустимые метеорологические условия.

Гигиеническое нормирование параметров микроклимата производственных помещений. Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005–88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны». Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями.

В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10 °С и выше, холодный –ниже +10 °С

При учете интенсивности труда все виды работ, исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50 % и более работающих в соответствующем помещении.

К легким работам (категории I) с затратой энергии до 174 Вт относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию Iа (затраты энергии до 139 Вт) и категорию Iб (затраты энергии 140... 174 Вт). К работам средней тяжести (категория II) относят работы с затратой энергии 175...232 Вт (категория IIа) и 233...290 Вт (категория IIб). В категорию IIа входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию IIδ –работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.). К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).

По интенсивности тепловыделений производственные помещения делят на группы в зависимости от удельных избытков явной теплоты. Явной называется теплота, воздействующая на изменение температуры воздуха помещения, а избытком явной теплоты–разность между суммарными поступлениями явной теплоты и суммарными теплопотерями в помещении. Явная теплота, которая образовалась в пределах помещения, но была удалена из него без передачи теплоты воздуху помещения (например, с газами от дымоходов или с воздухом местных отсосов от оборудования), при расчете избытков теплоты не учитывается. Незначительные избытки явной теплоты –это избытки теплоты, не превышающие или равные 23 Вт на 1 м3 внутреннего объема помещения. Помещения со значительными избытками явной теплоты характеризуются избытками теплоты более 23 Вт/м3.

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50 % поверхности человека и более, 70 Вт/м2–при облучении 25...50 % поверхности и 100 Вт/м2–при облучении не более 25 % поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретого металла, стекла, открытого пламени и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25 % поверхности тела и обязательно использование средств индивидуальной защиты.

В рабочей зоне производственного помещения согласно ГОСТ 12.1.005–88 могут быть установлены оптимальные и допустимые микроклиматические условия. Оптимальные микроклиматические условия – это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности. Допустимые микроклиматические условия – это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие и понижение работоспособности. Оптимальные параметры микроклимата в производственных помещениях обеспечиваются системами кондиционирования воздуха, а допустимые параметры – обычными системами вентиляции и отопления.

 

ПРОФИЛАКТИКА НЕБЛАГОПРИЯТНОГО ВОЗДЕЙСТВИЯ МИКРОКЛИМАТА

Методы снижения неблагоприятного влияния производственного микроклимата регламентируются «Санитарными правилами по организации технологических… Ведущая роль в профилактике вредного влияния высоких температур, инфракрасного… К группе санитарно-технических мероприятий относится применение коллективных средств защиты: локализация…

ПРОМЫШЛЕННАЯ ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ

Эффективным средством обеспечения надлежащей чистоты и допустимых параметров микроклимата воздуха рабочей зоны является промышленная вентиляция.… По способу перемещения воздуха различают системы естественной и механической…  

ВЛИЯНИЕ ОСВЕЩЕНИЯ НА УСЛОВИЯ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Основные светотехнические характеристики. Правильно спроектированное и рационально выполненное освещение производственных помещений оказывает… Ощущение зрения происходит под воздействием видимого излучения (света),… Освещение характеризуется количественными и качественными показателями. К количественным показателям относятся:

НЕГАТИВНЫЕ ФАКТОРЫ ТЕХНОСФЕРЫ

 

ЗАГРЯЗНЕНИЕ РЕГИОНОВ ТЕХНОСФЕРЫ ТОКСИЧНЫМИ ВЕЩЕСТВАМИ

Регионы техносферы и природные зоны, примыкающие к очагам техносферы, постоянно подвергаются активному загрязнению различными веществами и их… Загрязнение атмосферы. Атмосферный воздух всегда содержит некоторое количество… Естественные источники загрязнений бывают либо распределенными, например, выпадение космической пыли, либо локальными,…

Таблица 2.2. Источники выбросов веществ в атмосферу

 

Примеси Основные источники Среднегодовая концентрация в воздухе, мг/м
естественные антропогенные
Пыль Вулканические извержения, пылевые бури, лесные пожары и др. Сжигание топлива в промышленных и бытовых установках В городах 0,04–0.4
Диоксид серы Вулканические извержения, окисление серы и сульфатов, рассеянных в море Сжигание топлива в промышленных и бытовых установках В городах до 1,0
Оксиды азота Лесные пожары Промышленность, автотранспорт, теплоэлектростанции В районах с развитой промышленностью до 0,2
Оксид углерода Лесные пожары, выделения океанов Автотранспорт, промышленные энергоустановки, предприятия черной металлургии В городах 1...50
Летучие углеводороды Лесные пожары, природный метан Автотранспорт, испарение нефтепродуктов В районах с развитой промышленностью до 0,3
Полицик-лические аро-матические углеводороды - Автотранспорт, химические и нефтеперерабатывающие заводы В районах с развитой промышленностью до 0,01

 

Таблица 2.3. Ежегодное количество примесей, поступающих в атмосферу Земли

 

Вещество Выбросы, млн. т Доля антропогенных примесей в общих поступлениях, %
естественные антропогенные
Пыль
Оксид углерода 5,7
Углеводороды 3,3
Оксиды азота 6,5
Оксиды серы 13,3
Диоксид углерода 3,6

 

Кроме приведенных выше веществ и пыли в атмосферу выбрасываются и другие, более токсичные вещества. Так, вентиляционные выбросы заводов электронной промышленности содержат пары плавиковой, серной, хромовой и других минеральных кислот, органические растворители и т. п. В настоящее время насчитывается более 500 вредных веществ, загрязняющих атмосферу, их количество увеличивается.

Выбросы в атмосферу загрязняющих веществ от стационарных источников в РФ в 1996 г. приведены ниже [2.2]:

 

  Пыль .........……………………………….. Млн. т 4,1
Диоксид серы ....…………………………. 7,87
Оксид углерода ....………………………… 4,19
Оксиды азота ....……………………………. 2,75
Углеводороды ....……………………………… 1,34

 

Каждой отрасли промышленности присущ характерный состав и масса веществ, поступающих в атмосферу. Это определяется прежде всего составом веществ, применяемых в технологических процессах, и экологическим совершенством последних. В настоящее время экологические показатели теплоэнергетики, металлургии, нефтехимического производства и ряда других производств изучены достаточно подробно. Необходимые сведения можно найти в работах [2.4, 2.5]. Меньше исследованы показатели машиностроения и приборостроения, их отличительными особенностями являются: широкая сеть производств, приближенность к жилым зонам, значительная гамма выбрасываемых веществ, среди которых могут содержаться вещества 1 и 2-го класса опасности, такие как пары ртути, соединения свинца и т. п.

Выбросы токсичных веществ приводят, как правило, к превышению текущих концентраций веществ над предельно допустимыми. Контроль состояния атмосферы в городах страны показал, что уровень загрязнения в 1996 г. остался весьма высоким. Максимальные концентрации загрязняющих веществ превышали 10 ПДКср в 70 городах. В табл. 2.4 приведены данные по некоторым городам страны с большим уровнем загрязнения атмосферного воздуха.

 

Таблица 2.4. Города с большим уровнем загрязнения атмосферы в 1990 г.
(извлечение из табл. 2.3 [2.3])

 

№ по [2.3] Город Вещества, определяющие уровень загрязнения Отрасль промышленности, создающая загрязнение
Братск Бенз(а)пирен, формальдегид, сероуглерод, фтористый водород Цветная металлургия, целлю-лозно-бумажная, энергетика
Иркутск Бенз(а)пирен, формальдегид, диоксид азота Энергетика, тяжелое машиностроение
Магнитогорск Бенз(а)пирен, сероуглерод, стирол, диоксид азота Черная металлургия
Москва Формальдегид, бензол, диоксид азота Автотранспорт, нефтехимическая
Омск Аммиак, формальдегид Нефтехимическая, химическая

 

Большая часть примесей атмосферного воздуха в городах проникает в жилые помещения. В летнее время (при открытых окнах) состав воздуха в жилом помещении соответствует составу воздуха вне помещения на 90 %, зимой –на 50 %.

Высокие концентрации и миграция примесей в атмосферном воздухе стимулируют их взаимодействие с образованием более токсичных соединений (смога, кислот) или приводят к таким явлениям, как «парниковый эффект» и разрушение озонового слоя.

 

 

Рис. 2.1. Относительные концентрации N02
и Оз в атмосферном воздухе (г. Лос-Анджелес, 19.07.65г.)

 

Общая схема реакций образования фотохимического смога сложна и в упрощенном виде может быть представлена реакциями

 

 

Смог весьма токсичен, так как его составляющие обычно находятся в пределах: O3 –60...75 %, ПАН, Н2О2, альдегиды и др.–25...40 %.

Для образования смога в атмосфере в солнечную погоду необходимо наличие оксидов азота, углеводородов (их выбрасывают в атмосферу автотранспорт, промышленные предприятия). Характерное распределение фотохимического смога по времени суток показано на рис. 2.1, а его воздействие на человека и растительность в табл. 2.5.

 

Таблица 2.5. Воздействие фотохимических оксидантов на человека и растительность

 

Концентрация оксидантов Экспозиция, ч Эффект воздействия
мкг/м3 млн-1
0,05 Повреждение растительности
0,1 Раздражение глаз
0,13 Обострение респираторных заболеваний
0,3 Ухудшение спортивных показателей

 

Примечание.В России принято выражать концентрации газообразных примесей в мг/м3, а за рубежом – в частях на миллион (млн-1, ррт) Для перевода концетраций с, выраженных в мг/м3, в млн-1, необходимо использовать соотношение с (мг/м3) = с (млн -1) M/24,5, где М – молярная масса примесей, г/моль; 24,5 –объем (л) 1 моль идеального газа при температуре 25 °С и давлении 105 Па. Для О3 при t = 25 0С 1 млн-1 = 1,962 мг/м3.

 

Фотохимические смоги, впервые обнаруженные в 40-х годах в г. Лос-Анджелес, теперь периодически наблюдаются во многих городах мира.

Кислотные дожди известны более 100 лет, однако проблема этих дождей возникла около 20 лет назад.

Источниками кислотных дождей служат газы, содержащие серу и азот. Наиболее важные из них: SO2, NOх, H2S. Кислотные дожди возникают вследствие неравномерного распределения этих газов в атмосфере. Например, концентрация SO2 (мкг/м3) обычно таковы: в городе 50...1000, на территории около города в радиусе около 50 км 10...50, в радиусе около 150 км 0,1...2, над океаном 0,1.

Основными реакциями в атмосфере являются: I вариант: SO2 + ОН →НSOз; НSОз + ОН → H2SO4 (молекулы в атмосфере быстро конденсируются в капли); II вариант: SO2+ hv → SO2* (SO2*– активированная молекула диоксида серы); SO2 + O2 → SO4; SO4 + О2 → SOз + Оз; SOз + Н2O -→H2SO4. Реакции обеих вариантов в атмосфере идут одновременно. Для сероводорода характерна реакция H2S + O2 → SO2 + Н2O и далее I или II вариант реакции.

Источниками поступления соединений серы в атмосферу являются: естественные (вулканическая деятельность, действия микроорганизмов и др.) 31...41 %, антропогенные (ТЭС, промышленность и др.) 59...69 %; всего поступает 91...112 млн. т в год.

Концентрации соединений азота (мкг/м3) составляют: в городе 10...100, на территории около города в радиусе 50км 0,25...2,5, над океаном 0,25.

Из соединений азота основную долю кислотных дождей дают N0 и N02. В атмосфере возникают реакции: 2NO + О2 → 2NO2, NO2 + ОН → HNO3. Источниками соединений азота являются: естественные (почвенная эмиссия, грозовые разряды, горение биомассы и др.) 63 %, антропогенные (ТЭС, автотранспорт, промышленность) 37 %; всего поступает 51...61 млн. т в год.

Серная и азотная кислоты поступают в атмосферу также в виде тумана и паров от промышленных предприятий и автотранспорта. В городах их концентрация достигает 2 мкг/м3.

Соединения серы и азота, попавшие в атмосферу, вступают в химическую реакцию не сразу, сохраняя свои свойства соответственно, в течение 2 и 8... 10 суток. За это время они могут вместе с атмосферным воздухом пройти расстояния 1000...2000 км и лишь после этого выпадают с осадками на земную поверхность.

Различают два вида седиментации: влажная и сухая. Влажная – это выпадение кислот, растворенных в капельной влаге, она возникает при влажности воздуха 100,5 %; сухая –реализуется в тех случаях, когда кислоты присутствуют в атмосфере в виде капель диаметром около 0,1 мкм. Скорость седиментации в этом случае весьма мала и капли могут проходить большие расстояния (следы серной кислоты обнаружены даже на Северном полюсе).

Различают прямое и косвенное воздействие кислотных осадков на человека. Прямое воздействие обычно не представляет опасности, так как концентрация кислот в атмосферном воздухе не превышает 0,1 мг/м3, т. е. находится на уровне ПДК (ПДКсс = 0,1 и ПДКмр =0,3 мг/м3 для H2S04). Такие концентрации нежелательны для детей и астматиков.

Прямое воздействие опасно для металлоконструкций (коррозия со скоростью до 10 мкм/год), зданий, памятников и т. д. особенно из песчаника и известняка в связи с разрушением карбоната кальция.

Наибольшую опасность кислотные осадки представляют при попадании в водоемы и почву, что приводит к уменьшению рН воды (рН = 7 –нейтральная среда). От значения рН воды зависит растворимость алюминия и тяжелых металлов в ней и, следовательно, их накопление в корнеплодах, а затем и в организме человека. При изменении рН воды меняется структура почвы и снижается ее плодородие. Снижение рН питьевой воды способствует поступлению в организм человека указанных выше металлов и их соединений.

В нашей стране повышенная кислотность осадков (рН == 4...5,5) отмечается в отдельных промышленных регионах. Наиболее неблагополучны города Тюмень, Тамбов, Архангельск, Северодвинск, Вологда, Петрозаводск,Омск и др. Плотность выпадения осадков серы, превышающая 4 т/(км∙год), зарегистрирована в 22 городах страны, а более 8...12 т/(км2∙год)) в городах: Алексин, Новомосковск, Норильск, Магнитогорск.

Состояние и состав атмосферы определяют во многом величину солнечной радиации в тепловом балансе Земли. На ее долю приходится основная часть поступающей в биосферу теплоты:

 

  Теплота от солнечной радиации ....... Дж/год 25 ·1023   % 99.8  
Теплота от естественных источников (из недр Земли, от животных и др.) ...... ...... 37,46·1020 0,18
Теплота от антропогенных источников (энергоустановок, пожаров и др.) ........... 4,2 ·1020 0,02

 

Экранирующая роль атмосферы в процессах передачи теплоты от Солнца к Земле и от Земли в космос влияет на среднюю температуру биосферы, которая длительное время находилась на уровне около + 15°С. Расчеты показывают, что при отсутствии атмосферы средняя температура биосферы составляла бы приблизительно –15° С.

Основная доля солнечной радиации передается к поверхности Земли в оптическом диапазоне излучений, а отраженная от земной поверхности – инфракрасном (ИК). Поэтому доля отраженной лучистой энергии, поглощаемой атмосферой, зависит от количества многоатомных минигазов (СО2, Н2О, СН4, Оз и др.) и пыли в ее составе. Чем выше концентрация минигазов и пыли в атмосфере, тем меньше доля отраженной солнечной радиации уходит в космическое пространство, тем больше теплоты задерживается в биосфере за счет парникового эффекта. ИК-излучение поглощается метаном, фреонами, озоном, оксидом диазота и т. п. в диапазоне длины волн 1...9 мкм, а парами воды и углекислым газом при длине волн 12 мкм и более. В последние годы наметилась тенденция к значительному росту концентраций СО2, СН4, N2O и других газов в атмосфере.

 

Год ...…………………..
Концентрация СО2, млн-1 450...600 700...750

 

Аналогично изменяются концентрации метана, оксида диазота, озона и других газов. Рост концентраций СО2 в атмосфере происходит вследствие уменьшения биомассы Земли и увеличения техногенных поступлений.

Источниками техногенных парниковых газов являются: теплоэнергетика, промышленность и автотранспорт, они выделяют СО2; химические производства, утечки из трубопроводов, гниение мусора и отходов животноводства определяют поступления СН4; холодильное оборудование, бытовая химия –фреонов; автотранспорт, ТЭС, промышленность –оксидов азота и т. п.

В результате в биосферу дополнительно поступает теплота порядка 70∙1020 Дж/год, при этом на долю отдельных газов приходится: СО2 – 50 %, фреонов – 15, Оз –5, СН4 –20, N2О (оксид диазота) – 10 %. Доля парникового эффекта в нагреве биосферы в 16,6 раза больше доли других источников антропогенного поступления теплоты.

Рост концентраций минигазов в атмосфере и как следствие повышение доли теплоты ИК-излучения, задерживаемой атмосферой, неизбежно сопровождается ростом температуры поверхности Земли. В период с 1880 по 1940 г. средняя температура в северном полушарии возросла на 0,4 °С, а в период до 2030 г. она может повыситься еще на 1,5–4,5 °С. Это весьма опасно для островных стран и территорий, расположенных ниже уровня моря. Есть прогнозы, что к 2050 г. уровень моря может повыситься на 25–40 см, а к 2100 – на 2 м, что приведет к затоплению 5 млн. км2 суши, т. е. 3 % суши и 30 % всех урожайных земель планеты.

Парниковый эффект в атмосфере–довольно распространенное явление и на региональном уровне. Антропогенные источники теплоты (ТЭС, транспорт, промышленность), сконцентрированные в крупных городах и промышленных центрах, интенсивное поступление парниковых газов и пыли, устойчивое состояние атмосферы создают около городов пространства радиусом 50 км и более с повышенными на 1–5°Стемпературами и высокими концентрациями загрязнений. Эти зоны (купола) над городами хорошо просматриваются из космического пространства. Они разрушаются лишь при интенсивных движениях больших масс атмосферного воздуха.

Техногенные загрязнения атмосферы не ограничиваются приземной зоной. Определенная часть примесей поступает в озоновый слой и разрушает его. Разрушение озонового слоя опасно для биосферы, так как оно сопровождается значительным повышением доли ультрафиолетового излучения с длиной волны менее 290 нм, достигающего земной поверхности. Эти излучения губительны для растительности, особенно для зерновых культур, представляют собой источник канцерогенной опасности для человека, стимулируют рост глазных заболеваний.

Основными веществами, разрушающими озоновый слой, являются соединения хлора, азота. По оценочным данным, одна молекула хлора может разрушить до 105 молекул озона, одна молекула оксидов азота –до 10 молекул.

Источниками поступления соединений хлора и азота в озоновый слой могут быть: вулканические газы; технологии с применением фреонов; атомные взрывы; самолеты («Конкорд», военные), в выхлопных газах которых содержатся до 0,1 % общей массы газов соединения NО и NО2; ракеты, содержащие в выхлопных газах соединения азота и хлора. Состав выхлопных газов космических систем (т) на высоте О...50 км приведен ниже:

 

  Соединения хлора Оксиды азота Пары воды, водород Оксиды углерода Оксиды алюминия
«Энергия» и «Буран», СССР…………………..
«Шаттл». США ………..

 

Значительное влияние на озоновый слой оказывают фреоны, продолжительность жизни которых достигает 100 лет. Источниками поступления фреонов являются: холодильники при нарушении герметичности контура переноса теплоты; технологии с использованием фреонов; бытовые баллончики для распыления различных веществ и т. п.

По оценочным данным, техногенное разрушение озонового слоя к 1973 г. достигло 0,4... 1 %; к 2000 г. ожидается 3 %, к 2050 г.– 10 %. Ядерная война может истощить озоновый слой на 20–70 %. Заметные негативные изменения в биосфере ожидаются при истощении озонового слоя на 8...10 % общего запаса озона в атмосфере, составляющего около 3 млрд. т. Заметим, что один запуск космической системы «Шаттл» сопровождается разрушением около 0,3 % озона, что составляет около 107 т озона.

В результате антропогенного воздействия на атмосферу возможны следующие негативные последствия:

– превышение ПДК многих токсичных веществ (СО, NO2, SO2, СnНm, бенз(а)пирена, свинца, бензола и др.) в городах и населенных пунктах;

– образование смога при интенсивных выбросах NOx, СnНm;

– выпадение кислотных дождей при интенсивных выбросахSOx, NOx;

– появление парникового эффекта при повышенном содержании СО2, NOx, Оз, СН4, Н2О и пыли в атмосфере, что способствует повышению средней температуры Земли;

– разрушение озонового слоя при поступлении NOx и соединений хлора в него, что создает опасность УФ-облучения.

Загрязнение гидросферы. Потребление воды [2.2] в РФ в 1996 г. достигло 73,2 км3, в том числе на нужды, %:

– производственные–53,1;

– хозяйственно-питьевые–19,1;

– орошение –14,3,

– сельскохозяйственное водоснабжение –4,3;

– прочие –9.

При использовании воду, как правило, загрязняют, а затем сбрасывают в водоемы. Внутренние водоемы загрязняются сточными водами различных отраслей промышленности (металлургической, нефтеперерабатывающей, химической и др.), сельского и жилищно-коммунального хозяйства, а также поверхностными стоками. Основными источниками загрязнений являются промышленность и сельское хозяйство.

Загрязнители делятся на биологические (органические микроорганизмы), вызывающие брожение воды; химические, изменяющие химический состав воды; физические, изменяющие ее прозрачность (мутность), температуру и другие показатели.

Биологические загрязнения попадают в водоемы с бытовыми и промышленными стоками, в основном предприятий пищевой, медико-биологической, целлюлозно-бумажной промышленности. Например, целлюлозно-бумажный комбинат загрязняет воду так же, как город с населением 0,5 млн чел.

Биологические загрязнения оценивают биохимическим потреблением кислорода –БПК. БПК5 –это количество кислорода, потребляемое за 5 сут микроорганизмами –деструкторами для полной минерализации органических веществ, содержащихся в 1 л воды. Нормативное значение БПК5 = 5 мг/л. Реальные загрязнения сточных вод таковы, что требуют значений БПК на порядок больше.

Химические загрязнения поступают в водоемы с промышленными, поверхностными и бытовыми стоками. К ним относятся: нефтепродукты, тяжелые металлы и их соединения, минеральные удобрения, пестициды, моющие средства. Наиболее опасны свинец, ртуть, кадмий. Поступление тяжелых металлов (т/год) в Мировой океан следующее:

 

  Сток с суши Атмосферный перенос
Свинец Ртуть Кадмий (1–20)·105 (5-8)·103 (1–20)·103 (2–20)·105 (2–3)·103 (5-40)·102

 

Физические загрязнения поступают в водоемы с промышленными стоками, при сбросах из выработок шахт, карьеров, при смывах с территорий промышленных зон, городов, транспортных магистралей, за счет осаждения атмосферной пыли. Всего в 1996 г в водоемы страны сброшено 58,9 км3 сточных вод, из них 22,4 км3 загрязненных.

Содержание некоторых загрязняющих веществ (тыс. т) в сточных водах показано ниже:

 

  1992 г. 1996 г.
Соединения меди 0,9 0,2
Соединения железа 51,2 19,7
Соединения цинка 1,6 0,8
Нефтепродукты 34,9 9,3
Взвешенные вещества 618,6
Соединения фосфора 32.4
Фенолы 0,22 0,08

 

В результате антропогенной деятельности многие водоемы мира и нашей страны крайне загрязнены. Уровень загрязненности воды по отдельным ингредиентам превышает 30 ПДК. Наиболее высокий уровень загрязненности воды наблюдается в бассейнах рек: Днестр, Печора, Обь, Енисей, Амур, Северная Двина, Волга, Урал. Антропогенное воздействие на гидросферу приводит к следующим негативным последствиям:

– снижаются запасы питьевой воды (около 40 % контролируемых водоемов имеют загрязнения, превышающие 10 ПДК);

– изменяется состояние и развитие фауны и флоры водоемов;

– нарушается круговорот многих веществ в биосфере;

– снижается биомасса планеты и как следствие воспроизводство кислорода.

Опасны не только первичные загрязнения поверхностных вод, но и вторичные, образовавшиеся в результате химических реакций веществ в водной среде. Так, при одновременном попадании весной 1990 г. в р. Белая фенолов и хлоридов образовались диоксины, содержание которых в 147 тыс. раз превысило допустимые значения.

Большую опасность загрязненные сточные воды представляют в тех случаях, когда структура грунта не исключает их попадание в зону залегания грунтовых вод. В ряде случаев до 30...40 % тяжелых металлов из почвы поступает в грунтовые воды.

Загрязнение земель. Нарушение верхних слоев земной коры происходит при: добыче полезных ископаемых и их обогащении; захоронении бытовых и промышленных отходов; проведении военных учений и испытаний и т. п. Почвенный покров существенно загрязняется осадками в зонах рассеивания различных выбросов в атмосфере, пахотные земли – при внесении удобрений и применении пестицидов.

Ежегодно из недр страны извлекается огромное количество горной массы, вовлекается в оборот около трети, используется в производстве около 7 % объема добычи. Большая часть отходов не используется и скапливается в отвалах.

По данным Госкомстата, в 1990 г. 10 тыс. промышленных предприятий образовали 302 млн. т отходов, из них 80 % отходы черной и цветной металлургии. Большая часть отходов шла на переработку, но около 9 млн. т вывозили в места неорганизованного складирования и на городские свалки.

Существенно загрязнение земель в результате седиментации токсичных веществ из атмосферы. Наибольшую опасность представляют предприятия цветной и черной металлургии. Зоны загрязнений их выбросами имеют радиусы около 20–50км, а превышение ПДК достигает 100 раз. К основным загрязнителям относятся никель, свинец, бенз(а)пирен, ртуть и др.

Опасны выбросы мусоросжигающих заводов, содержащие тетра-этилсвинец, ртуть, диоксины, бенз(а)пирен и т. п. Выбросы ТЭС содержат бенз(а)пирен, соединения ванадия, радионуклиды, кислоты и другие токсичные вещества. Зоны загрязнения почвы около трубы имеют радиусы 5 км и более.

В табл. 2.6 приведены основные источники и наиболее распространенные группы веществ химического загрязнения почвы.

 

Таблица 2.6. Источники и вещества, загрязняющие почву

 

Вещества Источники загрязнения почвы
промышленность транспорт ТЭС АЭС сельское хозяйство
Тяжелые металлы и их соединения (Hg, Pb, Cd и др.) + + + +
Циклические углеводороды, бенз(а)пирен + + + +
Радиоактивные вещества + + +
Нитраты, нитриты, фосфаты, пестициды +

 

Интенсивно загрязняются пахотные земли при внесении удобрений и использовании пестицидов. В последние годы многие страны стремились к сокращению применения пестицидов. Так, в США их использование с 1976 по 1993 г. сократилось на 60 %, в России со 150 тыс. т в 1980 г. до 43,7 тыс. т в 1993 г., однако в 1987 г. около 30 % продуктов питания в РФ содержали концентрацию пестицидов, опасную для здоровья человека.

Внесение удобрений компенсирует изъятие растениями из почвы азота, фосфора, калия и других веществ. Однако вместе с удобрениями, содержащими эти вещества, в почву вносятся тяжелые металлы и их соединения, которые содержатся в удобрениях как примеси. К ним относятся: кадмий, медь, никель, свинец, хром и др. Выведение этих примесей из удобрений –трудоемкий и дорогой процесс. Особую опасность представляет использование в качестве удобрений осадков промышленных сточных вод, как правило, насыщенных отходами гальванического и других производств.

Антропогенное воздействие на земную кору сопровождается:

– отторжением пахотных земель или уменьшением их плодородия; по данным ООН, ежегодно выводится из строя около 6 млн. га плодородных земель;

– чрезмерным насыщением токсичными веществами растений, что неизбежно приводит к загрязнению продуктов питания растительного и животного происхождения; в настоящее время до 70 % токсичного воздействия на человека приходится на пищевые продукты;

– нарушением биоценозов вследствие гибели насекомых, птиц, животных, некоторых видов растений;

– загрязнением грунтовых вод, особенно в зоне свалок и сброса сточных вод.

 

ЭНЕРГЕТИЧЕСКИЕ ЗАГРЯЗНЕНИЯ ТЕХНОСФЕРЫ

Промышленные предприятия, объекты энергетики, связи и транспорт являются основными источниками энергетического загрязнения промышленных регионов,… Вибрации в городской среде и жилых зданиях, источником которых является… Шум в городской среде и жилых зданиях создается транспортными средствами, промышленным оборудованием,…

МкЗв/год

космическое облучение 320(300) облучение от природных источников внешнее 350 (320) внутреннее 2000 (1050)

НЕГАТИВНЫЕ ФАКТОРЫ ПРОИЗВОДСТВЕННОЙ СРЕДЫ

Производственная среда –это часть техносферы, обладающая повышенной концентрацией негативных факторов. Основными носителями травмирующих и вредных… Травмирующие и вредные факторы подразделяют на физические, химические,… Травмирующие и вредные факторы производственной среды, характерные для большинства современных производств, приведены…

Таблица 2.7. Негативные факторы производственной среды

 

Группа факторов Факторы Источники и зоны действия фактора    
Физические Запыленность воздуха рабочей зоны Зоны переработки сыпучих материалов, участки выбивки и очистки отливок, сварки и плазменной обработки, обработки пластмасс, стеклопластиков и других хрупких материалов, участки дробления материалов и т п.    
Вибрации: общие Виброплощадки, транспортные средства, строительные машины    
   
   
локальные Виброинструмент, рычаги управления транспортных машин    
   
Акустические колебания:      
   
инфразвук Зоны около виброплощадок, мощных двигателей внутреннего сгорания и других высокоэнергетических систем    
   
шум Зоны около технологического оборудования ударного действия, устройств для испытания газов, транспортных средств, энергетических машин    
   
   
ультразвук Зоны около ультразвуковых генераторов, дефектоскопов: ванны для ультразвуковой обработки    
Физические Статическое электричество Зоны около электротехнического оборудования на постоянном токе, зоны окраски распылением, синтетические материалы    
   
   
   
Электромагнитные поля и излучения Зоны около линий электропередач, установок ТВЧ и индукционной сушки, электроламповых генераторов, телеэкранов, дисплеев, антенн, магнитов    
   
   
   
Инфракрасная радиация Нагретые поверхности, расплавленные вещества, излучение пламени    
   
Лазерное излучение Лазеры, отраженное лазерное излучение    
   
Ультрафиолетовая радиация Зоны сварки, плазменной обработки    
   
Ионизирующие излучения Ядерное топливо, источники излучений, применяемые в приборах, дефектоскопах и при научных исследованиях    
   
   
Электрический ток Электрические сети, электроустановки, распределители, трансформаторы, оборудование с электроприводом и т д    
   
   
Движущиеся машины, механизмы, материалы, изделия, части разрушающихся конструкций и т.п. Зоны движения наземного транспорта, конвейеров, подземных механизмов, подвижных частей станков, инструмента, передач Зоны около систем повышенного давления, емкостей со сжатыми газами, трубопроводов, пневмо-гидроустановок    
   
   
   
   
   
Высота, падающие предметы Строительные и монтажные работы, обслуживание машин и установок    
   
Острые кромки Режущий и колющий инструмент, заусенцы, шероховатые поверхности, металлическая стружка, осколки хрупких материалов    
   
   
   
Повышенная или пониженная температура поверхностей оборудования, материалов Паропроводы, газоводы, криогенные установки, холодильное оборудование, расплавы    
   
   
   
Химические Загазованность рабочей зоны Утечки токсичных газов и паров из негерметичного оборудования, испарения из открытых емкостей и при проливах, выбросы веществ при разгерметизации оборудования, окраска распылением, сушка окрашенных поверхностей    
Запыленность рабочей зоны Сварка и плазменная обработка материалов с содержанием Cr2O3, MnO, пересыпка и транспортирование дисперсных материалов, окраска распылением, пайка свинцовыми припоями, пайка бериллия и припоями, содержащими бериллий    
Химические Попадание ядов на кожные покровы и слизистые оболочки Гальваническое производство, заполнение емкостей, распыление жидкостей (опрыскивание, окраска поверхностей)  
Попадание ядов в же-лудочно-кишечный тракт Ошибки при применении жидкостей, умышленные действия  
Биологические Смазочно-охлаждающие жидкости (СОЖ) Обработка материалов с применением эмульсолов  
Психофизиологические Физические перегрузки:    
статические Продолжительная работа с дисплеями, работа в неудобной позе  
динамические Подъем и перенос тяжестей, ручной труд  
Нервно-психические перегрузки:    
умственное перенапряжение Труд научных работников, преподавателей, студентов  
перенапряжение анализаторов Операторы технических систем, авиадиспетчеры, работа с дисплеями  
монотонность труда Наблюдение за производственным процессом  
эмоциональные перегрузки Работа авиадиспетчеров, творческих работников  
             

 

Примечание. В тех случаях, когда в рабочей зоне не обеспечены комфортные условия труда, источником физических вредных факторов могут быть повышенная или пониженная температура воздуха рабочей зоны, повышенное или пониженное атмосферное давление, повышенные влажность и скорость движения воздуха, неправильная организация освещения (недостаточная освещенность, повышенная яркость, пониженная контрастность, блесткость, повышенная пульсация светового потока). Вредные воздействия возникают также при недостатке кислорода в воздухе рабочей зоны.

 

Конкретные производственные условия характеризуются совокупностью негативных факторов, а также различаются по уровням вредных факторов и риску проявления травмирующих факторов.

К особо опасным работам на промышленных предприятиях относят:

– монтаж и демонтаж тяжелого оборудования массой более 500 кг;

– транспортирование баллонов со сжатыми газами, кислот, щелочных металлов и других опасных веществ;

– ремонтно-строительные и монтажные работы на высоте более 1,5 м с применением приспособлений (лестниц, стремянок и т. п.), а также работы на крыше;

– земляные работы в зоне расположения энергетических сетей;

– работы в колодцах, тоннелях, траншеях, дымоходах, плавильных и нагревательных печах, бункерах, шахтах и камерах;

– монтаж, демонтаж и ремонт грузоподъемных кранов и подкрановых путей; такелажные работы по перемещению тяжеловесных и крупногабаритных предметов при отсутствии подъемных кранов;

– гидравлические и пневматические испытания сосудов и изделий;

– чистка и ремонт коллов, газоходов, циклонов и другого оборудования котельных установок, а также ряд других работ.

 

Р и с . 2.2. Статистическая кривая динамики травматизма строителей

 

Источниками негативных воздействий на производстве являются не только технические устройства. На уровень травматизма оказывают влияние психофизическое состояние и действия работающих. На рис. 2.2 показаны статистические данные (А.В. Невский) о травматизме у строителей в зависимости от их трудового стажа. Характер изменения травматизма в начале трудовой деятельности I обусловлен отсутствием достаточных знаний и навыков безопасной работы в первые трудовые дни и последующим приобретением этих навыков. Рост уровня травматизма при стаже 2...7 лет (II) объясняется во многом небрежностью, халатностью и сознательным нарушением требований безопасности этой категорией работающих. При стаже 7...21 г. динамика травматизма (III) определяется приобретением профессиональных навыков, осмотрительностью, правильным отношением работающих к требованиям безопасности. Для зоны II характерно некоторое повышение травматизма, как правило, обусловленное ухудшением психофизического состояния работающих.

Воздействие негативных факторов производственной среды приводит к травмированию и профессиональным заболеваниям работающих.

Основными травмирующими факторами в машиностроении являются (%): оборудование (41,9), падающие предметы (27,7), падение персонала (11,7), заводской транспорт (10), нагретые поверхности (4,6), электрический ток (1,6), прочие (2).

К наиболее травмоопасным профессиям в народном хозяйстве относят (%): водитель (18,9), тракторист (9,8), слесарь (6,4), электромонтер (6,3), газомонтер (6,3), газоэлектросварщик (3,9), разнорабочий (3,5).

Профессиональные заболевания возникают, как правило, у длительно работающих в запыленных или загазованных помещениях: у лиц, подверженных воздействию шума и вибраций, а также занятых тяжелым физическим трудом. В 1987 г. распределение профессиональных заболеваний в России составило (%): заболевания органов дыхания (29,2), вибрационная болезнь (28), заболевания опорно-двигательного аппарата (14,4), заболевания органов слуха (10,8), кожные заболевания (5,9), заболевания органов зрения (2,2), прочие (9,5).

 

НЕГАТИВНЫЕ ФАКТОРЫ ПРИ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ

Чрезвычайные ситуации возникают при стихийных явлениях (землетрясениях, наводнениях, оползнях и т. п.) и при техногенных авариях. В наибольшей…   Таблица 2.8. Сведения о чрезвычайных ситуациях техногенного характера в России [2.2]

Таблица 2.9. Причины и последствия некоторых аварий

 

Место, год Причины Вид Последствия
Чикаго, 1973 Отказ оборудования Взрыв и пожар хранилища сжиженного газа Уничтожено все в радиусе 1 км, около 500 чел. погибли, несколько тысяч пострадали
Севезо, 1976 Взрыв, выброс 2...2,5 кг диоксина Заражена территория площадью 10 км, эвакуировано около тысячи человек
США. 1986 Авария при транспортировании химических веществ по железной дороге Пожар с выбросами серы и фосфата Эвакуация более 30 тыс. чел.
Базель, 1986   Пожар на складе химических препаратов Загрязнена р. Рейн, погибло много тонн рыбы, нарушена жизнедеятельность 20 млн. чел.

 

Анализ совокупности негативных факторов, действующих в настоящее время в техносфере, показывает, что приоритетное влияние имеют антропогенные негативные воздействия, среди которых преобладают техногенные. Они сформировались в результате преобразующей деятельности человека и изменений в биосферных процессах, обусловленных этой деятельностью. Большинство факторов носит характер прямого воздействия (яды, шум, вибрации и т. п.). Однако в последние годы широкое распространение получают вторичные факторы (фотохимический смог, кислотные дожди и др.), возникающие в среде обитания в результате химических или энергетических процессов взаимодействия первичных факторов между собой или с компонентами биосферы.

Уровни и масштабы воздействия негативных факторов постоянно нарастают и в ряде регионов техносферы достигли таких значений, когда человеку и природной среде угрожает опасность необратимых деструктивных изменений. Под влиянием этих негативных воздействий изменяется окружающий нас мир и его восприятие человеком, происходят изменения в процессах деятельности и отдыха людей, в организме человека возникают патологические изменения и т. п.

Практика показывает, что решить задачу полного устранения негативных воздействий в техносфере нельзя. Для обеспечения защиты в условиях техносферы реально лишь ограничить воздействие негативных факторов их допустимыми уровнями с учетом их сочетанного (одновременного) действия. Соблюдение предельно допустимых уровней воздействия – один из основных путей обеспечения безопасности жизнедеятельности человека в условиях техносферы.

 


ВОЗДЕЙСТВИЕ НЕГАТИВНЫХ ФАКТОРОВ НА ЧЕЛОВЕКА И ТЕХНОСФЕРУ

СИСТЕМЫ ВОСПРИЯТИЯ ЧЕЛОВЕКОМ СОСТОЯНИЯ ВНЕШНЕЙ СРЕДЫ

Человеку необходимы постоянные сведения о состоянии и изменении внешней среды, переработка этой информации и составление программ жизнеобеспечения.… В коре головного мозга–высшем звене центральной нервной системы (ЦНС) –… Датчиками сенсорных систем являются специфические структурные нервные образования, называемые рецепторами. Они…

Таблица 3.1. Характеристика органов чувств по скорости передачи информации

 

Воспринимаемый сигнал Характеристика Максимальная скорость, бит/с
Зрительный Длина линии 3.25
Цвет 3.1
Яркость 3.3
Слуховой Громкость 2.3
Высота тона 2.5
Вкусовой Соленость 1.3
Обонятельный Интенсивность 1.53
Тактильный Интенсивность 2,0
Продолжительность 2,3
Расположение на теле 2,8

 

Помимо сенсорных, в организме функционируют другие системы, которые или морфологически (структурно) отчетливо оформлены (кровообращения, пищеварения), или являются функциональными (терморегуляции, иммунологической защиты). В таких системах существует автономная регуляция и их можно рассматривать как самостоятельные, саморегулирующие, замкнутые цепи, имеющие собственную обратную связь.

Между всеми системами организма существуют взаимосвязи, и организм человека в функциональном отношении представляет собой единое целое. Одна из важнейших функциональных систем организма – нервная система, она связывает между собой различные системы и части организма.

Нервная система имеет обширное взаимодействие центральных и периферических образований, включая различные анатомические структуры, комбинации гуморальных веществ (ферментов, белков, витаминов, микроэлементов и др.), объединенных взаимозависимостью и участием в приспособительных реакциях организма. Нервная система человека подразделяется на центральную нервную систему (ЦНС), включающую головной и спинной мозг, и периферическую (ПНС), которую составляют нервные волокна и узлы, лежащие вне ЦНС.

По морфологическим признакам ЦНС представляет собой совокупность нервных клеток (нейронов), специализирующихся на переработке информации, и отходящих от них отростков. В этой совокупности клеточных тел, находящихся в черепной коробке и позвоночном канале, происходит переработка информации, которая поступает по нервным волокнам и исходит от них к исполнительным органам.

Периферическая нервная система осуществляет связь ЦНС с кожей, мышцами и внутренними органами. ЦНС условно подразделяют на соматическую и вегетативную. Периферические нервные волокна, связывающие ЦНС с кожей и слизистыми оболочками, мышцами, сухожилиями и связками, относятся к соматической нервной системе (СНС). Нервные волокна, связывающие ЦНС с внутренними органами, кровеносными сосудами, железами, принадлежат к вегетативной нервной системе (ВНС). В отличие от соматической, вегетативная система обладает определенной самостоятельностью, и потому ее называют автономной.

На основе структурно-функциональных свойств, вегетативную нервную систему подразделяют на симпатическую и парасимпатическую, которые оказывают антагонистическое действие на органы. Например, симпатическая нервная система расширяет зрачок, вызывает учащение пульса и повышение кровяного давления; парасимпатическая система сужает зрачок, замедляет сердечно-сосудистую деятельность, снижает кровяное давление.

Нервная система функционирует по принципу рефлекса. Рефлексом называют любую ответную реакцию организма на раздражение из окружающей или внутренней среды, осуществляющуюся с участием ЦНС.

Путь нервного импульса от воспринимающего нервного образования (рецептора) через ЦНС до окончания в действующем органе (эффекторе) называется рефлекторной дугой. В случаях экстремального воздействия на организм нервная система формирует защитно-при-способительные реакции, определяет соотношение воздействующего и защитного эффектов.

Человек постоянно приспосабливается к изменяющимся условиям окружающей среды благодаря гомеостазу –универсальному свойству сохранять и поддерживать стабильность работы различных систем организма в ответ на воздействия, нарушающие эту стабильность.

Гомеостаз – относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма.

Любые физиологические, физические, химические или эмоциональные воздействия, будь то температура воздуха, изменение атмосферного давления или волнение, радость, печаль, могут быть поводом к выходу организма из состояния динамического равновесия. Автоматически, на основе единства гуморальных и нервных механизмов регуляции осуществляется саморегуляция физиологических функций, обеспечивающая поддержание жизнедеятельности организма на постоянном уровне. При малых уровнях воздействия раздражителя человек просто воспринимает информацию, поступающую извне. Он видит окружающий мир, слышит его звуки, вдыхает аромат различных запахов, осязает и использует в своих целях воздействие многих факторов. При высоких уровнях воздействия проявляются нежелательные биологические эффекты. Компенсация изменений факторов среды обитания оказывается возможной благодаря активации систем, ответственных за адаптацию (приспособление).

Защитные приспособительные реакции имеют три стадии: нормальная физиологическая реакция (гомеостаз); нормальные адаптационные изменения; патофизиологические адаптационные изменения с вовлечением в процесс анатомо-морфологических структур (структурные изменения на клеточно-тканевом уровне).

Гомеостаз и адаптация –два конечных результата, организующих функциональные системы.

Вмешательство внешних механизмов в состояние гомеостаза приводит к адаптивной перестройке, в результате которой одна или несколько функциональных систем организма компенсируют дискоординацию для восстановления равновесия. Вначале происходит мобилизация функциональной системы, адекватной к данному раздражителю, затем на фоне некоторого снижения резервных возможностей организма включается система специфической адаптации и обеспечивается необходимое повышение функциональной активности организма. В безвыходных ситуациях, когда раздражитель чрезмерно силен, эффективная адаптация не формируется и сохраняется нарушение гомеостаза; стимулируемый этими нарушениями стресс достигает чрезвычайной интенсивности и длительности; в такой ситуации возможно развитие заболеваний.

В процессе трудовой деятельности человек расплачивается за адаптацию к производственным факторам. Расплата за эффективный труд или оптимальный результат трудовой деятельности носит название «цена адаптации», причем нередко расплата формируется в виде перенапряжения или длительного снижения функциональной активности механизмов нервной регуляции как наиболее легко ранимых и ответственных за постоянство внутренней среды.

В организме человека функционирует ряд систем обеспечения безопасности. К ним относятся глаза, уши, нос, костно-мышечная система, кожа, система иммунной защиты. Например, глаза имеют веки –две кожно-мышечные складки, закрывающие глазное яблоко при смыкании. Веки несут функцию защиты глазного яблока, предохраняя орган зрения от чрезмерного светового потока и механического повреждения, способствуют увлажнению его поверхности и удалению со слезой инородных тел. Уши при чрезмерно громких звуках обеспечивают защитную реакцию: две самые маленькие мышцы среднего уха резко сокращаются, и три самых маленьких косточки (молоточек, наковальня и стремячко) перестают колебаться, наступает блокировка, и система косточек не пропускает во внутреннее ухо чрезмерно сильных звуковых колебаний.

Чихание относится к группе защитных реакций и представляет собой форсированный выдох через нос (при кашле – форсированный выдох через рот). Благодаря высокой скорости, воздушная струя уносит из полости носа попавшие туда инородные тела и раздражающие агенты.

Слезотечение возникает при попадании раздражающих веществ на слизистую оболочку верхних дыхательных путей: носа, носоглотки, трахеи и бронхов. Слеза выделяется не только наружу, но и попадает через слезоносный канал в полость носа, смывая тем самым раздражающее вещество (поэтому «хлюпают» носом при плаче).

Боль возникает при нарушении нормального течения физиологических процессов в организме вследствие воздействия вредных факторов. Субъективно, человек воспринимает боль как тягостное, гнетущее ощущение. Объективно боль, сопровождается некоторыми вегетативными реакциями (расширением зрачков, повышением кровяного давления, бледностью кожных покровов лица и др.). Характер болевых ощущений зависит от особенностей конкретного органа и силы разрушительного воздействия. Например, боль при повреждении кожи отличается от головной боли, при травме нервных стволов возникает жгучее болевое ощущение – каузалгия. Болевое ощущение как защитная реакция нередко указывает на локализацию процесса. В зависимости от локализации различают два типа симптоматических болевых ощущений: висцеральные и соматические. Висцеральные боли появляются при заболевании или травме внутренних органов (сердца, желудка, печени, почек и др.); для них характерно сильное болевое ощущение и широкая иррадиация, возможна «отраженная боль», которая ощущается далеко от проекции пораженного органа, иногда в другой части тела. Соматические боли возникают при патологических процессах в коже, костях, мышцах, они локализованы и наиболее отчетливо выполняют функцию естественной защиты информационным способом.

Еще один пример естественной системы защиты –движение. Активное движение нередко приглушает душевную и физическую боль. Этот механизм бдительно стоит на страже нервного благополучия, готовый в случае надобности предохранить мозг от слишком большого горя и слишком большой радости.

В организме человека функционирует система иммунной защиты. Иммунитет – это свойство организма, обеспечивающее его устойчивость к действию чужеродных белков, болезнетворных (патогенных) микробов и их ядовитых продуктов.

Различают естественный и приобретенный иммунитет. Естественный, или врожденный иммунитет – это видовой признак, передающийся по наследству (например, люди не заражаются чумой рогатого скота). Если микробы все-таки проникли в организм, их распространение задерживается благодаря развивающейся реакции воспаления. Печень, селезенка, лимфатические узлы также способны задерживать и частично обезвреживать продукты деятельности микробов.

Значительная роль в иммунитете принадлежит специфическим защитным факторам сыворотки крови – антителам, которые накапливаются в сыворотке после перенесенного заболевания, а также после искусственной иммунизации (прививок).

В процессе активной иммунизации изменяется чувствительность организма к повторному введению соответствующего антигена, т. е. изменяется иммунореактивность организма в форме повышения или понижения чувствительности отдельных органов и тканей к микробам, ядам или другим антигенам. Изменение иммунореактивности не всегда полезно для организма: при повышении чувствительности к какому-нибудь антигену могут развиться аллергические заболевания. Иммуно-логическая реактивность существенно зависит от возраста: у новорожденных она резко снижена, у пожилых развита слабее, чем у лиц среднего возраста.

ВОЗДЕЙСТВИЕ НЕГАТИВНЫХ ФАКТОРОВ И ИХ НОРМИРОВАНИЕ

При оценке допустимости воздействия вредных факторов на организм человека исходят из биологического закона субъективной количественной оценки…      

Вредные вещества

В настоящее время известно около 7 млн. химических веществ и соединений (далее вещество), из которых 60 тыс. находят применение в деятельности… Вредным называется вещество, которое при контакте с организмом человека может… Химические вещества (органические, неорганические, элементорганические) в зависимости от их практического…

Таблица 3.2. Токсикологическая классификация вредных веществ

 

Общее токсическое воздействие Токсичные вещества
Нервно-паралитическое действие (брон-хоспазм, удушье, судороги и параличи) Кожно-резорбтивное действие (местные воспалительные и некротические изменения в сочетании с общетоксическими резорбтивными явлениями) Общетоксическое действие (гипоксические судороги, кома, отек мозга, параличи) Удушающее действие (токсический отек легких) Слезоточивое и раздражающее действие (раздражение наружных слизистых оболочек) Психотическое действие (нарушение психической активности, сознания) Фосфорорганические инсектициды (хлорофос, карбофос, никотин, 0В и др.)   Дихлорэтан, гексахлоран, уксусная эссенция, мышьяк и его соединения, ртуть (сулема)   Синильная кислота и ее производные, угарный газ, алкоголь и его суррогаты, 0В Оксиды азота, 0В   Пары крепких кислот и щелочей, хлорпикрин, 0В   Наркотики, атропин

 

Яды, наряду с общей, обладают избирательной токсичностью, т. е. они представляют наибольшую опасность для определенного органа или системы организма. По избирательной токсичности выделяют яды:

– сердечные с преимущественным кардиотоксическим действием; к этой группе относят многие лекарственные препараты, растительные яды, соли металлов (бария, калия, кобальта, кадмия);

– нервные, вызывающие нарушение преимущественно психической активности (угарный газ, фосфорорганические соединения, алкоголь и его суррогаты, наркотики, снотворные лекарственные препараты и др.);

– печеночные, среди которых особо следует выделить хлорированные углеводороды, ядовитые грибы, фенолы и альдегиды;

– почечные – соединения тяжелых металлов этиленгликоль, щавелевая кислота;

– кровяные –анилин и его производные, нитриты, мышьяковистый водород;

– легочные – оксиды азота, озон, фосген и др.

Показатели токсиметрии и критерии токсичности вредных веществ – это количественные показатели токсичности и опасности вредных веществ. Токсический эффект при действии различных доз и концентраций ядов может проявиться функциональными и структурными (патоморфологическими) изменениями или гибелью организма. В первом случае токсичность принято выражать в виде действующих, пороговых и недействующих доз и концентраций, во втором – в виде смертельных концентраций.

Смертельные, или летальные дозы DL при введении в желудок или в организм другими путями или смертельные концентрации CL могут вызывать единичные случаи гибели (минимальные смертельные) или гибель всех организмов (абсолютно смертельные). В качестве показателей токсичности пользуются среднесмертельными дозами и концентрациями: DL50, CL50это показатели абсолютной токсичности. Среднесмертельная концентрация вещества в воздухе CLso – это концентрация вещества, вызывающая гибель 50 % подопытных животных при 2–4-часовом ингаляционном воздействии (мг/м3); среднесмертельная доза при введении в желудок (мг/кг), обозначается как DL50реднесмертельная доза при нанесении на кожу DLК50.

Степень токсичности вещества определяется отношением 1/DL50 и 1/CL50; чем меньше значения токсичностиDL50 и CL50 тем выше степень токсичности.

Об опасности ядов можно судить также по значениям порогов вредного действия (однократного, хронического) и порога специфического действия.

Порог вредного действия (однократного или хронического) – это минимальная (пороговая) концентрация (доза) вещества, при воздействии которой в организме возникают изменения биологических показателей на организменном уровне, выходящие за пределы приспособительных реакций, или скрытая (временно компенсированная) патология. Порог однократного действия обозначается Limac порог хронического Limch порог специфического Limsp.

Опасность вещества –это вероятность возникновения неблагоприятных для здоровья эффектов в реальных условиях производства или применении химических соединений.

Возможность острого отравления может оцениваться коэффициентом опасности внезапного острого ингаляционного отравления (КОВОИО)

 

КОВОИО=Cгo/(CL50λ)

где Сго –насыщенная концентрация при температуре 20 °С; λ –коэффициент распределения газа между кровью и воздухом.

При утечке газа или летучего вещества возможность острого отравления тем выше, чем выше насыщающая концентрация при температуре 20 °С. Если КОВОИО меньше 1 – опасность острого отравления мала, если КОВОИО выражается единицами, десятками и более, существует реальная опасность острого отравления при аварийной утечке промышленного яда, например, для паров этанола КОВОИО меньше 0,001, хлороформа около 7, формальгликоля около 600.

Если невозможно определить значение λ то вычисляют коэффициент возможности ингаляционного отравления (КВИО)

 

КВИО = C20/CL50.

 

О реальной опасности развития острого отравления можно судить также по значению зоны острого действия. Зона острого (однократного) токсического действияZacэто отношение среднесмертельной концентрации (дозы) вещества CL50 к пороговой концентрации (дозе) при однократном воздействии Cmin:Zac = Cl50/Cmin. Чем меньше зона, тем больше возможность острого отравления и наоборот. Показателем реальной опасности развития хронической интоксикации является значение зоны хронического действия Zch, т. е. отношение пороговой концентрации (дозы) при однократном воздействии Сmin к пороговой концентрации (дозе) при хроническом воздействии Limch. Чем больше зона хронического действия, тем выше опасность Zch= Cmin/Limch. Показатели токсикометрии определяют класс опасности вещества, определяющим является тот показатель, который свидетельствует о наибольшей степени опасности. Например, озон, будучи веществом остронаправленного действия, относится к 1-му классу опасности, его ПДК = 0,1 мг/м3; оксид углерода относится также к веществам остронаправленного действия, однако по показателям острой и хронической токсичности для него установлена ПДК = 20 мг/м3, 4-й класс опасности. В табл. 3.3 приведена классификация производственных вредных веществ по степени опасности.

 

Таблица 3.3. Классификация производственных вредных веществ
по степени опасности (ГОСТ 12.1.007–76)

 

Показатель Класс опасности
ПДК вредных веществ в воздухе рабочей зоны, мг/м Менее 0,1 0,1–1,0 1.1–10.0 Более 10
Средняя смертельная доза при введении в желудок DL50, мг/кг Менее 15 15–150 151–5000 Более 5000
Средняя смертельная доза при нанесении на кожу DLж50мг/кг Менее 100 100–500 501–2500 Более 2500
Средняя смертельная концентрация CL50 в воздухе, мг/м Менее 500 500–5000 5001–50000 Более 50000
Зона острого действия Zac Менее 6 6–18 18,1–54 Более 54
Зона хронического действия Zch Более 10 10–5 4,9–2.5 Менее 2,5
КВИО Более 300 300–30 29–3 Менее 3,0

 

Отравления протекают в острой, подострой и хронической формах. Острые отравления чаще бывают групповыми и происходят в результате аварий, поломок оборудования и грубых нарушений требований безопасности труда; они характеризуются кратковременностью действия токсичных веществ не более, чем в течение одной смены; поступлением в организм вредного вещества в относительно больших количествах – при высоких концентрациях в воздухе; ошибочном приеме внутрь; сильном загрязнении кожных покровов. Например, чрезвычайно быстрое отравление может наступить при воздействии паров бензина, сероводорода высоких концентраций и закончиться гибелью от паралича дыхательного центра, если пострадавшего сразу же не вынести на свежий воздух. Оксиды азота вследствие общетоксического действия в тяжелых случаях могут вызвать развитие комы, судороги, резкое падение артериального давления.

Хронические отравления возникают постепенно, при длительном поступлении яда в организм в относительно небольших количествах. Отравления развиваются вследствие накопления массы вредного вещества в организме (материальной кумуляции) или вызываемых ими нарушений в организме (функциональная кумуляция). Хронические отравления органов дыхания могут быть следствием перенесенной однократной или нескольких повторных острых интоксикаций. К ядам, вызывающим хронические отравления в результате только функциональной кумуляции, относятся хлорированные углеводороды, бензол, бензины и др.

При повторном воздействии одного и того же яда в субтоксической дозе может измениться течение отравления и кроме явления кумуляции развиться сенсибилизация и привыкание.

Сенсибилизация –состояние организма, при котором повторное воздействие вещества вызывает больший эффект, чем предыдущее. Эффект сенсибилизации связан с образованием в крови и других внутренних средах измененных и ставших чужеродными для организма белковых молекул, индуцирующих формирование антител. Повторное, даже более слабое токсическое воздействие с последующей реакцией яда с антителами вызывает извращенный ответ организма в виде явлений сенсибилизации. Более того, в случае предварительной сенсибилизации возможно развитие аллергических реакций, выраженность которых зависит не столько от дозы воздействующего вещества, сколько от состояния организма. Аллергизация значительно осложняет течение острых и хронических интоксикаций, нередко приводя к ограничению трудоспособности. К веществам, вызывающим сенсибилизацию, относятся бериллий и его соединения, карбонилы никеля, железа, кобальта, соединения ванадия и т. д.

При повторяющемся воздействии вредных веществ на организм можно наблюдать и ослабление эффектов вследствие привыкания. Для развития привыкания к хроническому воздействию яда необходимо, чтобы его концентрация (доза) была достаточной для формирования ответной приспособительной реакции и не чрезмерной, приводящей к быстрому и серьезному повреждению организма. При оценке развития привыкания к токсическому воздействию надо учитывать возможное развитие повышенной устойчивости к одним веществам после воздействия других. Это явление называют толерантностью.

Существуют адаптогены (витамины, женьшень, элеутерококк), способные уменьшить реакцию воздействия вредных веществ и увеличить устойчивость организма ко многим факторам окружающей среды, в том числе химическим. Однако следует иметь в виду, что привыкание является лишь фазой приспособительного процесса, и уловить грань между физиологической нормой и напряжением регуляторных механизмов не всегда удается. Перенапряжение же систем регуляции приводит к срыву адаптации и развитию патологических процессов.

На производстве, как правило, в течение рабочего дня концентрации вредных веществ не бывают постоянными. Они либо нарастают к концу смены, снижаясь за обеденный перерыв, либо резко колеблются, оказывая на человека интермиттирующее (непостоянное) действие, которое во многих случаях оказывается более вредным, чем непрерывное, так как частые и резкие колебания раздражителя ведут к срыву формирования адаптации. Неблагоприятное действие интермиттирующего режима отмечено при вдыхании оксида углерода СО.

Биологическое действие вредных веществ осуществляется через рецепторный аппарат клеток и внутриклеточных структур. Во многих случаях рецепторами токсичности являются ферменты (например, ацетилхолинэстераза), аминокислоты (цистеин, гистидин и др.), витамины, некоторые активные функциональные группы (сульфгидрильные, гидроксильные, карбоксильные, амино- и фосфорсодержащие), а также различные медиаторы и гормоны, регулирующие обмен веществ. Первичное специфическое действие вредных веществ на организм обусловлено образованием комплекса «вещество – рецептор». Токсическое действие яда проявляется тогда, когда минимальное число его молекул способно связывать и выводить из строя наиболее жизненно важные клетки-мишени. Например, токсины ботулинуса способны накапливаться в окончаниях периферических двигательных нервов и при содержании восьми молекул на каждую нервную клетку вызывать их паралич. Таким образом, 1 мг ботулинуса может уничтожить 1200 т живого вещества, а 200 г этого токсина способны погубить все население Земли.

Классификация веществ по характеру воздействия на организм и общие требования безопасности регламентируются ГОСТ 12.0.003–74*. Согласно ГОСТ вещества подразделяются на токсические, вызывающие отравление всего организма или поражающие отдельные системы (Ц НС, кроветворения), вызывающие патологические изменения печени, почек; раздражающие – вызывающие раздражение слизистых оболочек дыхательных путей, глаз, легких, кожных покровов; сенсибилизирующие, действующие как аллергены (формальдегид, растворители, лаки на основе нитро- и нитрозосоединений и др.); мутагенные, приводящие к нарушению генетического кода, изменению наследственной информации (свинец, марганец, радиоактивные изотопы и др.); канцерогенные, вызывающие, как правило, злокачественные новообразования (циклические амины, ароматические углеводороды, хром, никель, асбест и др.); влияющие на репродуктивную (детородную) функцию (ртуть, свинец, стирол, радиоактивные изотопы и др.).

Три последних вида воздействия вредных веществ – мутагенное, канцерогенное, влияние на репродуктивную функцию, а также ускорение процесса старения сердечно-сосудистой системы относят к отдаленным последствиям влияния химических соединений на организм. Это специфическое действие, которое проявляется в отдаленные периоды, спустя годы и даже десятилетия. Отмечается появление различных эффектов и в последующих поколениях. Эта классификация не учитывает агрегатного состояния вещества, тогда как для большой группы аэрозолей, не обладающих выраженной токсичностью, следует выделить фиброгенный эффект действия ее на организм. К ним относятся аэрозоли дезинтеграции угля, угольнопородные аэрозоли, аэрозоли кокса (каменноугольного, пекового, нефтяного, сланцевого), саж, алмазов, углеродных волокнистых материалов, аэрозоли (пыли) животного и растительного происхождения, силикатсодержащие пыли, силикаты, алюмосиликаты, аэрозоли дезинтеграции и конденсации металлов, кремнийсодержащие пыли.

Попадая в органы дыхания, вещества этой группы вызывают атрофию или гипертрофию слизистой верхних дыхательных путей, а задерживаясь в легких, приводят к развитию соединительной ткани в воздухообменной зоне и рубцеванию (фиброзу) легких. Профессиональные заболевания, связанные с воздействием аэрозолей, пневмокониозы и пневмосклерозы, хронический пылевой бронхит занимают второе место по частоте среди профессиональных заболеваний в России.

В зависимости от природы пыли, пневмокониозы могут быть различных видов: например, силикоз – наиболее частая и характерная форма пневмокониоза, развивающаяся при действии свободного диоксида кремния; силикатоз может развиваться при попадании в легкие аэрозолей солей кремниевой кислоты; асбестоз – одна из агрессивных форм силикатоза, сопровождающаяся фиброзом легких и нарушениями функций нервной и сердечно-сосудистой систем.

Наличие фиброгенного эффекта не исключает общетоксического воздействия аэрозолей. К ядовитым пылям относят аэрозоли ДДТ, триоксид хрома, свинца, бериллия, мышьяка и др. При попадании их в органы дыхания помимо местных изменений в верхних дыхательных путях развивается острое или хроническое отравление.

Большинство случаев профессиональных заболеваний и отравлений связано с поступлением токсических газов, паров и аэрозолей в организм человека главным образом через органы дыхания. Этот путь наиболее опасен, поскольку вредные вещества поступают через разветвленную систему легочных альвеол (100–120 м2) непосредственно в кровь и разносятся по всему организму. Развитие общетоксического действия аэрозолей в значительной степени связано с размером частиц пыли, так как пыль с частицами до 5 мкм (так называемая респирабельная фракция) проникает в глубокие дыхательные пути, в альвеолы, частично или полностью растворяется в лимфе и, поступая в кровь, вызывает картину интоксикации. Мелкодисперсную пыль трудно улавливать; она медленно оседает, витая в воздухе рабочей зоны.

Попадание ядов в желудочно-кишечный тракт возможно при несоблюдении правил личной гигиены: приеме пищи на рабочем месте и курении без предварительного мытья рук. Ядовитые вещества могут всасываться уже из полости рта, поступая сразу в кровь. К таким веществам относятся все жирорастворимые соединения, фенолы, цианиды. Кислая среда желудка и слабощелочная среда кишечника могут способствовать усилению токсичности некоторых соединений (например, сульфат свинца переходит в более растворимый хлорид свинца, который легко всасывается). Попадание яда (ртути, меди, церия, урана) в желудок может быть причиной поражения его слизистой.

Вредные вещества могут попадать в организм человека через неповрежденные кожные покровы, причем не только из жидкой среды при контакте с руками, но и в случае высоких концентраций токсических паров и газов в воздухе на рабочих местах. Растворяясь в секрете потовых желез и кожном жире, вещества могут легко поступать в кровь. К ним относятся легко растворимые в воде и жирах углеводороды, ароматические амины, бензол, анилин и др. Повреждение кожи, безусловно, способствует проникновению вредных веществ в организм.

Распределение ядовитых веществ в организме подчиняется определенным закономерностям. Первоначально происходит динамическое распределение вещества в соответствии с интенсивностью кровообращения. Затем основную роль начинает играть сорбционная способность тканей. Существуют три главных бассейна, связанных с распределением вредных веществ: внеклеточная жидкость (14 л для человека массой 70 кг), внутриклеточная жидкость (28 л) и жировая ткань. Поэтому распределение веществ зависит от таких физико-химических свойств, как водорастворимость, жирорастворимость и способность к диссоциации. Для ряда металлов (серебра, марганца, хрома, ванадия, кадмия и др.) характерно быстрое выведение из крови и накопление в печени и почках. Легко диссоциируемые соединения бария, бериллия, свинца образуют прочные соединения с кальцием и фосфором и накапливаются в костной ткани.

Очень важно отметить комбинированное действие вредных веществ на здоровье человека. На производстве и в окружающей среде редко встречается изолированное действие вредных веществ; обычно работающий на производстве подвергается сочетанному действию неблагоприятных факторов разной природы (физических, химических) или комбинированному влиянию факторов одной природы, чаще ряду химических веществ. Комбинированное действие – это одновременное или последовательное действие на организм нескольких ядов при одном и том же пути поступления. Различают несколько типов комбинированного действия ядов в зависимости от эффектов токсичности: аддитивного, потенцированного, антогонистического и независимого действия.

Аддитивное действие–это суммарный эффект смеси, равный сумме эффектов действующих компонентов. Аддитивность характерна для веществ однонаправленного действия, когда компоненты смеси оказывают влияние на одни и те же системы организма, причем при количественно одинаковой замене компонентов друг другом токсичность смеси не меняется. Для гигиенической оценки воздушной среды при условии аддитивного действия ядов используют уравнение (0.1) в виде:

 

 

где C1, С2, ..., Сп –концентрации каждого вещества в воздухе, мг/м3;

ПДК1 ПДК2, ..., ПДКn–предельно допустимые концентрации этих веществ, мг/м3.

Примером аддитивности является наркотическое действие смеси углеводородов (бензола и изопропилбензола).

При потенцированном действии (синергизме) компоненты смеси действуют так, что одно вещество усиливает действие другого. Эффект комбинированного действия при синергизме выше, больше аддитивного и это учитывается при анализе гигиенической ситуации в конкретных производственных условиях. Однако количественной оценки это явление не получило. Потенцирование отмечается при совместном действии диоксида серы и хлора; алкоголь повышает опасность отравления анилином, ртутью и некоторыми другими промышленными ядами. Явление потенцирования возможно только в случае острого отравления.

Антагонистическое действие – эффект комбинированного действия менее ожидаемого. Компоненты смеси действуют так, что одно вещество ослабляет действие другого, эффект – менее аддитивного. Примером может служить антидотное (обезвреживающее) взаимодействие между эзерином и атропином.

При независимом действии комбинированный эффект не отличается от изолированного действия каждого яда в отдельности. Преобладает эффект наиболее токсичного вещества. Комбинации веществ с независимым действием встречаются достаточно часто, например бензол и раздражающие газы, смесь продуктов сгорания и пыли.

Наряду с комбинированным влиянием ядов возможно их комплексное действие, когда яды поступают в организм одновременно, но разными путями (через органы дыхания и желудочно-кишечный тракт, органы дыхания и кожу и т. д.).

Пути обезвреживания ядов различны. Первый и главный из них – изменение химической структуры ядов. Так, органические соединения в организме подвергаются чаще всего гидроксилированию, ацетилированию, окислению, восстановлению, расщеплению, метилированию, что в конечном итоге приводит большей частью к возникновению менее ядовитых и менее активных в организме веществ.

Не менее важный путь обезвреживания – выведение яда через органы дыхания, пищеварения, почки, потовые и сальные железы, кожу. Тяжелые металлы, как правило, выделяются через желудочно-кишечный тракт, органические соединения алифатического и ароматического рядов –в неизменном виде через легкие и частично после физико-химических превращений через почки и желудочно-кишечный тракт. Определенную роль в относительном обезвреживании ядов играет депонирование (задержка в тех или иных органах). Депонирование является временным путем уменьшения содержания яда, циркулируемого в крови. Например, тяжелые металлы (свинец, кадмий) часто откладываются в депо: костях, печени, почках, некоторые вещества – в нервной ткани. Однако яды из депо могут вновь поступать в кровь, вызывая обострение хронического отравления.

Для ограничения неблагоприятного воздействия вредных веществ применяют гигиеническое нормирование их содержания в различных средах. В связи с тем, что требование полного отсутствия промышленных ядов в зоне дыхания работающих часто невыполнимо, особую значимость приобретает гигиеническая регламентация содержания вредных веществ в воздухе рабочей зоны (ГОСТ 12.1.005–88). Такая регламентация в настоящее время проводится в три этапа: 1) обоснование ориентировочного безопасного уровня воздействия (ОБУВ); 2) обоснование ПДК; 3) корректирование ПДК с учетом условий труда работающих и состояния их здоровья. Установлению ПДК может предшествовать обоснование ОБУВ в воздухе рабочей зоны, атмосфере населенных мест, в воде, почве.

Ориентировочный безопасный уровень воздействия устанавливают временно, на период, предшествующий проектированию производства. Значение ОБУВ определяется путем расчета по физико-химическим свойствам или путем интерполяций и экстраполяции в гомологических рядах (близких по строению) соединений или по показателям острой токсичности. ОБУВ должны пересматриваться через два года после их утверждения.

Предельно допустимая концентрация вредных веществ в воздухе рабочей зоны –это концентрации, которые при ежедневной (кроме выходных дней) работе в продолжение 8 ч или при другой длительности, но не превышающей 41 ч в неделю, в течение всего рабочего стажа не могут вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего или последующего поколений.

Исходной величиной для установления ПДК является порог хронического действия Limch, в который вводится коэффициент запаса K3:

 

ПДК=Limch/K3

 

ПДК устанавливают на уровне в 2–3 раза более низком, чем Limch. При обосновании коэффициента запаса учитывают КВИО, выраженные кумулятивные свойства, возможность кожно-резорбтивного действия, чем они значительнее, тем больше избираемый коэффициент запаса. При выявлении специфического действия – мутагенного, канцерогенного, сенсибилизирующего –принимаются наибольшие значения коэффициента запаса (10 и более).

До недавнего времени ПДК химических веществ оценивали как максимально разовые ПДКмр. Превышение их даже в течение короткого времени запрещалось. В последнее время для веществ, обладающих кумулятивными свойствами (меди, ртути, свинца и др.), для гигиенического контроля введена вторая величина –среднесменная концентрация ПДКсс. Это средняя концентрация, полученная путем непрерывного или прерывистого отбора проб воздуха при суммарном времени не менее 75 % продолжительности рабочей смены, или средневзвешенная концентрация в течение смены в зоне дыхания работающих на местах постоянного или временного их пребывания.

Содержание вредных веществ в воздухе рабочей зоны не должно превышать установленных ПДК. В качестве примера в табл. 3.4 приведены ПДК некоторых веществ.

 

Таблица 3.4. Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны по ГОСТ 12.1.005–85 (извлечение)

 

Наименование вещества ПДК. мг/м3 Преимущественное агрегатное состояние в условиях производства Класс опасности Особенности действия на организм  
Азота диоксид П О  
Акрилонитрил+ 0,5 П А  
Алюминий и его сплавы (в пересчете на алюминий) а Ф  
Аминопласты (пресс-порошки) а Ф,А  
Ангидрид серный + (триоксид серы) а    
Ангидрид сернистый + (диоксид серы) П  
Бензол + 15/5 П К
Бснз(а)пирен 0.00015 а К
Водород фтористый (в пересчете на F) 0.5/0.1 п О
Медь 1/0,5 а  
Никеля карбонил 0.0005 п O,K,A
Ртуть металлическая 0.01/0,005 п  
Свинец и его неорганические соединения (по РЬ) 0.01/0.005 а  
Углерода оксид* п О
Этилмеркурхлорид (гранозан), по Hg 0,005 п+а А
             

 

* При длительности работы в атмосфере, содержащей оксид углерода СО, не более 1 ч ПДК СО может быть превышена до 50 мг/м3, при длительности работы не более 30 мин –до 100 мг/м3, не более 15 мин – 200 мг/м3. Повторные работы при условии повышенного содержания оксида углерода в воздухе рабочей зоны могут производиться с перерывом не менее 2 ч

 

Примечания. 1. Значения ПДК приведены по состоянию на 01.01.88. Если в графе «ПДК» приведено две величины, то это означает, что в числителе дана максимальная, а в знаменателе – среднесменная ПДК.2. Условные обозначения: п – пары и (или) газы; а –аэрозоль; п+а –смесь поров и аэрозоля; О –вещество с остронапровлспным механизмом действия, требующее автоматического контроля за его содержанием в воздухе; А – вещества, способные вызывать аллергические заболевания; К – канцерогены; Ф – аэрозоли преимущественно фиброгенного действия. 3. + – требуется специальная защита кожи и глаз

 

Для веществ, обладающих кожно-резорбтивным действием, обосновывается предельно допустимый уровень загрязнения кожи (мг/см2) в соответствии с СН 4618–88 (табл. 3.5).

Содержание веществ в атмосферном воздухе населенных мест также регламентируется ПДК, при этом нормируется среднесуточная концентрация вещества. Кроме того, для атмосферы населенных мест устанавливают максимальную разовую величину.

Предельно допустимые концентрации вредных веществ в воздухе населенных мест –максимальные концентрации, отнесенные к определенному периоду осреднения (30 мин, 24 ч, 1 мес, 1 год) и не оказывающие при регламентированной вероятности их появления ни прямого, ни косвенного вредного воздействия на организм человека, включая отдаленные последствия для настоящего и последующих поколений, не снижающие работоспособности человека и не ухудшающие его самочувствия.

 

Таблица 3.5. Предельно допустимые уровни загрязнения кожи рук работающих
с вредными веществами по СН 4618–88 (извлечение)

 

Наименование вещества ПДУ, мг/см2 Наименование вещества ПДУ. мг/см2
Бензол 0,05 Метилтестостерон 0,0003
Жирные спирты фракции С5–С10 (амиловый, гексиловый, гептиловый, октиловый, нониловый, дециловый) 0,02 Нитрил акриловой кислоты Нитробензол 0,001   2,4
Ксилидин 0,08 Металлическая сурьма 0,001 (по сурьме)
Ксилол 1,75 Толуол 0,05
Метиловый спирт (метанол) 0,02 Хлорбензол 0,8

 

Максимальная (разовая) концентрация ПДКмр – наиболее высокая из числа 30-минутных концентраций, зарегистрированных в данной точке за определенный период наблюдения.

В основу установления максимальной разовой ПДК положен принцип предотвращения рефлекторных реакций у человека.

Среднесуточная концентрация ПДКсс – средняя из числа концентраций, выявленных в течение суток или отбираемая непрерывно в течение 24 ч.

В основу определения среднесуточной концентрации положен принцип предотвращения резорбтивного (общетоксического) действия на организм.

Если порог токсического действия для какого-то вещества оказывается менее чувствительным, то решающим в обосновании ПДК является порог рефлекторного воздействия как наиболее чувствительный. В подобных случаях ПДКмр > ПДКсс, например, для бензина и акролеина. Если же порог рефлекторного действия менее чувствителен, чем порог токсического действия, то принимают ПДКмр = ПДКсс. Существует группа веществ, у которых отсутствует порог рефлекторного действия (мышьяк, марганец и др.) или он выражен недостаточно четко [оксид ванадия (V)]. Для таких веществ ПДКмр не нормируется, а устанавливается лишь ПДКсс. Эти концентрации определены списком № 3086–84, утвержденным МЗ России (табл. 3.6).

Нормирование качества воды рек, озер и водохранилищ проводят в соответствии с «Санитарными правилами и нормами охраны поверхностных вод от загрязнения» № 4630–88 МЗ СССР двух категорий: I – водоемы хозяйственно-питьевого и культурно-бытового назначения и II –рыбохозяйственного назначения.

 

Таблица 3.6. Предельно допустимые концентрации некоторых вредных веществ (мг/м3)
в атмосферном воздухе населенных мест (извлечения)

 

Вещество ПДКмр ПДКсс Класс опасности
Диоксид азота 0,085 0,04
Оксид азота 0,6 0,06
Бенз(а)пирен 0,1 мгк/100 м3
Бензол 1,5 0,1
Диоксид серы 0,5 0,05
Неорганическая пыль 0,15 0,05
Свинец и его соединения, кроме тетраэтилсвинца (в пересчете на Рь) 0,0003
Оксид углерода

 

Правила устанавливают нормируемые значения для следующих параметров воды водоемов: содержание плавающих примесей и взвешенных веществ, запах, привкус, окраска и температура воды, значение рН, состав и концентрации минеральных примесей и растворенного в воде кислорода, биологическая потребность воды в кислороде, состав и ПДКв ядовитых и вредных веществ и болезнетворных бактерий.

Лимитирующий показатель вредности (ЛПВ) для водоемов хозяйственно-питьевого и культурно-бытового назначения используют трех видов: санитарно-токсикологический, общесанитарный и органолептический; для водоемов рыбохозяйственного назначения наряду с указанными используют еще два вида ЛПВ: токсикологический и рыбохозяйственный.

В табл. 3.7 представлены ПДКв некоторых веществ для водоемов.

 

Таблица 3.7. ПДКв некоторых веществ для водоемов (извлечения)

 

Вещество Водоемы I категории Водоемы II категории
ЛПВ ПДКв, г/м3 (мг/л) ЛПВ ПДКв, г/м3 (мг/л)
Бензол Санитарно-токсикологический 0,5 Токсикологический 0,5
Фенолы Органолептический 0,001 Рыбохозяйственный 0,001
Бензин, керосин То же 0,1 То же 0,01
Си 2+ (медь) Общесанитарный 1,0 Токсикологический 0,01

 

Санитарное состояние водоема отвечает требованиям норм при выполнении следующего соотношения:

 

 

где Сim– концентрация вещества i-го ЛПВ в расчетном створе водоема; ПДКi–предельно допустимая концентрация i-го вещества.

Для водоемов хозяйственно-питьевого и культурно-бытового назначения проверяют выполнение трех, а для водоемов рыбохозяйственного назначения – пяти неравенств. При этом каждое вещество можно учитывать только в одном неравенстве.

Гигиенические и технические требования к источникам водоснабжения и правила их выбора в интересах здоровья населения регламентируются ГОСТ 2761–84*. Гигиенические требования к качеству питьевой воды централизованных систем питьевого водоснабжения указаны в санитарных правилах и нормах СанПиН 2.1.4.559–96 и СанПиН 2.1.4.544–966.

Нормирование химического загрязнения почв осуществляется по предельно допустимым концентрациям (ПДКп). Это концентрация химического вещества (мг) в пахотном слое почвы (кг), которая не должна вызывать прямого или косвенного отрицательного влияния на соприкасающиеся с почвой среды и здоровье человека, а также на самоочищающую способность почвы. По своей величине ПДКп значительно отличается от принятых допустимых концентраций для воды и воздуха. Это отличие объясняется тем, что поступление вредных веществ в организм непосредственно из почвы происходит в исключительных случаях в незначительных количествах, в основном через контактирующие с почвой среды (воздух, воду, растения).

 

Таблица 3.8. ПДКп для почвы

 

Вещество ПДКп. мг/кг Вещество ПДКп, мг/кг
Марганец 1500 по ОС Бромфос 0,4 по ТВ
Мышьяк 2 по ОС Перхлордивинил 0,5 по ТВ
Ртуть 2,1 по ОС Изопропилбензол 0,5 по МА
Свинец 20 по ОС Фосфора оксид P20s 200 по ТВ
Хром 0,05 по MB α-Метилстирол 0,5 по МА
Бенз(а)пирен 0,02 по ОС Формальдегид 7 по ОС

 

Регламентирование загрязнения осуществляется в соответствии с нормативными документами. Различают четыре разновидности ПДКп (табл. 3.8) в зависимости от пути миграции химических веществ в сопредельные среды: ТВ –транслокационный показатель, характеризующий переход химического вещества из почвы через корневую систему в зеленую массу и плоды растений; МА–миграционный воздушный показатель, характеризующий переход химического вещества из почвы в атмосферу; MB – миграционный водный показатель, характеризующий переход химического вещества из почвы в подземные грунтовые воды и водные источники; ОС – общесанитарный показатель, характеризующий влияние химического вещества на самоочищающую способность почвы и микробиоценоз.

Для оценки содержания вредных веществ в почве проводят отбор проб на участке площадью 25 м2 в 3...5 точках по диагонали с глубины 0,25м, а при выяснении влияния загрязнений на грунтовые воды –с глубины 0,75...2 м в количестве 0,2...1 кг. В случае применения новых химических соединений, для которых отсутствуют ПДКп, рассчитывают временные допустимые концентрации

 

ВДКп =1,23 + 0,48 ПДКпр,

 

где ПДКпр – предельно допустимая концентрация для продуктов питания (овощных и плодовых культур), мг/кг.

К профессиональным заболеваниям, вызываемым воздействием вредных веществ, относятся острые и хронические интоксикации, протекающие с изолированным или сочетанным поражением органов и систем: токсическое поражение органов дыхания (ринофаринголарингит, эрозия, перфорация носовой перегородки, трахеит, бронхит, пневмосклероз и др.), токсическая анемия, токсический гепатит, токсическая нефропатия, токсическое поражение нервной системы (по-линевропатия, неврозоподобные состояния, энцефалопатия), токсическое поражение глаз (катаракта), конъюнктивит, кератоконъюнктивит, токсическое поражение костей: остеопороз, остеосклероз. В эту же группу входят болезни кожи, металлическая, фторопластовая (тефлоновая) лихорадка, аллергические заболевания, новообразования.

Следует иметь в виду возможность развития профессиональных опухолевых заболеваний, особенно органов дыхания, печени, желудка и мочевого пузыря, лейкозы при длительных контактах с продуктами перегонки каменного угля, нефти, сланцев, с соединениями никеля, хрома, мышьяка, винилхлоридом, радиоактивными веществами и т. д.

Профессиональные заболевания, вызываемые воздействием промышленных аэрозолей: пневмокониозы (силикоз, силикатозы, металлокониозы, карбокониозы, пневмокониозы от смешанной пыли, пневмокониозы от пыли пластмасс), биссиноз, хронический бронхит.

Происходит постоянный рост частоты профессиональных заболеваний аллергической природы: конъюнктивиты и риниты, бронхиальная астма и астматический бронхит, токсикодермия и экзема, токсикоаллергический гепатит при воздействии химических веществ – аллергенов. Среди них существенное место занимают лекарственные препараты, например витамины и сульфаниламиды, вещества биологической природы (гормональные и ферментные препараты и т. д.).

Факторы среды обитания, распространенные в условиях населенных мест, могут приводить к росту общих заболеваний, развитие и течение которых провоцируется неблагоприятным влиянием окружающей среды. К ним относятся респираторно-аллергические заболевания органов дыхания, болезни сердечно-сосудистой системы, печени, почек, селезенки, нарушение детородной функции женщин, увеличение числа детей, родившихся с пороками, снижений половой функции мужчин, рост онкологических заболеваний (см. табл. 0.5).

 

Вибрации и акустические колебания

В зависимости от способа передачи колебаний человеку, вибрацию подразделяют на общую, передающуюся через опорные поверхности на тело сидящего или… По направлению действия вибрацию подразделяют на: вертикальную,… По временной характеристике различают: постоянную вибрацию, для которой контролируемый параметр за время наблюдения…

Таблица 3.9. Коэффициент повышения риска вибрационной болезни в зависимости от уровня сопутствующею шума, температуры окружающей среды и категории тяжести работ

 

Уровень звука, дБ А    
Кш 1.25   1.5   1,75  
Изменение уровня звука на 1 дБ А соответствует Кш = 0,025
Температура воздуха рабочей зоны, ˚С +20 +10   –10 –20   -30
Кто 1,8 2,6 3,4 4,2
Изменение температуры воздуха на 1 ˚С соответствует Кто=0,8
Категория тяжести труда I   II   III   IV  
Ктяж   1,2   1,5    

Пример. Работа с перфоратором ПТ-29 (Lэкв 128 дБ) производится при температуре 4 ˚C и сопровождается шумом уровнем Lэкв = 116 дБ. Необходимо определить срок и вероятность риска вибрационной болезни в этих условиях Известно, что на пятом году работы без усугубляющих факторов вероятность вибрационной болезни составляет 1,4 %. Коэффициенты влияния сопутствующих факторов (шума и охлаждения) соответственно равны Кш = (116–80)0,025 + 1 = 1,9, Кто == (20–4)0,08 + 1 = 2,28. Категория тяжести труда –III, Ктяж =1,5.

Отсюда, вероятность вибрационной болезни составляет 1,4·1,9·2,28·1,5 = 9,1 % при стаже 5 лет. Сопутствующие факторы увеличили риск вибрационной болезни в 6,5 раз (9,1:1,4).

 

Длительное систематическое воздействие вибрации приводит к развитию вибрационной болезни (ВБ), которая включена в список профессиональных заболеваний. Эта болезнь диагностируется, как правило, у работающих на производстве; в условиях населенных мест (ВБ) не регистрируется, несмотря на наличие многих источников вибрации (наземный и подземный транспорт, промышленные источники и др.). Лица, подвергающиеся воздействию вибрации окружающей среды, чаще болеют сердечно-сосудистыми и нервными заболеваниями и обычно предъявляют много жалоб общесоматического характера.

Гигиеническое нормирование вибраций регламентирует параметры производственной вибрации и правила работы с виброопасными механизмами и оборудованием, ГОСТ 12.1.012–90 «ССБТ. Вибрационная безопасность. Общие требования», Санитарные нормы СН 2.2.4/2.1.8.556–96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий». Документы устанавливают: классификацию вибраций, методы гигиенической оценки, нормируемые параметры и их допустимые значения, режимы труда лиц виброопасных профессий, подвергающихся воздействию локальной вибрации, требования к обеспечению вибробезопасности и к вибрационным характеристикам машин.

При гигиенической оценке вибраций нормируемыми параметрами являются средние квадратичные значения виброскорости v (и их логарифмические уровни Lv) или виброускорения для локальных вибраций в октавных полосах частот, а для общей вибрации – в октавных или треть октавных полосах. Допускается интегральная оценка вибрации во всем частотном диапазоне нормируемого параметра, а также по дозе вибрации D с учетом времени воздействия. Допустимые значения Lv представлены в табл. 3.10.

Для общей и локальной вибрации зависимость допустимого значения виброскорости vt (м/с) от времени фактического воздействия вибрации, не превышающего 480 мин, определяется по формуле:

 

 

где V480 –допустимое значение виброскорости для длительности воздействия 480 мин, м/с.

Максимальное значение vt для локальной вибрации не должно превышать значений, определяемых для T= 30 мин, а для общей вибрации при T= 10 мин.

При регулярных перерывах воздействия локальной вибрации в течение рабочей смены допустимые значения уровня виброскорости следует увеличивать на значения, приведенные ниже.

 

Суммарное время перерыва при воздействии вибрации в течение 1 ч работы, мин... До 20 Св. 20 до 30 Св. 30 до 40 Св.40
Увеличение уровня виброскорости ΔLv, дБ

 

Допустимые уровни вибрации в жилых домах, условия и правила их измерения и оценки регламентируются Санитарными нормами СН 2.2.4/2.18.566–96. Основными нормируемыми параметрами вибрации являются средние квадратичные величины уровней виброскорости и виброускорения в октавных полосах частот.

Акустические колебания. Физическое понятие об акустических колебаниях охватывает как слышимые, так и неслышимые колебания упругих сред. Акустические колебания в диапазоне 16 Гц...20 кГц, воспринимаемые человеком с нормальным слухом, называют звуковыми, с частотой менее 16 Гц–инфразвуковыми, выше 20 кГц– ультразвуковыми. Распространяясь в пространстве, звуковые колебания создают акустическое поле.

Ухо человека может воспринимать и анализировать звуки в широком диапазоне частот и интенсивностей. Область слышимых звуков ограничена двумя пороговыми кривыми: нижняя – порог слышимости, верхняя – порог болевого ощущения. Самые низкие значения порогов лежат в диапазоне 1...5 кГц. Порог слуха молодого человека составляет 0 дБ на частоте 1000 Гц, на частоте 100 Гц порог слухового восприятия значительно выше, так как ухо менее чувствительно к звукам низких частот. Болевым порогом принято считать звук с уровнем 140 дБ, что соответствует звуковому давлению 200 Па и интенсивности 100 Вт/м2. Звуковые ощущения оцениваются по порогу дискомфорта (слабая боль в ухе, ощущение касания, щекотания).

 

Таблица 3.10. Гигиенические нормы вибраций по ГОСТ 12.1.012–92 (извлечение).

 

Вид вибрации Допустимый уровень виброскорости, дБ, в октавных полосах со среднегеометрическими частотами, Гц  
31,5  
Общая транспортная: вертикальная горизонтальная Транспортно-технологическая Технологическая -- -- -- --
- - - -  
- - - - -  
- - - - -  
В производственных помещениях, где нет машин, генерирующих вибрацию - - - - -  
В служебных помещениях, здравпунктах, конструкторских бюро, лабораториях - - - - -  
Локальная вибрация - - -  
   

 

 


Шум определяют как совокупность апериодических звуков различной интенсивности и частоты. Окружающие человека шумы имеют разную интенсивность: разговорная речь – 50...60 дБ А, автосирена – 100 дБ А, шум двигателя легкового автомобиля –80 дБ А, громкая музыка –70 дБ А, шум от движения трамвая –70...80 дБ А, шум в обычной квартире –30...40 дБ А.

По спектральному составу в зависимости от преобладания звуковой энергии в соответствующем диапазоне частот различают низко-,средне-и высокочастотные шумы, по временным характеристикам – постоянные и непостоянные, последние, в свою очередь, делятся на колеблющиеся, прерывистые и импульсные, по длительности действия – продолжительные и кратковременные. С гигиенических позиций придается большое значение амплитудно-временным, спектральным и вероятностным параметрам непостоянных шумов, наиболее характерных для современного производства.

Интенсивный шум на производстве способствует снижению внимания и увеличению числа ошибок при выполнении работы, исключительно сильное влияние оказывает шум на быстроту реакции, сбор информации и аналитические процессы, из-за шума снижается производительность труда и ухудшается качество работы. Шум затрудняет своевременную реакцию работающих на предупредительные сигналы внутрицехового транспорта (автопогрузчиков, мостовых кранов и т. п.), что способствует возникновению несчастных случаев на производстве.

В биологическом отношении шум является заметным стрессовым фактором, способным вызвать срыв приспособительных реакций. Акустический стресс может приводить к разным проявлениям: от функциональных нарушений регуляции ЦНС до морфологически обозначенных дегенеративных деструктивных процессов в разных органах и тканях. Степень шумовой патологии зависит от интенсивности и продолжительности воздействия, функционального состояния ЦНС и, что очень важно, от индивидуальной чувствительности организма к акустическому раздражителю. Индивидуальная чувствительность к шуму составляет 4...17 % . Считают, что повышенная чувствительность к шуму определяется сенсибилизированной вегетативной реактивностью, присущей 11 % населения. Женский и детский организм особенно чувствительны к шуму. Высокая индивидуальная чувствительность может быть одной из причин повышенной утомляемости и развития различных неврозов.

Шум оказывает влияние на весь организм человека: угнетает ЦНС, вызывает изменение скорости дыхания и пульса, способствует нарушению обмена веществ, возникновению сердечно-сосудистых заболеваний, гипертонической болезни, может приводить к профессиональным заболеваниям.

Шум с уровнем звукового давления до 30...35 дБ привычен для человека и не беспокоит его. Повышение этого уровня до 40...70 дБ в условиях среды обитания создает значительную нагрузку на нервную систему, вызывая ухудшение самочувствия и при длительном действии может быть причиной неврозов. Воздействие шума уровнем свыше 75 дБ может привести к потере слуха – профессиональной тугоухости. При действии шума высоких уровней (более 140 дБ) возможен разрыв барабанных перепонок, контузия, а при еще более высоких (более 160 дБ) и смерть.

Специфическое шумовое воздействие, сопровождающееся повреждением слухового анализатора, проявляется медленно прогрессирующим снижением слуха. У некоторых лиц серьезное шумовое повреждение слуха может наступить в первые месяцы воздействия, у других –потеря слуха развивается постепенно, в течение всего периода работы на производстве. Снижение слуха на 10 дБ практически неощутимо, на 20 дБ – начинает серьезно мешать человеку, так как нарушается способность слышать важные звуковые сигналы, наступает ослабление разборчивости речи.

Оценка состояния слуховой функции базируется на количественном определении потерь слуха и производится по показателям аудио-метрического исследования. Основным методом исследования слуха является тональная аудиометрия. При оценке слуховой функции определяющими приняты средние показатели порогов слуха в области восприятия речевых частот (500, 1000, 2000 Гц), а также потеря слухового восприятия в области 4000 Гц.

Критерием профессионального снижения слуха принят показатель средней арифметической величины снижения слуха в речевом диапазоне, равный 11 дБ и более. Помимо патологии органа слуха при воздействии шума наблюдаются отклонения в состоянии вестибулярной функции, а также общие неспецифические изменения в организме; рабочие жалуются на головные боли, головокружение, боли в области сердца, повышение артериального давления, боли в области желудка и желчного пузыря, изменение кислотности желудочного сока.Шумвызывает снижение функции защитных систем и общей устойчивости организма к внешним воздействиям.

Нормируемые параметры шума на рабочих местах определены ГОСТ 12.1.003–83* и Санитарными нормами СН 2.2.4/2.1.8.562–96«Шумна рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки». Документы дают классификацию шумов по спектру на широкополосные и тональные, а по временным характеристикам – на постоянные и непостоянные. Для нормирования постоянных шумов применяют допустимые уровни звукового давления (УЗД) в девяти октавных полосах частот (табл. 3.11) в зависимости от вида производственной деятельности. Для ориентировочной оценки в качестве характеристики постоянного широкополосного шума на рабочих местах допускается принимать уровень звука (дБ А), определяемый по шкале А шумомера с коррекцией низкочастотной составляющей по закону чувствительности органов слуха и приближением результатов объективных измерений к субъективному восприятию.

Непостоянные шумы делятся на колеблющиеся во времени, прерывистые и импульсные. Нормируемой характеристикой непостоянного шума является эквивалентный по энергии уровень звука (дБ А). Допустимые значения эквивалентных уровней непостоянных широкополосных шумов приведены в табл. 3.11.

Для тонального и импульсного шума допустимый уровень звука должен быть на 5 дБ меньше значений, указанных в табл. 3.11. Эквивалентный по энергии уровень звука

 

 

где τ –относительное время воздействия шума классаLi, % времени измерения; Li – уровень звука класса i, дБ А.

При оценке шума допускается использовать дозу шума, так как установлена линейная зависимость доза–эффект по временному смещению порога слуха, что свидетельствует об адэкватности оценки шума по энергии. Дозный подход позволяет также оценить кумуляцию шумового воздействия за рабочую смену.

Нормирование допустимого шума в жилых помещениях, общественных зданиях и на территории жилой застройки осуществляется в соответствии с СН 2.2.4/2.1.8.562–96.

Оценивать и прогнозировать потери слуха, связанные с действием производственного шума, дает возможность стандарт ИСО 1999: (1975) «Акустика–определение профессиональной экспозиции шума и оценка нарушений слуха, вызванных шумом».

В производственных условиях нередко возникает опасность комбинированного влияния высокочастотного шума и низкочастотного ультразвука, например при работе реактивной техники, при плазменных технологиях.

Ультразвук как упругие волны не отличается от слышимого звука, однако, частота колебательного процесса способствует большему затуханию колебаний вследствие трансформации энергии в теплоту.

По частотному спектру ультразвук классифицируют на: низкочастотный – колебания 1,12·104... 1,0·105 Гц; высокочастотный – 1,0·105…1,0·109 Гц; по способу распространения–на воздушный и контактный ультразвук.

Рабочие места   Уровни звукового давления дБ, в октавных полосах со среднегеометрическими частотами, Гц   Уровни звука и эквивалентные уровни звуки. дБ А  
31,5        
Помещения конструкторских бюро.                   • 38    
расчетчиков, программистов вычис­                                          
лительных машин, лабораторий для                                          
теоретических работ                                          
Помещения управления, рабочие                      
комнаты                                          
Кабины наблюдений и дистанционного                                          
управления:                                      
без речевой связи по телефону                      
с речевой связью по телефону                      
Помещения и участки точной сборки,                    
машинописные бюро                                          
Помещения лабораторий для проведения                      
экспериментальных работ, для размещения                                          
шумных агрегатов, вычислительных машин                                          
Постоянные рабочие места и рабочие             ВО          
зоны в производственных помещениях и на                                          
территории предприятий                                          

 

     
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


Низкочастотные ультразвуковые колебания хорошо распространяются в воздухе. Биологический эффект воздействия их на организм зависит от интенсивности, длительности воздействия и размеров поверхности тела, подвергаемой действию ультразвука. Длительное систематическое влияние ультразвука, распространяющегося в воздухе, вызывает функциональные нарушения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. У работающих на ультразвуковых установках отмечают выраженную астению, сосудистую гипотонию, снижение электрической активности сердца и мозга. Изменения ЦНС в начальной фазе проявляются нарушением рефлекторных функций мозга (чувство страха в темноте, в ограниченном пространстве, резкие приступы с учащением пульса, чрезмерной потливостью, спазмы в желудке, кишечнике, желчном пузыре). Наиболее характерны вегетососудистая дистония с жалобами на резкое утомление, головные боли и чувство давления в голове, затруднения при концентрации внимания, торможение мыслительного процесса, на бессонницу.

Контактное воздействие высокочастотного ультразвука на руки приводит к нарушению капиллярного кровообращения в кистях рук, снижению болевой чувствительности, т. е. развиваются периферические неврологические нарушения. Установлено, что ультразвуковые колебания могут вызывать изменения костной структуры с разрежением плотности костной ткани.

Профессиональные заболевания зарегистрированы лишь при контактной передаче ультразвука на руки – вегетосенсорная (ангионевроз) или сенсомоторная полиневропатия рук.

Гигиенические нормативы ультразвука определены ГОСТ 12.1.001– 89. Гигиенической характеристикой воздушного ультразвука на рабочих местах являются уровни звукового давления (дБ) в третьоктавных полосах со среднегеометрическими частотами 12,5... 100 кГц (табл. 3.12).

 

Таблица 3.12. Допустимые уровни звукового давления на рабочих местах

 

Среднегеометрические частоты третьоктавных полос, кГц Уровень звукового давления, дБ
12,5
80(90)
31,5–100,0

 

Примечание. По согласованию с заказчиком допускается устанавливать значение показателя, указанное в скобках.

 

Характеристикой контактного ультразвука является пиковое значение виброскорости или его логарифмический уровень (табл. 3.13).

Допустимые уровни контактного ультразвука следует принимать на 5 дБ ниже значений, указанных в табл. 3.13, в тех случаях, когда работающие подвергаются совместному воздействию воздушного и контактного ультразвука.

 

Таблица 3.13. Допустимые уровни виброскорости и ее пиковые значения на рабочих местах

 

Среднегеометрические частоты октавных полос. кГц Пиковые значения виброскорости, м/с Уровни виброскорости. дБ
8–63 125–500 1000–31 500 5·10-3 8,9·10-3 1,6·10-2

 

Инфразвук – область акустических колебаний с частотой ниже 16...20 Гц. В условиях производства инфразвук, как правило, сочетается с низкочастотным шумом, в ряде случаев – с низкочастотной вибрацией.

При воздействии инфразвука на организм уровнем 110...150 дБ могут возникать неприятные субъективные ощущения и многочисленные реактивные изменения: нарушения в ЦНС, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе. Отмечают жалобы на головные боли, головокружение, осязаемые движения барабанных перепонок, звон в ушах и голове, снижение внимания и работоспособности; может появиться чувство страха, сонливость, затруднение речи; специфическая для действия инфразвука реакция – нарушение равновесия. При воздействии инфразвука с уровнем 105 дБ отмечены психофизиологические реакции в форме повышения тревожности и неуверенности, эмоциональной неустойчивости.

Установлен аддитивный характер действия инфразвука и низкочастотного шума. Следует отметить, что производственный шум и вибрация оказывают более агрессивное действие, чем инфразвук сопоставимых параметров.

Гигиеническая регламентация инфразвука на рабочих местах производится по СН 2274–80. В условиях городской застройки нормирование инфразвука обеспечивается санитарными нормами допустимых уровней инфразвука и низкочастотного шума на территории жилой застройки № 42-128-4948–89 (табл. 3.14).

На людей и животных может воздействовать ударная волна. Прямое воздействие возникает в результате воздействия избыточного давления и скоростного напора воздуха. Ввиду небольших размеров тела человека, ударная волна мгновенно охватывает человека и подвергает его сильному сжатию в течение нескольких секунд. Мгновенное повышение давления воспринимается живым организмом как резкий удар. Скоростной напор при этом создает значительное лобовое давление, которое может привести к перемещению тела в пространстве. Косвенные поражения людей и животных могут произойти в результате ударов осколков стекла, шлака, камней, дерева и других предметов, летящих с большой скоростью.

 

Таблица 3.14. Предельно допустимые уровни звукового давления на рабочих местах и на территории жилой застройки

 

Уровни звукового давления, дБ, в октавных полосах частот со среднегеометрическими частотами, Гц Общий уровень звукового давления, Lлин, дБ
31,5
На рабочих местах  
 
На территории жилой застройки

 

Степень воздействия ударной волны зависит от мощности взрыва, расстояния, метеоусловий, местонахождения (в здании, на открытой местности) и положения человека (лежа, сидя, стоя) и характеризуется легкими, средними, тяжелыми и крайне тяжелыми травмами.

Избыточное давление во фронте ударной волны 10 кПа и менее для людей и животных, расположенных вне укрытий, считаются безопасными. Легкие поражения наступают при избыточном давлении 20...40 кПа. Они выражаются кратковременными нарушениями функций организма (звоном в ушах, головокружением, головной болью). Возможны вывихи, ушибы. Поражения средней тяжести возникают при избыточном давлении 40...60 кПа. При этом могут быть вывихи конечностей, контузии головного мозга, повреждение органов слуха, кровотечения из носа и ушей.

Тяжелые контузии и травмы возникают при избыточном давлении 60...100 кПа. Они характеризуются выраженной контузией всего организма, переломами костей, кровотечениями из носа, ушей; возможно повреждение внутренних органов и внутреннее кровотечение. Крайне тяжелые контузии и травмы у людей возникают при избыточном давлении более 100 кПа. Отмечаются разрывы внутренних органов, переломы костей, внутренние кровотечения, сотрясение мозга с длительной потерей сознания. Разрывы наблюдаются в органах, содержащих большое количество крови (печени, селезенке, почках), наполненных газом (легких, кишечнике), имеющих полости, наполненные жидкостью (головном мозге, мочевом и желчном пузырях). Эти травмы могут привести к смертельному исходу.

Радиус поражения обломками зданий, особенно осколками стекол, разрушающихся при избыточном давлении 2...7кПа, может превысить радиус непосредственного поражения ударной волной.

Воздушная ударная волна также действует на растения. Полное повреждение лесного массива наблюдается при избыточном давлении более 50 кПа. Деревья при этом вырываются с корнем, ломаются и отбрасываются, образуются сплошные завалы. При избыточном давлении 30...50 кПа повреждается около 50 % деревьев, создаются сплошные завалы, а при избыточном давлении 10...30 кПа –до 30 % деревьев. Молодые деревья более устойчивы, чем старые.

 

Электромагнитные поля и излучения

Спектр электромагнитных колебаний по частоте достигает 1021 Гц. В зависимости от энергии фотонов (квантов) его подразделяют на область… К ЭМП промышленной частоты относятся линии электропередач (ЛЭП) напряжением до… Нормирование ЭМП промышленной частоты осуществляют по предельно допустимым уровням напряженности электрического и…

Ионизирующие излучения

Ионизирующее излучение вызывает в организме цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и… Индуцированные свободными радикалами химические реакции развиваются с большим… Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической…

Электрический ток

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит… Термическое действие тока проявляется ожогами отдельных участков тела,… Электротравмы условно разделяют на общие и местные. К общим относят электрический удар, при котором процесс…

Таблица 3.20. Предельно допустимые уровни напряжения и тока.

Род тока Нормируемая величина Предельно допустимые уровни, не более, при продолжительности воздействия тока, Iа, с.
  Переменный, 50 Гц   Переменный, 400 Гц   Постоянный   Выпрямленный двухполупериодичный Выпрямленный однополупереодичный   Ua, B Ia, мА   Ua, B Ia, мА   Ua, B Ia, мА   Ua, B   Ua, B 0,01… 0,08 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Св. 1,0
                                                                                                                                                                –   –

 

 

Сочетанное действие вредных факторов

В условиях среды обитания, особенно в производственных условиях, человек подвергается, как правило, многофакторному воздействию, эффект которого… Установлено, что токсичность ядов в определенном температурном диапазоне… Повышенная влажность воздуха увеличивает опасность отравлений особенно раздражающими газами. Причиной этого служит…

Раздел II

 

ОПАСНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ И ЗАЩИТА ОТ НИХ

 

АНАЛИЗ ОПАСНОСТЕЙ

 

ПОНЯТИЯ И АППАРАТ АНАЛИЗА ОПАСНОСТЕЙ

Нештатное взаимодействие объектов, входящих в системуЧМС,может выражаться в виде чепе. Излагаемый ниже аппарат анализа опасностей построен на… Чепе – нежелательное, незапланированное, непреднамеренное событие в системе… Несчастный случай – чепе, заключающееся в повреждении организма человека.

Таблица 4.1. Двухместные операции над высказываниями и чепе

 

Операция Обозначение Формула
НЕ (логическое отрицание, инверсия) Ā = 1-А
ИЛИ (логическая сумма, дизъюнкция) + А + В = max (А, В) (4.1)
И (логическое произведение, конъюнкция) * А*В = min (А, В) (4.1, а)
Импликация ® А®В = Ā + В (4.2)
Эквивалентность ¬® А¬®В = ® В)*(В ® А) = А * В + Ā*B (4.2, а)

Примечание. Для упрощения записи знак • часто опускают, например, вместо А* В* С пишут АВС

Карта Карно состоит из квадратных ячеек, каждая из которых соответствует одному из 2n одночленов, порожденных п переменными. На рис. 4.1 представлена карта Карно для трех переменных. Значения переменных обозначают с внешней стороны карты посредством цифр двоичной системы счисления: 1 соответствует прямому значению переменной, 0–инверсионному. Например, пересечение значений XY = 01 и Z = 1 соответствует конъюнкции X*Y*Z.

Рис.4.1. Карта Карно для трех переменных

Карты Карно обычно заполняют в следующем порядке.

1. Преобразуют логическую функцию к дизъюнкции конъюнктивных составляющих, которые обычно располагают в алфавитном порядке и нумеруют.

2. В ячейках, соответствующих первой конъюнктивной составляющей, ставят единицы, затем находят ячейки, соответствующие второй конъюнктивной составляющей, и если среди них есть ячейки, в которых не проставлена единица, то последнюю проставляют. После чего переходят к нахождению ячеек следующей конъюнктивной составляющей. Таким образом все конъюнктивные составляющие функции оказываются нанесенными на карту Карно.

 

Таблица 4.2. Группы чепе-несчастий

 

Обозначения N–несчастный случай N – нет несчастного случая
А – авария   Ā – нет аварии N*А Несчастный случай и авария N*Ā Несчастный случай и нет аварии A*N Авария и нет несчастного случая Ā*N Нет аварии и нет несчастного случая

В качестве примера на рис. 4.2 показаны этапы построения (I–V) карты Карно для функций

 

F(A,B,C,D) = A*C*D+A*B*C+A*B*D+C*D

В дальнейшем будут рассматриваться только те события, которые относятся к разряду случайных.

Катастрофы, аварии, несчастные случаи образуют группу чепе, которую будем называть чепе-несчастьями или сокращенно–н-чепе. Отказы и инциденты обычно предшествуют н-чепе, но могут иметь и самостоятельное значение.

Группы н-чепе даны в табл. 4.2. Согласно принятой терминологии произведение N*A=K, где К обозначает катастрофу.

Все н-чепе определяются как повреждения. Вопрос состоит в том, что считать повреждением. Например, повреждение организма может привести к летальному исходу. Однако в других случаях повреждение может быть таким, что его трудно или невозможно будет диагностировать (например, при взрыве установки в рабочего попало мягкое резиновое уплотнение). В настоящее время отсутствует единица «количества повреждения», так как вред и степень повреждения часто нельзя или трудно измерить (см. ниже). С точки зрения анализа опасностей существенным является то, что любое «нулевое повреждение» принимается во внимание и исследуется (рис. 4.3).

 

Рис. 4.2. Пример построения карты Карно

Для усвоения принятой терминологии приводим примеры с пешеходом.

1. Пешеход, видя на своем пути арбузную корку, осторожно, чтобы не столкнуться с другими прохожими, переступил через нее и, не сбавляя хода, продолжил путь.

2. Пешеход наступил на арбузную корку, поскользнулся, но удержал свое равновесие и, не столкнувшись с прохожими, без повреждений продолжил путь.

3. Пешеход, несший бутылку кефира, наступил на арбузную корку, поскользнулся, уронил и разбил бутылку, но удержался на ногах и, не причинив себе повреждений пошел дальше.

4. Пешеход наступил на арбузную корку, поскользнулся, упал, порезав при этом палец.

5. Пешеход наступил на арбузную корку, поскользнулся, упал, сломал руку и разбил бутылку.

Согласно нашим определениям имеем: 1–отсутствие чепе; 2–наличие чепе (инцидент); 3 –авария; 4 –несчастный случай; 5 –катастрофа; 3, 4, 5 –чепе-несчастья.

 

Существуют другие классификации чепе. Например, по видам несчастных случаев нормативные документы определяют чепе следующим образом. Повреждение тканей классифицируется как травма, ожог или обморожение, повреждение организма при острых заболеваниях –как отравление, тепловой удар или острое профессиональное заболевание. Повреждение организма может привести к летальному исходу. Эта классификация представлена в табл. 4.3. Логическая формула имеет вид: N=T+Z+D.

 

    Рис. 4.3. Схема возникновения повреждения

 

Рассмотрим такие понятия, как опасность, повреждающий фактор и ущерб.

Слово опасность имеет несколько оттенков. В конструкциях: «существует опасность взрыва, ожога и т д.» речь прежде всего идет о возможности наступления соответствующего чепе. Здесь опасность и возможность как бы синонимы. В конструкциях типа: «опасность представляет сосуд под давлением», «опасность представляет короткое замыкание в электрической цепи» на первый план выводится отрицательная эмоция – страх. Здесь слова «опасность представляет» созвучны со словами «страх (угрозу) вызывает». Наконец, в предложениях: «основные опасности: движущиеся части (машины и оборудование), влажность, радиация...» под опасностью понимают что-то вполне материальное. Поэтому имеет смысл понятие «опасность» рассматривать как возможность чепе-несчастья и тех чепе, которые к нему ведут.

 

Таблица 4.3. Вариант классификации несчастных случаев N= (T+ Z+ D)

 

Группа Г (повреждение тканей) Группа Z (острые заболевания) Группа D (повреждения при обстоятельствах)
Травма Т1 Ожог Т2   Обморожение Т3 Летальный исход L Острое профзаболевание Z1 Отравление Z2   Тепловой удар Z3 Летальный исход L При стихийных бедствиях D1 При контактах с животными и насекомыми D2 При повреждении молнией D3 Летальный исход, включая утопление L

 

Источник опасности –явление, откуда может проистекать опасность. Явление включает все, что может предстать перед нашим взором или в мыслях.

Таким образом, понятие «опасность» включает степень незащищенности при наличии источника опасности. Соответствующими предупредительными мерами опасность или степень незащищенности можно уменьшить. Например, изоляция электрического провода или установка кожуха на движущиеся части машины уменьшает степень незащищенности несмотря на наличие источника опасности. Полное отсутствие опасности – это такое идеальное состояние, которое крайне редко может быть реализовано. Поэтому безопасность как противоположность опасности – это скорее всего вопрос и содержание защиты от опасности. В этой связи источник опасности условно считают неопасным, если известен риск (см. ниже), и этот риск считается приемлемым. Пространство, где риск не приемлем, и где существует возможность наступления н-чепе,– называют опасной зоной.

Наконец, мы говорим об опасности до ее перехода в действительность. После реализации чепе разговор об этой опасности есть абсурд: речь может идти о реальных причинах чепе, нанесенном ущербе и новом источнике опасности. Следовательно, анализ опасностей в первую очередь имеет дело с потенциальными повреждающими факторами и потенциальными чепе. Потенциальный повреждающий фактор до некоторой поры может быть скрытым, неявным. Его нелегко распознать, выявить. Однако, анализируя цепь потенциальных событий, можно выделить такое событие, которое позволяет его более четко разглядеть, зафиксировать, назвать или сблизить с повреждаемым объектом. Можно считать, что это событие – чепе представляет корень опасности. Примеры даны в табл. 4.4.

 

Таблица 4.4. Источники опасности и повреждающие факторы

 

Источник опасности Опасность (потенциальное чепе) Повреждающий фактор
Сосуд с газом под давлением Механический взрыв Летящие осколки
Утечка из сосуда Токсичный газ
Электрическая установка Замыкание на корпус Электрический ток
Подъемный кран Обрыв троса Движущийся груз
Нагретый коллектор Повреждение изоляции Теплота
Ядерная установка Вход в зону Радиация
Взрывоопасная смесь Химический взрыв Ударная волна

 

Следует отметить, что деление на источник, потенциальное чепе и повреждающий фактор производится в зависимости от тех задач, которые ставятся. Например, летящие осколки (см. табл. 4.4) можно при необходимости отнести к понятию источник опасности. Тогда потенциальным чепе может стать попадание осколков в человека, а повреждающим фактором – кинетическая энергия.

Чепе-несчастья создают повреждения, которые могут поддаваться или не поддаваться количественной оценке, например, смертельные случаи, уменьшение продолжительности жизни, вред здоровью, материальный ущерб, ущерб окружающей среде, неспокойное воздействие на общество, дезорганизация работы. Последствия или «количество нанесенного вреда» зависит от многих факторов, например, от числа людей, находившихся в опасной зоне, или количества и качества находившихся там материальных ценностей. С целью унификации различные последствия и вред обозначают термином ущерб. Ущерб измеряют денежным эквивалентом или числом летальных исходов, или количеством травмированных людей и т. п. Как это ни кощунственно, но между этими единицами измерения желательно найти эквивалент, чтобы ущерб можно было измерять в стоимостном выражении.

Техника вычисления вероятностей чепе. Через Р{Е} будем обозначать вероятность чепе Е*. Вероятность достоверного события P{I} = 1, вероятность невозможного события. Р{Ø} = 0, вероятность суммы попарно несовместимых чепе iЕj = Ǿ , если Vi≠j) равна**

 

 

Чепе Е1, Е2, ..., Е образуют полную группу событий, если они попарно несовместимы и одно из них обязательно происходит:

 

Из соотношений (4.3) и (4.4) следует, что для полной группы событий

 

 

В частности, для равновозможных чепе (P{Ei}=P, i-1,2,..., п), образующих полную группу событий, вероятность чепе

 

 

Противоположные события Еи Е образуют полную группу, поэтому

 

 

Полную группу событий можно выделить с помощью карты Карно. Три чепе X, У, Z образуют карту Карно, показанную на рис. 4.1. Чепе, записанные в ячейках, являются попарно несовместными, например, (X* У* Z)_* (X*Y*Z) =Z*Z = Ø, а их сумма

 

* Предполагается, что читатель изучал теорию вероятностей и данный параграф ставит своей целью изложение основных правил применительно к анализу опасностей.

**Сумма высказываний обозначается обычно знаком V , а сумма событий – знаком U. Для обозначения суммы удобно ввести единый знак , похожий на знак суммы . Соответственно для произведения событий или высказываний вводим знак, похожий на знак произведения .

Когда число чепе превышает пять, картами Карно пользоваться неудобно. Тогда полную группу событий можно генерировать с помощью двоичных чисел. Делают это следующим образом. Для п чепе записывают десятичные числа от 0 до (2я–1) и их представления в двоичной системе счисления так, как это сделано на рис. 4.4. Здесь, например, номер три дает набор 011, который соответствует чепе Х* У* Z

Рис. 4.4. Генерирование полной группы событий

На практике часто пользуются формулой объективной вероятности:

 

 

где п и пе соответственно общее число случаев и число случаев, при которых наступает чепе Е; при этом, если п не конечно, то оно должно быть достаточно большим (п→∞ ).

Определим вероятность чепе-несчастий. Н-чепе есть сумма

 

S=A+N (4.9)

 

Несчастный случай N и авария А могут наступать совместно. Поэтому формула (4.3) для определения вероятности P{S} не пригодна. Однако с помощью карты Карно (рис. 4.5) можно выделить полную группу событий: АN, AN, AN AN. Тогда для аварии A=AN+AN, несчастного случая N= NA + AN и н-чепе S= N +А=AN + NA +AN можно записать:

 

 

Из этих соотношений находим вероятность н-чепе:

 

 

Рис. 4.5. Вычисление вероятностей н-чепе с помощью карт Карно

Если катастрофа невозможна K=AN=Ø, то P{AN} =0. Формула (4.13) останется справедливой, если вместо чепе А и Nв нее подставить любые другие события Х и Y. Заметим также, что при использовании понятия объективной вероятности (4.8) выражению (4.12) будет соответствовать соотношение

 

 

где общее число случаев п = nAN+nAN+nAД+nAN (см. рис. 4.5, а).

 

Вероятность чепе E1 при условии E2 обозначают P{E1/E2}. Справедливы следующие соотношения (P{E1}≠0; P{E2}≠0):

 

 

Вычислим условную вероятность несчастного случая N при условии, что произошла авария А. Чтобы вычислить P{N/A}, выделим на карте Карно (рис. 4.5, б) только ту область, в которой осуществилось чепе А. Общее число случаев, в которых наступает авария А, равно nA=nAN+nAN. Тогда вероятность

 

 

Если чепе Е1 и E2 независимые, т. е. если Р{Е12} = Р{Е1Р{Е21} = P{E2}, то

 

 

Распространяя эту формулу на п взаимно независимых чепе Е1,,Е2, .... Еn получим

 

 

Если события нельзя считать независимыми, то справедливо более сложное выражение

 

 

Условные вероятности, входящие в выражение (4.19), эмпирически определить трудно или невозможно. Поэтому всегда стараются поставить задачу так, чтобы воспользоваться более простой формулой (4.18).

 

КАЧЕСТВЕННЫЙ АНАЛИЗ ОПАСНОСТЕЙ

На практике анализ опасностей начинают с грубого исследования, позволяющего идентифицировать в основном источники опасностей. Затем при… Качественные методы анализа опасностей включают: предварительный анализ… Предварительный анализ опасностей (ПАО) обычно осуществляют в следующем порядке:

Таблица 4.5. Представление результатов АПО для схемы управления с двумя кнопками

 

Компонент Наименование отказа, инцидент Генерируемые последствия Потенциальное чепе Предупредительные меры
Участок цепи - линия 11' Короткое замыкание междуточками 11' Включение катушки реле, случайный пуск машины Несчастный случай Инструктаж персонала
Кнопка только А1 или только A2, Случайное нажатие (инцидент) Без немедленных последствий Без немедленных последствий, снижается уровень безопасности Определить частоту инцидента
Контакты только B1 или только В2 Случайное замыкание вследствие механического повреждения То же То же Определить частоту отказа
Участок цепи–линия 22' Обрыв провода Нельзя включить машину Без немедленных последствий Не требуется

 

Таблица 4.6. Элементы и символы, используемые для построения дерева причин потенциального чепе

 

Проведение АОДП возможно только после детального изучения рабочих функций всех компонентов рассматриваемой технической системы. На работу системы оказывает влияние человеческий фактор, например, возможность совершения оператором ошибки. Поэтому желательно все потенциальные инциденты – «отказы операторов» вводить в содержание дерева причин. Дерево отражает статический характер событий. Построением нескольких деревьев можно отразить их динамику, т. е. развитие событий во времени.

Рис. 4.9. Примерная схема–вариант аварийного охлаждения зоны ядерной
энергетической установки

 

Рассмотрим пример. Допустим, что ядерная энергетическая установка (ЯЭУ) включает первый контур (рис. 4.9), состоящий из реактора 1, парогенератора 2, главного циркуляционного насоса (ГЦН) 3 и главных циркуляционных трубопроводов 4, заполненных теплоносителем –водой (в процессе работы реактора вода получает высокую наведенную радиоактивность). В парогенераторе вода охлаждается и, отдав теплоту теплоносителю второго контура, возвращается ГЦН в реактор для охлаждения твэлов. Перегрев оболочек твэлов и их разрушение можно рассматривать как катастрофу. Поэтому все ЯЭУ снабжены системами аварийного охлаждения активной зоны реактора –САОЗ, которые обеспечивают отвод теплоты из активной зоны в случае разгерметизации циркуляционного контура и потери теплоносителя САОЗ включает насосы низкого (ННД) 17и 18 высокого (НВД) 9 и 10давления, гидроаккумулятор (ГА) 23, в котором вода находится под давлением азота 24, и баки запаса воды и раствора борной кислоты 13 и 16. Условно примем следующий порядок работы САОЗ при большой разгерметизации циркуляционного контура сначала работает САОЗ высокого давления (ВД), состоящая из НВД и необходимой арматуры, затем работает САОЗ низкого давления (НД) – ГА и ННД В процессе эксплуатации ЯЭУ при возникновении «малых» течей допускается временная работа без аварийной остановки, при этом происходит автоматическая компенсация теплоносителя (работают компенсаторы, барботер) или принимаются другие срочные меры к локализации течи и устранению загрязнений помещения радиоактивностью.

 

Таблица 4.7. Перечень компонентов САОЗ ЯЭУ

 

Номер компонента и индекса Компонент Наименование отказа Х\
САОЗ ВД    
Задвижка Закрыта
6 Обратный клапан Закрыт
7 Задвижка Закрыта
8 Задвижка Закрыта
9 Насос высокого давления Не работает
10 Насос высокого давления Не работает
11 Задвижка Закрыта
12 Задвижка Закрыта
13 Емкость Нет воды
14 Задвижка Закрыта
САОЗ НД    
24 Азот гидроаккумулятора Нет давления
23 Емкость гидроаккумулятора Нет воды
22 Обратный клапан Закрыт
21 Обратный клапан Закрыт
20 Обратный клапан Закрыт
19 Задвижка Закрыта
18 Насос низкого давления с запорной арматурой Не работает
17 Насос низкого давления с запорной арматурой Не работает
16 Емкость Нет воды
15 Задвижка Закрыта

 

Задаем потенциально возможное чепе, ведущее к катастрофе –отказ САОЗ. Находим все компоненты системы, которые могут привести к отказу САОЗ. Перечень компонентов Xi, дан в табл. 4.7. Используя материал §4.1, устанавливаем логические связи и строим дерево причин (рис. 4.10). Общая формула чепе «отказ САОЗ» имеет вид:

 

 

В этом выражении Хi одновременно являются наименованиями отказов и их индикаторами, которые принимают значение: 1 –чепе произошло и 0–отсутствие чепе.

Дерево причин показывает, что критическими компонентами являются 5, 6, 13, 14, 15, 16, 19,20, 21, 22, 23, 24, так как отказ одного из них достаточен для того, чтобы вызвать катастрофу.

 

После завершения АОДП можно от качественных характеристик приступить к количественному анализу.

Во многих случаях представление о состоянии системы, альтернативных путях протекания и результатах какого-либо процесса можно создать с помощью более простого графа. Рассмотрим его построение на примере трех параллельно работающих компонентов А1, А2, и А3 (рис. 4.11). Исходным пунктом является кружок, который представляет в общем виде рассматриваемое состояние. Из этого узла ветви ведут к узлам, представляющим состояние первого компонента (в соответствии с заданными вероятностями), и таким же образом дальше от каждого из этих узлов к следующим, в которых указаны состояния второго и третьего компонентов, пока на выходе не получаются все возможные комбинации событий. В результате получается дерево событий, в котором каждый путь от исходной точки до конечного узла описывает одну из эволюции системы. В прямоугольниках справа от конечных узлов на рис. 4.11 еще раз указан результат события, соответствующий пути к этому конечному узлу. В рассматриваемом примере с тремя параллельно работающими компонентами в прямоугольниках указаны результирующие вероятности для состояния системы, которые при независимости выхода из строя отдельных компонентов получаются простым перемножением отдельных вероятностей (вероятность чепе в рассматриваемый отрезок времени принята одинаковой для каждого из трех компонентов: qi= 10-3; i== 1, 2, 3).

Анализ опасностей с помощью дерева последствий потенциального чепе (АОДПО) отличается от АОДП тем, что в случае АОДПО задается потенциальное чепе –инициатор, и исследуют всю группу событий – последствий, к которым оно может привести. Таким образом, между событиями имеется временная зависимость. АОДПО можно проводить на любом объекте. Как и АОДП он требует хорошее знание объекта. Поэтому перед тем, как проводить АОДПО, необходимо тщательно изучить объект, вспомогательное оборудование, параметры окружающей среды, организационные вопросы.

 

 

Рис. 4.10. Дерево причин потенциального чепе–отказа САОЗ ЯЭУ

 

 

Рис. 4.11. Дерево событий при аварии трех параллельно работающих компонентов

 

Рис. 4.12. Дерево последствий чепе «Снижение расхода теплоносителя в первом контуре»

 

Воспользуемся предыдущим примером с ЯЭУ. Зададим потенциальное чепе «Снижение расхода теплоносителя в первом контуре». Дерево последствий (рассматривались только подсистемы) представлено на рис. 4.12. В число последствий входят: рабочая утечка, штатная работа САОЗ и чепе-авария. Далее можно переходить к количественному анализу (§ 4.3). Для построения дерева последствий можно использовать символы, представленные в табл. 4.8.

Анализ опасностей методом потенциальных отклонений (АОМПО): отклонение –режим функционирования какого-либо объекта, системы, процесса или какой-либо их части (компонента), отличающийся в той или иной мере от конструкторского предназначения (замысла).

Метод потенциальных отклонений (МПО) – процедура искусственного создания отклонений с помощью ключевых слов. Этим методом анализируют опасности герметичных процессов и систем. Наибольшее распространение он получил в химической промышленности. АОМПО обычно предшествует ПАО.

После того, как с помощью ПАО были установлены источники опасностей (системы, чепе), необходимо выявить те отклонения, которые могут привести к этим чепе. Для этого разбивают технологический процесс или герметичную систему на составные части и, создавая с помощью ключевых слов (табл. 4.9) отклонения, систематично изучают их потенциальные причины и те последствия, к которым они могут привести на практике. Для проведения анализа необходимо иметь: проектную документацию на стадии проектирования; алгоритм анализа, который позволяет исследовать один за другим все компоненты (например, рис. 4.13); набор ключевых слов (табл.4.9), с помощью которых выявляют ненормальный режим работы компонента.

 

Рассмотрим герметичный объект, в котором химические вещества А и В вступают в реакцию, чтобы образовать продукт С (рис 4.14). Допустим, что потенциальным чепе является взрыв, происходящий тогда, когда концентрация CА вещества А превысит концентрацию cb вещества В в емкости 1. Следуя пункту 3 (см. рис. 4.13), выбираем для рассмотрения трубопровод 2–1. Его предназначение –транспортировать вещество В из сосуда 2 в сосуд 1. Используя первое ключевое слово в первой строке табл. 4.9, создаем отклонение: трубопровод НЕ транспортирует вещество В из сосуда 2 в сосуд 1. Нет подачи вещества В в емкость 1. Используя чертеж-схему движения веществ, устанавливаем потенциальные причины этого события: в питающем резервуаре 2 не осталось вещества В, отказал насос 3 подачи вещества В [а) испортилась электрическая часть; б) испортилась механическая часть; в) кто-то выключил насос и т д.; произошла разгерметизация трубопровода; вещество В не проходит через вентиль 4.

Последствие отклонения: через некоторое время после прекращения подачи вещества В концентрация CД превысит CВ и произойдет взрыв.

Таким образом, на стадии проектирования на участке 2–1 вскрыты опасности. Предстоит разработка предупредительных мероприятий, например, аварийной сигнализации, оповещающей о прекращении подачи вещества В в емкость 1 и правил безопасной эксплуатации рассмотренного участка.

Был получен результат во время применения первого ключевого слова. Тем не менее к участку 2–1 должны быть последовательно применены все последующие ключевые слова Только после окончания такой процедуры выявления опасностей можно переходить к следующему участку.

 

Таблица 4.8. Символы, используемые при построении дерева последствий

 

     
     

 

Анализ ошибок персонала (АОП) включает следующие этапы: выбор системы и вида работы; определение цели; идентификацию вида потенциальной ошибки; идентификацию последствий; идентификацию возможности исправления ошибки; идентификацию причины ошибки; выбор метода предотвращения ошибки; оценку вероятности ошибки; оценку вероятности исправления ошибки; расчет риска; выбор путей снижения риска.

 


Рис. 4.13. Алгоритм анализа опасностей методом потенциальных отклонений:

1–выбрать сосуд; 2-–объяснить общее предназначение сосуда и его трубопроводов; 3–выбрать трубопровод; 4–объяснить предназначение выбранного трубопровода; 5 – использовать ключевые слова из 1-й строки табл. 4.9 для создания отклонения; 6–теоретически развить имеющее смысл отклонение; 7–исследовать причины (события), которые могут на практике привести к созданному отклонению; 8 – исследовать последствия от созданного отклонения; 9 – выявить опасности; 10 – провести необходимую регистрацию проделанной работы; 11–повторить шаги 6...10 для всех имеющих смысл отклонений, образованных ключевыми словами i-й строки табл. 4.9; 12– повторить шаги 5...11 для ключевых слов всех других строк табл. 4.9; 13– поставить на трубопроводе отметку «Исследовано»; 14–повторить шаги 3...13 для каждого трубопровода; 15 – выбрать компонент, систему или какую-либо их часть; 16 – объяснить предназначение выбранного объекта; 17– повторить шаги 5.. .12 для выбранного объекта; 18–поставить на объекте отметку «Исследовано»; 19–повторить шаги 15...18 для всех других объектов. компонентов, систем; 20–объяснить предназначение сосуда; 21–повторить шаги 5...12; 22–поставить на сосуде отметку «Исследовано»; 23–повторить шаги 1...22 для всех сосудов на данном чертеже; 24–поставить на чертеже отметку «Исследовано»; 25– выполнить шаги 1...24 на других чертежах

 

В табл. 4.10 приведены возможные виды потенциальных ошибок, совершаемых операторами. Каждому виду ошибки присвоен гипотетаческий номер по классификатору. В результате ошибок персонала возможны аварии (пожары, взрывы, механические повреждения, выбросы токсичных химических веществ, проливы и т. д.), несчастные случаи (летальные исходы, травмы и т. д.), катастрофы (разные степейи повреждения организма и собственности), которые также могут быть классифицированы. Причины ошибок, вероятности ошибок, возможности исправления ошибок с гипотетической их классификацией даны в табл. 4.11–4.13. Следует иметь в виду, что в основу классификации причин ошибок положены внешние и внутренние факторы, так как факторы стресса могут носить и тот и другой характер. Вероятность ошибки оператора зависит от стажа работы и наличия стрессовых условий на рабочем месте. Опыт показывает, что оператор со стажем может совершать ошибки (рис. 4.15, а) и что вероятность ошибки оператора в зависимости от величины стресса также имеет оптимум (рис. 4.15, б).

 

Рис. 4.14. Схема взаимодействия химических веществ (пример) 4.15 Характер изменения вероятности ошибки оператора в зависимости от: а – стажа работы (1 – начальный период; 2–оптимальная работа; 3– работа с большим стажем), б–величины стресса (1–малый стресс, 2– оптимальный стресс, 3–большой стресс)

 

Таблица 4.10. Виды потенциальных ошибок и гипотетические номера по классификатору

 

Вид потенциальной ошибки Номер по классификатеру
Пропуск действия Д1  
Неправильное действие Д2  
Действие в неправильном направлении ДЗ  
Много действий Д4  
Мало действий Д5  
Неправильные действия на правильную цель Д6  
Правильные действия на неправильную цель Д7  
Преждевременное действие Д8  
Запоздалое действие Д9  
Слишком длительное действие Д10  
Слишком короткое действие Д11  
Неправильный порядок действий Д12  
Вредное дополнительное действие Д13  

 

Таблица 4.11. Гипотетическая классификация причин ошибок

 

Действующие факторы Причины ошибок Номер по классификатору
Внешние факторы Инструкции П1
Информация П2
Организация ПЗ
Эргономика П4
Условия работы П5
Постановка цели П6
Внутренние факторы Опыт П7
Умение П8
Знания П9
Мотивация П10
Факторы стресса Психологическое напряжение П11
Физиологическое напряжение П12

 

Выбрав величину U, измеряющую последствия ошибки (например, число летальных исходов, денежный эквивалент и т. д.), и установив подходящую шкалу для измерений (например, (/= 1...10; 1....100 и т. д.), можно для сравнительной оценки рассчитать значения рисков

 

R=Poп(1-Pис)U,

 

где Роп и Рис – вероятность ошибки оператора и вероятность ее исправления.

 

Таблица 4.12. Гипотетический классификатор ориентировочных значений вероятности ошибки оператора

Номер по классификатору Рутинная работа Наличие инструкций Наличие стресса Новая ситуация Ориентировочное значение вероятности ошибки оператора Роп
В1 Да Да Нет Нет 0,0001… 0,001
В2 Да В неполном объеме Небольшой Нет 0,001...0,005
ВЗ Да В неполном объеме Некоторый Нет 0,005...0,01
В4 Нет Нет Некоторый Нет 0,01...0,05
В5 Нет Нет Да Нет 0,05… 0,5
В6 Нет Нет Да Да 0,5…1,0

 

Таблица 4.13. Гипотетический классификатор ориентировочных значений вероятности исправления ошибки оператора

 

Исправление ошибки (характеристика) Ориентировочное значение вероятности исправления ошибки Pис Номер по классификатору
Весьма вероятное 0,5 И1
Вероятное 0,2 И2
Возможное 0,1 ИЗ
Невероятное 0,01 И4
Весьма невероятное 0,001 И5
Невозможное И6
С помощью системы защиты 0,95...1,0 И7
Невозможное из-за отсутствия времени И8

 

На рис. 4.16 и в табл. 4.14 даны возможные варианты представления результатов выполнения анализа ошибок персонала.

Таблица 4.14. Вариант представления результатов анализа ошибок персонала

 

Форма анализа Пример1 Пример 2 Пример 3
  Система и вид работы     Цель работы   Вид потенциальной ошибки   Потенциальные последствия   Исправление ошибки   Причины ошибки   Метод предотвращения ошибки   Вероятность ошибки   Вероятность исправления ошибки   Шкала последствий   Величина последствий U   Расчет риска: R=Pоп(1-Pис)U   Метод снижения риска   Другие данные   Объект X1 Процесс Y1 Вид работы Z1   Задача по Z1   D12     А     И2   П3   П38 (пересмотр правил)   0,02 (В4)   0,2     1…100       0,64     Управление     Нет   Объект X2 Процесс Y2 Вид работы Z2   Задача по Z2   D2     N     И7   П5   П54(снижение шума)     0,3(В5)   0,99     1…10       0,012     Обучение персонала     Нет Объект X3 Процесс Y3 Вид работы Z3   Задача по Z3   D3     K     И4   П6   П61(изменение объекта)   0,1(В5)   0,01     1…10       0,792     Технические меры, обучение персонала   Нет

 

 

Рис. 4.16. Вариант представления результатов анализа ошибок оператора

 

Причинно-следственный анализ (ПСА) выявляет причины происшедшего чепе. Тем не менее ПСА является составной частью общего анализа опасностей. Он завершается прогнозом новых чепе и составлением плана мероприятий по их предупреждению.

Анализ начинают со сбора информации, которая призвана описать чепе точно и объективно. Составляют перечень событий, предшествовавших чепе, при этом обращают внимание на то, что регистрируемые реальные события и факты бывают двух видов: носящие случайный характер и носящие постоянный характер. Последние участвуют в возникновении чепе опосредованно и в сочетании со случайными событиями. Например, плохая конструкция ограждений на машине (факт, носящий постоянный характер) способствовала проникновению руки оператора в опасную зону (случайное событие). Перечень может содержать достаточно большое число событии, предшествовавших чепе, и по нему трудно дать необходимые заключения. В этом случае целесообразно построить ориентированный граф –дерево причин. Построение начинают с последней стадии развития событий, а именно, с чепе-несчастья. По каждому предшествующему событию последовательно ставят следующие вопросы. Каким предшествующим событием Х было непосредственно вызвано событие Y? Достаточно ли было одного события X, чтобы вызвать Y? Если нет, то какие другие предшествующие события Х1, X2,..., Хп еще необходимы, чтобы непосредственно вызвать событие Y?

С помощью этих вопросов выявляют логические связи, представленные в табл. 4.15.

Логическая согласованность дерева причин контролируется путем постановки к каждому предшествующему событию следующих вопросов.

Если бы событие Х не произошло, могло бы тем не менее произойти событие Y?

Было ли необходимым и достаточным само по себе событие Х для того, чтобы произошло событие Y?

Процесс создания дерева причин побуждает исследователя к сбору и глубокому анализу информации. По окончании работы исследователь имеет группу факторов и диаграмму развития н-чепе.

Логическая структура дерева причин такова, что при отсутствии хотя бы одного из предшествующих событий н-чепе произойти не может. Это является хорошей основой для того, чтобы сформулировать предупредительные меры с целью: а) исключить повторение н-чепе данного типа; б) избежать более или менее аналогичных н-чепе (чепе, которые имеют с данным чепе общие признаки).

Анализируя дерево причин, можно также заметить, что не все предшествующие события имеют одинаковое значение для предотвращения н-чепе. Поэтому имеет смысл составить еще один (сокращенный) перечень событий, по которому и принимать предупредительные меры.

 

Таблица 4.15. Использование логических связей в причинно-следственном анализе.

 

 

Рис. 4.17. Дерево причин аварии тягача:

Х1 обычно используемый тягач вышел из строя, X2 –другой тягач использовался в работе, Хз – различие в высоте прицепа и нового тягача, х4, – осуществление сцепки затруднено. Xs – водитель встает между тягачом и прицепом, Х6 – не включен ручной тормоз. Х7 – вибрации от работающего двигателя. Х8 –двор имеет уклон, Х9 – тягач движется к прицепу, x10водитель зажимается между прицепом и тягачом, N–несчастный случай (травма), (Х8–факт постоянного характера, остальные случайного)

 

Рассмотрим пример. Во дворе предприятия водитель тягача приступил к сцепке тягача с прицепом. Операция осложнилась из-за различной высоты тягача и прицепа, и водитель спустился вниз, чтобы выяснить причину затруднения, забыв поставить тягач на тормоз. Кроме того, это был не тот тягач, который обычно эксплуатировался с этим прицепом. Когда водитель находился между прицепом и тягачом, тягач с работающим двигателем скатился назад по небольшому уклону и придавил водителя к раме прицепа.

Дерево причин дано на рис. 4.17. Результаты анализа (возможный вариант) представлены в табл. 4.16 в виде причин происшедшего чепе, предупредительных мероприятий и источников опасности, которые спрогнозированы на базе фактов, занесенных в графу причин. Прогнозирование осуществляют в двух дополняющих друг друга направлениях а) ведут поиск источников опасности на данном месте; б) ведут поиск рабочих мест, где данный источник опасности может быть идентифицирован. Таким образом, причинно-следственный анализ происшедшего н-чепе не только позволяет исключить выявленные причины, но и спрогнозировать опасности. Наконец, за исполнением предупредительных мероприятий необходимо проследить. Этому будет способствовать планирование, проведенное, например, по форме табл. 4.17, которая отвечает на вопросы кто? когда? где? сколько? Эффективность всей работы будет также зависеть от информации, которую получит персонал предприятия. Информация должна вызывать положительное отношение персонала к принимаемым мерам.

 

Таблица 4.16. Вариант представления результатов причинно-следственного анализа в примере с тягачом

 

Причины несчастного случая Возможные предупредительные мероприятия Источники опасностей
Двор с уклоном   Невыключенный тормоз, работающий двигатель   Разная высота прицепа и тягача   Тягач, вышедший из строя Реконструкция двора   Инструктаж водителя     Стандартизация соединений     Предупредительный ремонт транспортных средств Неподходящие места стоянок   Недостаточная подготовка работников   Техническая несовместимость материалов   Поломка оборудования

 


КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ОПАСНОСТЕЙ

Функция опасности для системы ЧМС. При анализе опасностей сложные системы разбивают на множество подсистем. Подсистемой называют часть системы,… Рис. 4.18. Схема событий в системе ЧМС

АНАЛИЗ ПОСЛЕДСТВИЙ ЧЕПЕ

Оценка опасности становится полной лишь тогда, когда последствия потенциального чепе ясно представляются. Прежде чем планировать предупредительные… – описание потенциальных чепе; – оценку их вероятностей;

Таблица 4.18. Расчетные соотношения для полей концентраций от некоторых источников

 

* А, В, С – атмосфера соответственно сильно, умеренно, слегка неустойчива, D – нейтральная, Е, F–слегка и умеренно устойчивая

** Сильная инсоляция соответствует высоте Солнца φ≥60° над горизонтом при ясном небе, слабая инсоляция, если 15° φ < 35°.

*** Облачность определяется как часть неба над местным видимым горизонтом, покрытая облаками

**** Нейтральная категория D соответствует также случаю сплошной облачности днем

Определить максимальную концентрацию на расстоянии 10 км от городского стационарного источника производительностью 4800 г/с, если эффективная высота выброса 250 м, скорость ветра 3 м/с на высоте 10м, погодные условия –сплошной облачный покров

Выбрав оси, как показано на рис 4 33, воспользуемся формулой (III) табл 4 18 Выброс происходит в точке с координатами х1 =0, х2 = 0, х3 = 250 м Максимальная концентрация см на расстоянии Х1 = 10·103 м достигается на поверхности земли (Xз = 0) по оси струи 2 = 0). Для условий города U= 3(250/10)°'4 = 11 м/с. Время r = X1/U = 900 с, что будем считать близким к периоду времени, для которого справедлива формула. Из табл. 4.19 находим, что сплошной облачный покров соответствует категории D. По рис. 4.32 определяем g^(x\ sss 10-Ю3 м)« 550 м, огз(Л'1 = 1(Н03 м) = 135 м. Откуда

Для представления результатов АПЧ можно использовать как форму табл. 4.20.

 

 

Рис 4 33 Выбранная система координат

 


Таблица 4.20. Вариант представления результатов анализа последствий чепс

 

СРЕДСТВА СНИЖЕНИЯ ТРАВМООПАСНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ

 

ВЗРЫВОЗАЩИТА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Причинами разрушения или разгерметизации систем повышенного давления могут быть: внешние механические воздействия, старение систем (снижение… Взрывозащита систем повышенного давления достигается… – применение гидрозатворов, огнепреградителей, инертных газов или паровых завес;

Таблица 51 Давление при гидравлических испытаниях

Тип сосуда   Пробное давление, МПа   Примечание  
Кроме литых Литые Из не металлических материалов Из не металлических материалов Криогенные сосуды Металлопластиковые   Рпр = 1,25 К*Ррас Рпр = 1,50К Ррас Рпр = 1,30 К Ррас   Рпр = 1,60 К Ррас   Рпр = 1,25 Ррас – 0,1 МПа Рпр = (1,25Км + α(1- Км)Ррас К Ударная вязкость материала более 20 Дж / см Ударная вязкость материала менее 20 Дж /см Наличие вакуума в изо< ляционном пространстве  

 


К= δго,δt –допустимое напряжение для материала сосуда или его элемента соответственно при 20 °С и расчетной температуре, МПа, Км – отношение массы металлоконструкции к общей массе сосуда; а = 1,3 –для неметаллических материалов с ударной вязкостью более 20 Дж/см2. а = 1,6 –для неметаллических материалов с ударной вязкостью 20 Дж/см2 и менее

 

Применяемая вода должна иметь температуру не ниже 5 и не выше 40°С, если иное не оговорено в паспорте на сосуд. Разность температур стенки сосуда и окружающего воздуха во время испытаний не должна вызывать конденсации влаги на поверхности стенок сосуда. Использование сжатого воздуха или другого газа для подъема давления не допускается.

Давление в испытываемом сосуде контролируется двумя манометрами одного типа, предела измерения, одинаковых классов точности, цены деления. Время выдержки пробного давления устанавливается разработчиком и обычно определяется толщиной стенки сосуда. Так, при толщине стенки до 50мм оно составляет 10 мин, при 50–100мм– 20 мин, свыше 100мм – 30 мин. Для литых неметаллических и многослойных сосудов независимо от толщины стенки время выдержки составляет 60 мин.

После выдержки под пробным давлением давление снижается до расчетного, при котором производят осмотр наружной поверхности сосуда, всех его разъемных и сварных соединений. Сосуд считается выдержавшим гидравлическое испытание, если не обнаружено:

– течи, трещин, слезок, потения в сварных соединениях и на основном металле;

–течи в разъемных соединениях;

– видимых остаточных деформаций, падения давления по манометру.

Гидравлическое испытание допускается заменять пневматическим при условии контроля этого испытания методом акустической эмиссии или другим, согласованным с Госгортехнадзором России.

Техническое освидетельствование установок, работающих под давлением, зарегистрированных в органах Госгортехнадзора, производит технический инспектор, а установки, не зарегистрированные в этих органах,–лицо, на которое приказом по предприятию возложен надзор за безопасностью эксплуатации установок, работающих под давлением.

Сжиженные газы хранят и перевозят в стационарных и транспортных сосудах –цистернах (сосуды для сжиженных газов), которые в случае хранения криогенных жидкостей снабжены высокоэффективной тепловой изоляцией.

Криогенные сосуды номинальным объемом 6,3...40 л изготовляют в соответствии с ТУ 26-04-622–87.

Стационарные резервуары изготовляют объемом до 500 тыс. л и более. В зависимости от конструкции они бывают цилиндрической (горизонтальные и вертикальные) и шарообразной формы. Основные параметры и размеры внутренних резервуаров для сжиженных газов регламентированы ТУ 26-04-622–87.

Транспортные сосуды (цистерны) обычно имеют объем до 35 тыс. л. Принципиальная схема такого резервуара представлена на рис. 5.3. Низкие температуры, при которых эксплуатируются внутренние сосуды криогенных резервуаров и цистерн, накладывают ограничения на материалы, используемые при их изготовлении.

В промышленности в настоящее время используют газгольдеры низкого и высокого давления. Газгольдеры низкого давления–это сосуды переменного объема, давление газа в которых практически всегда остается постоянным. Из газгольдеров высокого давления расходуемый газ подается сначала на редуктор, а затем к потребителю. Газгольдеры высокого давления обычно собирают из баллонов большого объема, изготовляемых на рабочее давление меньше 25 МПа по ГОСТ 9731–79* и на 32 и 40 МПа по ГОСТ 12247–80*.

Для управления работой и обеспечения безопасных условий эксплуатации сосуды в зависимости от назначения должны быть оснащены:

– запорной или запорно-регулирующей арматурой;

– приборами для измерения давления;

– приборами для измерения температуры;

– предохранительными устройствами;

– указателями уровня жидкости.

Арматура должна иметь следующую маркировку:

– наименование или товарный знак изготовителя;

– условный проход;

– условное давление, МПа (допускается указывать рабочее давление и допустимую температуру);

– направление потока среды;

– марку материала корпуса.

На маховике запорной арматуры должно быть указано направление его вращения при открывании или закрывании арматуры. Арматура с условным проходом более 20 мм, изготовленная из легированной стали или цветных металлов, должна иметь паспорт установленной формы, в котором должны быть указаны данные по химсоставу, механическим свойствам, режимам термообработки и результатам контроля качества изготовления неразрушающими методами.

Каждый сосуд и самостоятельные полости с разными давлениями должны быть снабжены манометрами прямого действия. Манометр устанавливается на штуцере сосуда или трубопроводе между сосудом и запорной арматурой. Манометры должны иметь класс точности не ниже 2,5–при рабочем давлении сосуда до 2,5 МПа, 1,5–при рабочем давлении сосуда свыше 2,5 МПа. Манометр должен выбираться с такой шкалой, чтобы предел измерения рабочего давления находился во второй трети шкалы. На шкале манометра владельцем сосуда должна быть нанесена красная черта, указывающая рабочее давление в сосуде. Манометр должен быть установлен так, чтобы его показания были отчетливо видны обслуживающему персоналу. Номинальный диаметр корпуса манометров, устанавливаемых на высоте до 2 м от уровня площадки наблюдения за ним, должен быть не менее 100мм,на высоте от 2 до 3 м –не менее 160мм. Установка манометров на высоте более 3 м от уровня площадки не разрешается.

Между манометром и сосудом должен быть установлен трехходовый кран или заменяющее устройство, позволяющее проводить периодическую проверку манометра с помощью контрольного.

Проверка манометров сих опломдированием и клеймением должна производится не реже одного раза в 12 месяцев. Кроме того, не реже одного раза в 6 месяцев владельцем сосуда должна производиться дополнительная проверка рабочих манометров контрольными с записью результатов в журнал контрольных проверок.

Манометр не допускается к применению в случаях, когда:

– отсутствует пломба или клеймо с отметкой о проведении проверки;

– просрочен срок проверки;

– стрелка при его отключении не возвращается в нулевое положение на величину, превышающую половину допускаемой погрешности для данного прибора;

– разбито стекло или имеются повреждения, которые могут отразиться на правильности его показаний.

Сосуды, работающие при изменяющейся температуре стенок, должны быть снабжены приборами для контроля скорости и равномерности прогрева по длине и высоте сосуда и реперами для контроля тепловых перемещений.

Необходимость оснащения сосудов указанными приборами и реперами, а также допустимая скорость прогрева и охлаждения сосудов определяются разработчиком проекта и указываются изготовителем в паспортах сосудов или инструкциях по монтажу и эксплуатации.

Каждый сосуд должен быть снабжен предохранительными устройствами от повышения давления выше допустимого значения.

В качестве предохранительных устройств применяются:

– пружинные предохранительные клапаны;

– рычажно-грузовые предохранительные клапаны;



 

– импульсные предохранительные устройства, состоящие из главного предохранительного клапана и управляющего импульсного клапана прямого действия;

– предохранительные устройства с разрушающимися мембранами (предохранительные мембраны);

– другие устройства, применение которых согласовано с Госгортехнадзором России.

Распространенным средством защиты технологического оборудования от разрушения при взрывах являются предохранительные мембраны (разрывные, ломающиеся, срезные, хлопающие, специальные) и взрывные клапаны (рис. 5.4, 5.5).

Достоинством предохранительных мембран является предельная простота их конструкции, что характеризует их как самые надежные из всех существующих средств взрывозащиты. Кроме того, мембраны практически не имеют ограничений по пропускной способности. Существенным недостатком предохранительных мембран является то, что после срабатывания защищаемое оборудование остается открытым, это, как правило, приводит к остановке технологического процесса и к выбросу в атмосферу всего содержимого аппарата. При разгерметизации технологического оборудования нельзя исключить возможность вторичных взрывов, которые бывают обусловлены подсосом атмосферного воздуха внутрь аппарата через открытое отверстие мембраны.

Использование на технологическом оборудовании взрывных клапанов дает возможность устранить эти негативные последствия, так как после срабатывания и сброса отверстие вновь закрывается и таким образом не вызывает необходимости немедленной остановки оборудования и проведения восстановительных работ. К недостаткам взрывных клапанов следует отнести их большую инерционность по сравнению с мембранами, сложность конструкции, а также недостаточную герметичность, ограничивающую область их применения (они могут использоваться для взрывозащиты оборудования, работающего при нормальном давлении).

Широко используются разрывные мембраны, изготовляемые из тонколистового металлического проката. Конструктивное оформление узла зажима мембраны может быть различным (шип – паз, конический или линзовый зажим, см. рис. 5.4).

При нагружении рабочим давлением мембрана испытывает большие пластические деформации и приобретает ярко выраженный купол, по форме очень близкий к сферическому сегменту. Чаще всего куполообразную форму мембране придают заранее при изготовлении, подвергая ее нагружению давлением, составляющим около 90 % разрывного. При этом фактически исчерпывается почти весь запас пластических деформаций материала, поэтому еще больше увеличивается быстродействие мембраны.

Разрывное давление Рс, такой оболочки (давление срабатывания мембраны)

 

Pc=2∆oσBPR

где До –толщина материала мембраны;

 
 

δвр –временное сопротивление материала при растяжении (предел прочности); R – радиус купола.

Минимальный (на пределе разрыва мембраны) радиус купола, где δ – относительное удлинение при разрыве.

Для определения времени полного раскрытия сбросного отверстия мембран можно использовать соотношение:

 


 

где а = [(πDpΔo)/Pc]1/2; D и Δо –соответственно рабочий диаметр мембраны и толщина металлопроката, из которого изготовлена мембрана;

р – плотность материала мембраны, кг/м . Наиболее распространенным средством защиты технологического оборудования от взрыва являются предохранительные клапаны (см. рис. 5.5). Однако и они имеют ряд существенных недостатков, в основном определяющихся большой инерционностью подвижных деталей клапанов.

Расчет и подбор предохранительного клапана заключается в определении количества газа (жидкости), вышедшего из сосуда, аппарата, или площади проходного сечения предохранительно устройства, а также расчете времени истечения при заданном конечном давлении. Давление Рmах в защищаемой емкости не должно превышать значений, указанных ниже:

PP1 МПа   Рт   Pmaх, МПа  
<0,3   <   Рр + 0,05  
<6,0   <   1,15Л>  
>6.0   <   1,1/р  

 

Согласно ГОСТ 12.2.085–82 при расчете массового расхода M газа через предохранительное устройство необходимо использовать выражения M=AF ; для жидкости M-AF^IlXi (Л– Р'), где А и F–коэффициент расхода и площадь сечения устья сбросного отверстия, м2; Xi–плотность рабочей среды в сосуде или аппарате, кг/м3; Р' и Л – абсолютные давления, Па, соответственно в устье сбросного отверстия и сосуде или аппарате; комплекс

показатель адиабаты; π* – критическое отношение давления, равное

Для подбора предохранительного клапана или мембраны необходимо по заданному массовому расходу, который определяется как максимальный аварийный расход среды, определить площадь проходного сечения клапана.

Важной характеристикой предохранительного устройства является время истечения. При истечении газа из сосуда или аппарата ограниченной постоянной емкости через сбросное отверстие постоянного сечения реализуется звуковой режим истечения, если давление Pi ≥ Р"/π*, где Р" –давление в среде, в которую происходит истечение. В этом случае время истечения

Здесь нулевым индексом отмечены параметры в начальный момент времени.

Если истечение происходит в дозвуковой области, то время истечения

Здесь нулевым индексом отмечены параметры в начальный момент времени.

Значение коэффициента расхода предохранительного устройства зависит от конструктивных особенностей предохранительного устройства и указывается в паспорте на него. Если таковые данные отсутствуют, то обычно полагают А=ξ где ξ–коэффициент сопротивления предохранительного клапана.

Мембранные предохранительные устройства могут устанавливаться:

– вместо рычажно-грузовых и пружинных предохранительных клапанов, когда эти клапаны в рабочих условиях конкретной среды не могут быть применены вследствие их инерционности или других причин;

– перед предохранительными клапанами в случаях, когда предохранительные клапаны не могут надежно работать вследствие вредного воздействия рабочей среды (коррозия, эрозия, полимеризация, кристаллизация, прикипание, примерзание) или возможных утечек через закрытый клапан взрыво- и пожароопасных, токсичных, экологически вредных веществ и т. п.;

– параллельно с предохранительными клапанами для увеличения пропускной способности систем сброса давления;

– на выходной стороне предохранительных клапанов для предотвращения вредного воздействия рабочих сред со стороны сбросной системы и для исключения влияния колебаний противодавления со стороны этой системы на точность срабатывания предохранительных клапанов.

Предохранительные мембраны должны быть маркированы, при этом маркировка не должна оказывать влияния на точность срабатывания мембраны.

Содержание маркировки:

– наименование или товарный знак изготовителя;

– номер партии мембран;

– тип мембран;

– условный диаметр;

– рабочий диаметр;

– материал;

– минимальное и максимальное давление срабатывания мембран в партии при заданной температуре и при температуре 20 °С.

Порядок и сроки проверки исправности действия предохранительных устройств в зависимости от условий технологического процесса должны быть указаны в инструкции по эксплуатации предохранительных устройств, утвержденных владельцем сосуда в установленном порядке.

 

ЗАЩИТА ОТ МЕХАНИЧЕСКОГО ТРАВМИРОВАНИЯ

К средствам защиты от механического травмирования относятся предохранительные тормозные, оградительные устройства, средства автоматического контроля… Предохранительные защитные средства предназначены для автоматического… Блокировочные устройства по принципу действия подразделяют на механические, электронные, электрические,…

СРЕДСТВА АВТОМАТИЧЕСКОГО КОНТРОЛЯ И СИГНАЛИЗАЦИИ

Наличие контрольно-измерительных приборов – одно из условий безопасной и надежной работы оборудования. Это приборы для измерения давления,… Устройства автоматического контроля и сигнализации подразделяют: по назначению… Информативную сигнализацию используют для согласования действий работающих, в частности крановщиков и стропальщиков.…

ЗАЩИТА ОТ ОПАСНОСТЕЙ АВТОМАТИЗИРОВАННОГО И РОБОТИЗИРОВАННОГО ПРОИЗВОДСТВА

Она обеспечивается прежде всего технологией проведения работ. Для периодической смены инструмента, регулировки и подналадки станков с ЧПУ и автоматов, их смазывания и чистки, а также для мелкого ремонта в цикле работы автоматической линии должно быть предусмотрено специальное время. Все перечисленные работы должны выполняться на обесточенном оборудовании. Требования безопасности к промышленным работам и робототехническим комплексам установлены ГОСТ 12.2.072–82.

Контроль за обеспечением оборудования средствами защиты от механического травмирования и за их исправностью возложен на службу главного механика предприятий и на механиков подразделений.

 

 

СРЕДСТВА ЭЛЕКТРОБЕЗОПАСНОСТИ

Повышение электробезопасности в установках достигается применением систем защитного заземления, зануления, защитного отключения и других средств и… Требования к устройству защитного заземления и зануления электрооборудования… Защитное заземление представляет собой преднамеренное электрическое соединение металлических частей электроустановок с…

СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Величина потенциалов зарядов искусственного статического электричества на ременных передачах и лентах конвейеров может достигать 40 кВ, при… Основные мероприятия, применяемые для защиты от статического электричества… Изменением технологического режима обработки материалов также можно добиться снижения количества генерируемых зарядов…

ИДЕНТИФИКАЦИЯ ВРЕДНЫХ ФАКТОРОВ И ЗАЩИТА ОТ НИХ

СОСТАВ И РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ

Воздух жилых помещений загрязняется продуктами сгорания природного газа и других топлив, испарениями растворителей, моющих средств,… Современное машиностроение развивается на базе крупных производственных… Масса выброса i-гo загрязняющего вещества

Таблица 6.1. Состав отработавших газов ДВС

Компонент   Объемная доля компонента, %   Примечание  
карбюраторные ДВС   дизельные  
Азот   74...77   76...78   Не токсичны  
Кислород   0,3...8   2...18      
Пары воды   3,0...5,5   0,5...4.0      
Диоксид углерода   5,0...12.0   1,0...10,0      
Водород   0...5,0   –      
Оксид углерода   0,5...12,0   0,01...0,50   Токсичны  
Оксиды азота (в пе   До 0,8   0,0002...0.5      
ресчете на N2О5)              
Углеводороды   0,2...3,0   0,009...0.5      
Альдегиды Сажа   До 0,2 мг/л 0...0,04 г/м3   0,001...0.09 мг/л 0,01...1.1 г/м3      
Бенз(а)пирен   10...20 мкг/м3   До 10 мкг/м3      

 

Состав отработавших газов ДВС зависит от режима работы двигателя. У двигателя, работающего на бензине, при неустановившихся режимах (разгоне, торможении) нарушаются процессы смесеобразования, что способствует повышенному выделению токсичных продуктов. В дизелях с уменьшением нагрузки содержание токсичных компонентов в отработавших газах уменьшается, а при работе на режиме максимальной нагрузки возрастает за счет роста выбросов оксида углерода и углеводородов.

Количество вредных веществ, поступающих в атмосферу в составе отработавших газов, зависит от общего технического состояния автомобилей и особенно от двигателя – источника наибольшего загрязнения. Так, при нарушении регулировки карбюратора выбросы оксида углерода увеличиваются в 4...5 раза. Применение этилированного бензина, имеющего в своем составе соединения свинца, вызывает загрязнение атмосферного воздуха весьма токсичными соединениями свинца. Около 70 % свинца, добавленного к бензину с этиловой жидкостью, попадает в виде соединений в атмосферу с отработавшими газами, из них 30 % оседает на земле сразу за срезом выпускной трубы автомобиля, 40 % остается в атмосфере. Один грузовой автомобиль средней грузоподъемности выделяет 2,5...3 кг свинца в год. Концентрация свинца в воздухе зависит от содержания свинца в бензине:

 

Концентрация свинца в бензине, г/л . . 0,15 0,20 0,25 0,50

Концентрация свинца в воздухе, мкг/м 0,40 0,50 0.55 1,00

 

Исключить поступление высокотоксичных соединений свинца в атмосферу можно заменой этилированного бензина неэтилированным.

Выхлопные газы ГТДУ содержат такие токсичные компоненты, как оксид углерода, оксиды азота, углеводороды, сажу, альдегиды и др. Содержание токсичных составляющих в продуктах сгорания существенно зависит от режима работы двигателя. Высокие концентрации оксида углерода и углеводородов характерны для ГТДУ на пониженных режимах (при холостом ходе, рулении, приближении к аэропорту, заходе на посадку), тогда как содержание оксидов азота существенно возрастает при работе на режимах, близких к номинальному (взлете, наборе высоты, полетном режиме).

Суммарный выброс токсичных веществ в атмосферу самолетами с ГТДУ непрерывно растет, что обусловлено повышением расхода топлива до 20...30 т/ч и неуклонным ростом числа эксплуатируемых самолетов. Отмечается влияние ГТДУ на озоновый слой и накопление углекислого газа в атмосфере.

Наибольшее влияние на условия обитания выбросы ГТДУ оказывают в аэропортах и зонах, примыкающих к испытательным станциям. Сравнительные данные о выбросах вредных веществ в аэропортах показывают, что поступления от ГТДУ в приземный слой атмосферы составляют, %: оксид углерода – 55, оксиды азота – 77, углеводороды – 93 и аэрозоль – 97. Остальные выбросы выделяют наземные транспортные средства с ДВС.

Загрязнение воздушной среды транспортом с ракетными двигательными установками происходит главным образом при их работе перед стартом, при взлете, при наземных испытаниях в процессе их производства или после ремонта, при хранении и транспортировании топлива. Состав продуктов сгорания при работе таких двигателей определяется составом компонентов топлива, температурой сгорания, процессами диссоциации и рекомбинации молекул. Количество продуктов сгорания зависит от мощности (тяги) двигательных установок. При сгорании твердого топлива из камеры сгорания выбрасываются пары воды, диоксид углерода, хлор, пары соляной кислоты, оксид углерода, оксид азота, а также твердые частицы Аl2О3 со средним размером 0,1мкм (иногда до 10 мкм).

В условиях запуска у пусковой системы образуется облако продуктов сгорания, водяного пара от системы шумоглушения, песка и пыли. Объем продуктов сгорания можно определить по времени (обычно 20 с) работы установки на стартовой площадке и в приземном слое. После запуска высокотемпературное облако поднимается на высоту до 3 км и перемещается под действием ветра на расстояние 30...60 км, оно может рассеяться, но может стать причиной кислотных дождей.

При старте ракетные двигатели неблагоприятно воздействуют не только на приземный слой атмосферы, но и на космическое пространство, разрушая озоновый слой Земли. Масштабы разрушения озонового слоя определяются числом запусков ракетных систем и интенсивностью полетов сверхзвуковых самолетов. По прогнозам фирмы «Аэроспейс», в XXI в. для транспортирования грузов на орбиту будет осуществляться до 10 запусков ракет в сутки, при этом выброс продуктов сгорания каждой ракеты будет превышать 1,5 т/с.

В связи с развитием авиации и ракетной техники, а также интенсивным использованием авиационных и ракетных двигателей в других отраслях народного хозяйства существенно возрос общий выброс вредных примесей в атмосферу. Однако на долю этих двигателей приходится пока не более 5 % токсичных веществ, поступающих в атмосферу от транспортных средств всех типов.

 

СРЕДСТВА ЗАЩИТЫ АТМОСФЕРЫ

Требования к выбросам в атмосферу. Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне… C+Cф≥ ПДК (6.2) по каждому вредному веществу (Сф –фоновая концентрация), а при наличии нескольких вредных веществ однонаправленного…

Таблица 6.2. Марки патронов респираторов РПГ-67

Марка патрона   Марка респиратора   Вредные вещества, от которых защищает респиратор  
А   В     КД Г     РПГ-67А   РПГ-68В     РПГ-67КД РПГ-67Г   Пары органических веществ (бензина, керосина, сероуглерода, ксилола, толуола, ацетона, спиртов, кетонов, эфиров, бензола и др.), хлор-и фосфорорганических ядохимикатов. Кислые газы (сернистый газ, сероводород, хло-роводород и др.), пары хлор- и фосфорорганических ядохимикатов Аммиак, сероводород и их смесь. Пары ртути и ртутьорганические соединения    

 

Таблица 6.3. Условия применения респираторов РПГ-67

Марка патрона   Вредные вещества   Концентрация, г/м3   Время защитного действия, мин, не менее  
А   Бензол      
В   Диоксид серы      
КД   Аммиак      
    Сероводород      
F   Пары ртути   0,01    

 

Для очистки газов от паров растворителей с концентрацией более 0,3 г/м3 НИИОГАЗом разработан типовой ряд адсорберов АВКФ с производительностью по очищаемому газу 10, 20, 40 и 80 тыс. м3/к4.

Термическая нейтрализация основана на способности горючих газов и паров, входящих в состав вентиляционных или технологических выбросов, сгорать с образованием менее токсичных веществ. Для этого метода используют нейтрализаторы. Различают три схемы термической нейтрализации: прямое сжигание; термическое окисление; каталитическое дожигание.

Прямое сжигание используют в тех случаях, когда очищаемые газы обладают значительной энергией, достаточной для поддержания горения. Примером такого процесса является факельное сжигание горючих отходов. Так нейтрализуют циановодород в вертикально направленных факелах на нефтехимических заводах. Разработаны схемы камерного сжигания отходов. Такие дожигатели можно использовать для нейтрализации паров токсичных горючих или окислителей при их сдувах из емкостей.

Термическое окисление находит применение в тех случаях, когда очищаемые газы имеют высокую температуру, но не содержат достаточно кислорода или когда концентрация горючих веществ незначительна и недостаточна для поддержания пламени.

В первом случае процесс термического окисления проводят в камере с подачей свежего воздуха (дожигание оксида углерода и углеводородов), а во втором – при подаче дополнительно природного газа. Схема устройства для термического окисления выбросов показана на рис. 6.14.

Каталитическое дожигание используют для превращения токсичных компонентов, содержащихся в отходящих газах, в нетоксичные или менее токсичные путем их контакта с катализаторами. Для реализации процесса необходимо кроме катализаторов поддержание таких параметров газового потока, как температура и скорость газов.

В качестве катализаторов используют платину, палладий, медь и др. Температуры начала каталитических реакций газов и паров изменяются в широких пределах–200...400°С. Объемные скорости процесса каталитического дожигания обычно устанавливают в пределах 2000...6000 ч-1 (объемная скорость–отношение скорости движения газов к объему катализаторной массы).

Каталитические нейтрализаторы применяют для обезвреживания оксида углерода, летучих углеводородов, растворителей, отработавших газов и т. п.

Термокаталитические реакторы с электроподогревом типа ТКРВ разработаны Дзержинским филиалом НИИОГАЗа. Они предназначены для очистки газовых выбросов сушильных камер окрасочных линий от органических веществ и других технологических производств.

Каталитическая нейтрализация отработавших газов ДВС на поверхности твердого катализатора происходит за счет химических превращений (реакции окисления или восстановления), в результате которых образуются безвредные или менее вредные для окружающей среды и здоровья человека соединения. Устройство и расчет нейтрализаторов отработавших газов ДВС даны в |6.9].

Оборудование, применяемое для очистки выбросов в машиностроении и приборостроении, приведено в приложении 1.

Для высокоэффективной очистки выбросов необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки. В системе последовательно соединенных аппаратов общая эффективность очистки η= 1-(1-η1)(1–η2)...(1-ηn),где η1, η2,..., ηn–эффективность очистки 1, 2 и n-го аппаратов.

Такие решения находят применение при высокоэффективной очистке газов от твердых примесей; при одновременной очистке от твердых и газообразных примесей; при очистке от твердых примесей и капельной жидкости и т. п. Многоступенчатую очистку широко применяют в системах очистки воздуха с его последующим возвратом в помещение (см. рис. 6.2, а).

Производство и применение очистного оборудования. Перечень газо-и туманоочистного оборудования, разработанного НИИОГАЗом, приведен в табл. 6.4.

Таблица 64. Очистное оборудование НИИОГАЗа

Тип оборудования   Марка   Год выпуска   Улавливаемое вещество  
Адсорбер   АВП     Пары ртути  
    АВКФп     Органические растворители  
    СП     Фтористые соединения, диоксид серы  
    СДК     То же  
    СПК-Б     Неприятно пахнущие вещества  
    АН     То же  
Термокаталити-   ТКРО     Углеводороды, оксид углерода, непри-
ческие реакторы           ятно пахнущие вещества  
    КР     То же  
    КР-35     >>  
    КРТ-50     >>  
Электрофильтры   ЭВМ     Смолистые вещества  
    ЭТМ     Пары серной кислоты  
Волокнистые   ФВГ-Т     Туман и брызги серной и хромовой  
фильтры           кислоты  
    ФВГ-С-Ц     Цианистые соединения  
    ВВЦ-180     Туманы масел  

 

Конъюнктуру спроса и использования пылегазоочистного оборудования в различных отраслях промышленности можно проследить на примере рынка США. Расходы (млн. долл.) компаний США на защиту атмосферного воздуха в отдельных отраслях промышленности составили:

    1986 г.   1987 г.   1988 г.  
Теплоэнергетика ...............        
Нефтеперерабатывающая ..........        
Химическая .................        
Горнодобывающая ..............        
Целлюлозно-бумажная ............        
Металлургическая (черная и цветная) ....        
Автомобильная ... ..........        
Машиностроение (общее) ..........        
Электротехническое машиностроение ....        
Приборостроение ..............        

 

Для оценки конъюнктурного спроса на различные виды газопылеочистного оборудования целесообразно ознакомиться с масштабами его производства в США в 1986 г :

Число, шт.   Стоимость, млн. долл.  
Электрофильтры     169,3  
Рукавные фильтры     154,9  
Сухие пылеуловители     25,9  
Мокрые скрубберы     25,1  
Каталитические дожигатели     14,6  
Термические дожигатели     20,3  
Абсорберы     12,5  
Адсорберы     3,3  
Устройства для обессеривания     165,2  
Прочие   –   37.6  

 

СОСТАВ И РАСЧЕТ ВЫПУСКОВ СТОЧНЫХ ВОД В ВОДОЕМЫ

Производственные сточные воды образуются в результате использования воды в технологических процессах. Типовой состав примесей сточных вод… Таблица 65 Состав сточных вод [6.10] Тип цеха, участка   …  

СРЕДСТВА ЗАЩИТЫ ГИДРОСФЕРЫ

При kn≥5 объем усреднителя (м3) V=kпΔQτ3, где ΔQ –превышение расхода сточной воды при переменном сбросе, м3/с; τз – продолжительность переменного…

СБОР И ЛИКВИДАЦИЯ ТВЕРДЫХ И ЖИДКИХ ОТХОДОВ

Твердые отходы машиностроительного производства содержат амортизационный лом (отходы при модернизации оборудования, оснастки, инструмента), стружки и опилки металлов, древесины, пластмасс, шлаки, золы, шламы, осадки и пыли (отходы систем очистки воздуха и др.). Твердые отходы предприятия и бытовые составляют:

 

Отходы предприятия % по массе Бытовые отходы% по массе

Горелая формовочная смесь 6 Пищевые отходы 20…38 Шламы, флюсы 3 Дерево 1…4 Абразивы 0,1 Текстиль 3…6

ЗАЩИТА ОТ ЭНЕРГЕТИЧЕСКИХ ВОЗДЕЙСТВИЙ

Обобщенное защитное устройство и методы защиты

В общем случае защитное устройство (ЗУ) обладает способностями: отражать, поглощать, быть прозрачным по отношению к потоку энергии. Пусть из общего…   Рис. 6.26. Энергетический баланс защитного устройства

Защита от вибрации

Сила инерции, как известно, равна произведению массы М на ее ускорение: где v – виброскорость.

Таблица 6.6 Механические свойства и коэффициенты потерь некоторых материалов

Материал   Модуль упругости, кН/мм2   Модуль сдвига, кН/мм2   Коэффициент Пуассона   Коэффициент потерь  
Алюминий       0,36   <10-4  
Сталь       0,31   10-4…10:3  
Свинец       0,43   10…10'2-2  
Медь       0,35   2∙10-3  
Латунь       0,33   ≈10-3  
Цинк       0,33   ≈10-3  
Оргстекло   5,6   –   –   2∙10-2  

 

В настоящее время вибропоглощение осуществляется преимущественно путем применения конструкционных материалов с повышенным значением коэффициента потерь и вибропоглощающих покрытий.

Р и с . 6 37 Наружные покрытия:

о –жесткое; б – жесткое с прокладкой; 1 –вибрирующая пластина; 2–вибропоглощающий материал; 3–прокладка

 

Конструкционные материалы с большим внутренним трением обычно создаются искусственно. В специальных сплавах коэффициент потерь может достигать значений 10-1...2-10-2: сплавы магния –0,3; сплавы меди –0,2; хайдаметы (сплавы Ni –Со, Со –Ti, Си – Ni)–0,15; сплавы марганца 0,01–0,06; у капрона и текстолита коэффициент потерь соответственно равен 0,4 и 0,35. В качестве конструкционных материалов используют также высокомолекулярные соединения, у которых коэффициент потерь имеет порядок 10-2. Для полимеров типична сильная зависимость коэффициента потерь от температуры и частоты.

Перспективным в вибропоглощении является нанесение на колеблющиеся поверхности элементов конструкции высокоэффективных вибропоглощающих материалов. Они могут изготовляться на основе меди, свинца, олова, битумов и других материалов. Большое распространение получила многокомпонентная система на основе полимера, способного рассеивать механическую энергию в большом количестве при основных деформациях: растяжении, изгибе, сдвиге. Из других компонентов полимерной системы главными являются пластификаторы и наполнители. Пластификаторы (низкомолекулярные труднолетучие вещества, например, сложные эфиры, некоторые парафины и масла) придают полимеру требуемое сочетание свойств эластичности и пластичности. Наполнители (сажа, графит, слюда и др.) сообщают материалу необходимые эксплуатационные свойства; они могут, например, повысить его прочность, облегчить обработку, снизить сто-имость и т. д. Вибропоглощающий материал выпускается промышленностью в отвержденном в виде листов и мастичном состояниях.

Листовой материал приклеивается к вибрирующей поверхности; мастику наносят методом штапелирования или напыления. В большинстве случаев вибропоглощающим материалом демпфируют изгибные колебания конструкций типа пластин. При жестком наружном покрытии (рис. 6.37, а) поверхность 7 пластины накрывается слоем жесткого вибропоглощающего материала 2. Такое покрытие рассеивает энергию колебаний при своих продольных деформациях, имеющих характер растяжений–сжатий. Коэффициент потерь конструкции, демпфированной жестким покрытием:

где E21=E2/E1 и h21=h2/h1отношения соответственно модулей упругости и толщины (рис. 6.37, д), n3 – коэффициент потерь материала покрытия.

Жесткое наружное покрытие с прокладкой имеет повышенный по сравнению с предыдущим коэффициент потерь, так как между слоем вибропоглощающего материала и пластиной расположен слой легкого жесткого полимера (например, пенопласта) (рис. 6.37, б). Он удаляет вибропоглощающий материал от нейтральной плоскости (не испытывающей деформаций при изгибе), при этом увеличивается его виброскорость, возрастает деформация растяжения и, следовательно, увеличиваются потери энергии в покрытии. С увеличением частоты покрытие эффективно работает до тех пор, пока в прокладке не возникнут деформации сдвига. При возникновении последних прокладка перестает эффективно передавать на вибропоглощающий слой растягивающие усилия от изгибов пластины.

Кроме жестких покрытий применяют также: армированные покрытия, когда на слой вибропоглощающего материала наносится тонкий слой другого материала (обычно металла), который упрочняет, усиливает или защищает вибропоглощающий слой; слоистые покрытия, когда толщина упрочняющего металлического слоя близка к толщине пластины; и мягкие наружные покрытия, которые представляют собой слой вибропоглощающего материала, легко сжимаемого по толщине и рассеивающего энергию изгибных колебаний в результате деформаций в поперечном направлении. В рассмотренных жестких покрытиях коэффициент потерь зависит от частоты. При этом его наибольшие значения приходятся на область низких –средних частот.

Эффективность вибропоглощения

где Lη и Lη+. – уровни рассеиваемой энергии до и после осуществления вибропоглощающих мероприятий.

Чтобы учесть рассеивание энергии вследствие применения конструкционных материалов, введем сквозную нумерацию слоев: материал, на который наносится вибропоглощающий слой, назовем нулевым слоем; над нулевым слоем располагается первый слой, над первым – второй и т. д. Тогда, пользуясь формулой (6.8), запишем

где εi, и ηi–соответственно максимальная потенциальная энергия и коэффициент потерь i-го слоя; п –число слоев.

Защита от шума, электромагнитных полей и излучений

Уровень интенсивности в свободном волновом поле.

Уравнение плоской волны, не затухающей с расстоянием, в комплексной форме имеет вид

здесь um = umjфu – комплексная амплитуда; r – радиус-вектор рассматриваемой точки; k –волновой вектор, численно равный волновому числу k=w/c=2π/λ где с λ – соответственно скорость распространения и длина волны.

Таблица 6.7. Коэффициент затухания звука в воздухе, дБ/км

Относительная влажность возду-   Среднегеометрические частоты октавных полос, Гц  
ха,%          
                 
  0.8   1,5   3,8   12,1        
  0,4   1,3   2,8   4,9        
  0,2   0,9   2,7   5,5   9,7      

 

Для звука коэффициент затухания δо зависит от частоты звука, температуры, давления и относительной влажности воздуха. При нормальном атмосферном давлении и температуре воздуха, равной +20 °С , значения коэффициента δо даны в табл. 6.7. Для электромагнитной волны, распространяющейся в воздухе, δо≈0 (см. ниже). Следует иметь в виду, что в реальных условиях уровень затухания зависит также от погодных условий (дождь, снег, туман и т. д.), наличия растительности (трава, кустарник, деревья и т. д.), состояния атмосферы (ветер, туман, турбулентность, температурные градиенты и т. д.), наличия отражающих поверхностей (земля, преграды, экраны и т. д.) и ряда других факторов и вычисляется по формуле где eS(i) – уровень

 

затухания при наличии i-го фактора. Если затуханием можно пренебречь (S = 0), то уровень интенсивности:

Диффузное волновое поле в изолированных объемах. Волновое поле называют диффузным, если усредненная по времени объемная плотность энергии W=Wg одинакова во всех точках, а поток энергии через единичную площадку в любой точке и в любом направлении постоянен и равен 1g

Энергия волны в объеме d V равна ck=WgdK В диффузном поле эта энергия распределяется равномерно во все стороны пространства 4я. Следовстгельно, на телесный угол dQ = d5fcos6/r2 приходится часть энергии, равная d^ == w^cosOd V(\S/^nr1. В сферической системе координат с полярным углом 9 элементарный объем d^=" AinOdOdcpdr и полная энергия через площадку d*? найдется в результате следующего интегрирования:

Откуда следует, что поток энергии через единичную площадку

Ig=Wgc/4=Iв/4

Таким образом, поток энергии через единичную площадку в диффузном волновом поле в четыре раза меньше интенсивности Iв бегущих волн с той же объемной плотностью энергии. Для бегущей со скоростью с волны интенсивность I = cw, где w – усредненная объемная плотность энергии. При наличии диффузного поля понятие интенсивности теряет смысл.

Понятие диффузного поля часто используют при определении плотности потока энергии Iп в изолированных объемах. Под изолированным объемом понимается пространство, огражденное стенками (например, производственное помещение, кабина, пространство под кожухом машины и т. д.). Волны в изолированных объемах, многократно отражаясь, образуют поле, которое изменяется при изменении геометрических размеров, формы и других характеристик источника.

Волновое поле в каждой точке изолированного объема можно представить в виде совокупности волн, непосредственно приходящих в эту точку от источника, именуемую как прямая волна, и совокупности волн, попадающих в нее после отражений от границ изолированного объема – отраженная волна.

Плотность энергии Wп в любой точке изолированного объема будет складываться (рис. 6.38) из плотности энергии w прямой волны и плотности энергии Wg при диффузном поле отраженной волны: Wп = w + Wg. Умножив это уравнение на скорость с, получим

Iп=I+4Ig

Интенсивность прямой волны в общем случае определяется формулой (6.28). Выразим плотность потока энергии Ig через мощность источника. При работе источника в изолированный объем постоянно поступает энергия. При мощности источника W отраженный от границ полный поток энергии составит pW, а от единичной площадки pW/S. За единицу времени через единичную площадку границы вследствие поглощения исчезнет количество энергии, равное αIg. Так как в диффузном поле плотность энергии постоянная, то должно соблюдаться равенство рW/S=αIg. Для простоты дальнейших рассуждений здесь предполагается, что коэффициент а значительно больше коэффициента т. Уравнение (6.32) принимает вид

Рис. 6.38. Диффузное поле отраженной волны

 

Из полученного выражения видно, что в изолированном объеме плотность потока энергии получает некоторое приращение, которое аналитически обусловлено наличием множителя (1–α)/α, который велик при коэффициенте α близком к нулю.

Защитное устройство бесконечной толщины. Во многих случаях информацию можно получить, исследуя вместо реальной конструкции теоретическое защитное устройство бесконечной толщины, оно представляет собой просто среду, бесконечно простирающуюся в направлении распространения волны. Таким образом, волна из одной среды проходит в другую среду (защитное устройство), предварительно попадая на границу раздела этих сред. При падении на плоскую границу раздела двух разных сред плоская волна частично отражается, частично проходит в другую среду, оставаясь плоской, но меняя при этом свое направление распространения, т. е. преломляясь. Таким образом в общем случае существуют три волны: падающая, отраженная и преломленная (прошедшая).

При прохождении границы раздела сред без поглощения должен соблюдаться закон сохранения энергии: W- + W˜ = W+. Кроме того, на границе должны выполняться специфические для волн данной природы условия: например, для звуковых волн по обе стороны границы должны быть равны звуковые давления – принцип непрерывности звукового давления; для электромагнитных волн на границе раздела двух сред непрерывны тангенциальные составляющие электромагнитного поля. Условие непрерывности при нормальном падении волн можно записать в виде равенства на границе амплитуд поля в среде j и среде j:[um]j=[um]. Усредненный поток энергии можно выразить через интенсивность: W= IS, а интенсивность – через амплитуду и импеданс среды с помощью формулы (6.25). Тогда закону сохранения энергии можно придать виц (рис. 6.39)

W и т, U т, и т – амплитуда, соответственно, падающей, отраженной и прошедшей волн, a z k = Zk/Sk – импеданс на единицу площади (k = /, у).

В среде i существуют падающая и отраженная волна, которые на границе создают суммарную амплитуду [u,n]i == и^т + "w» в среде у существует только преломленная волна:

[Urn]} == иЩ. Условие непрерывности и закон сохранения энергии позволяют найти амплитудный коэффициент отражения Ry и амплитудный коэффициент передачи Тц при' падении волны на границу (/, j) из среды /:

При этом имеем Ту = 1 + 7?у, Ry = –Rj,. Так как значение коэффициента отражения лежит между –I и +1, то значение коэффициента передачи заключено в интервале от 0 до 2 и он всегда положителен. При равных площадях (S, = Sj) соотношения (6.34) примут такой же вид, который можно получить простой заменой ^ на ^, а при равных импсдансах сред to == ^) – заменой ^ на \/S„ (k = /, /). Амплитудные коэффициенты отражения и передачи при нормальном падении волн связаны с соответствующими энергетическими коэффициентами соотношениями:

Защитное устройство конечной толщины. В общем случае защитное устройство имеет конечную толщину. При этом волна, падая на защитное устройство, частично отражается, а частично может проходить сквозь него. Отражательную способность защитного устройства характеризуют коэффициентом отражения энергетическим и амплитудным. Прозрачные свойства защитою устройства характеризуют соответствующими коэффициентами передачи. Амплитудные коэффициенты отражения и передачи па границах разных сред будем обозначать соответственно через Ry и t{j. Эти величины определены соотношениями (6.34). Амплитудные коэффициенты отражения и передачи защитного устройства будем обозначать соответственно через R и Г, при этом в комплексной форме

где U+т и Uт-соответственно амплитуда падающей и отраженной волны на входе в защитное устройство; Uтамплитуда волны на выходе из защитною устройства.

Рассмотрим случай, когда гармоническая волна падает из среды 1 (рис. 6.40) на защитное устройство произвольной толщины h, состоящее из среды 2, ограниченной с другой стороны средой з, при этом S1 = S2 = S3. Примем, что импедансы сред соответственно равны Z1, Z2, Z3 волновое поле в среде 2 на длине h затухает по экспоненциальному закону е, где h – коэффициент распространения. При неравных импедансах сред часть энергии на границе (7, 2) отражается обратно в среду 7 в соответствии с формулой (6.34). Амплитуда падающей волны равна и+^п- Обозначив амплитуду отраженной волны через U, имеем: U= Rum.

Другая часть энергии пройдет в среду 2 и, изменившись пропорционально коэффициенту передачи Гц на границе (7, 2), претерпит в среде 2 затухание по закону е2 , так что амплитуда волны в среде 2, которую обозначим через U, определится выражением й\ = Т^е^й+т- Эта волна на границе (2, 3) частично отразится и создаст в среде 2 отраженную волну, амплитуда которой с учетом затухания станет равной й^ == ^R^T^e'2^ и частично пройдет в среду J. Амплитуда прошедшей волны будет равна ид = ^^ТчзТ^ hu-^m. Волна с амплитудой йч, частично пройдет в среду 7: и^ =Г2l7l27г23^-2u^4m, а частично отразится от границы (7, 2^ и снова будет распространяться в среде 2 в виде волны с амплитудой us = rzi ТЬ^зе"3^-* /и. Процесс отражения и прохождения волн на границе сред (1, 2 и 2, 3) будет продолжаться до полного затухания волн

 

Рис. 6.39. Баланс энергии на границе раздела сред

Рис. 6.40. Схема защитного устройства конечной толщины

 

Суммируя все волны, из которых в среде 7 формируется общая отраженная волна, можно получить для амплитуды этой волны следующее выражение

Пользуясь формулой бесконечной геометрической прогрессии, найдем амплитудный коэффициент отражения защитного устройства

В среде 3 суперпозиция распространяющихся волн создаст волну, прошедшуюсквозьзащитное устройство. Амплитуда этой волны на выходе из защитного устройства

Просуммировав, получим согласно формуле (6.35) амплитудный коэффициент прозрачности защитного устройства конечной толщины:

С помощью формул (6.34) преобразуем коэффициенты R и Г квиду:

где zi2 = а/О и 02 = o/q. Полученные соотношения носят общий характери их можно применять при решении задач защиты как от звуковых, так и от электромагнитных полей,

Если по обе стороны от защитного устройства находится одна и та же среда, то импедансы ^и ^ равны. Тоща формулы (6.36) и (6.37) преобразуются к виду:

Амплитудные коэффициенты R и Т при нормальном падении волн связаны с энергетическими коэффициентами р и т соотношениями: р = В.2, т = Г2, эффективность защиты

В некоторых случаях для расчета эффективности защиты удобно использовать следующую запись:

е = е. + е + <?., (6.40)

Ж f. Л ^

где ^ = (201g^)8A, ^ = 201g|T U вц = 201g|(l– рце-2V)! – слагаемые эффективности за счет ослабления волн соответственно в материале защитного устройства, при прохождении границы раздела сред (1, 2) и при многократных отражениях внутри защитного устройства. Так как с увеличением частоты коэффициент h возрастает, то ^ -> 0 и эффективность изоляции высокочастотных полей е w ek •+- е^

Прогнозирование шума. Условие безопасности при наличии звукового поля можно записать в виде неравенства

L,(f) ^(Д (6.41)

где Lp(f) = 201gp^(/)/A и 1н(/) –соответственно уровни звукового давления и их нормативные значения. Неравенство (6.41) должно выполняться на всех среднегеометрических частогах/== 63,125, 250, 500,1000, 2000, 4000, 80000 Гц и во всех точках рассматриваемого пространства с учетом времени звукового воздействия. Из соотношения (6.26) следует

L^L-L, (6.42)

Референтные значения звукового давления, интенсивности и им-педанса равны: а = 2 • 10'5 Па, 1 = 1012 Вт/м2 = 400 Па • с/м.

Характеристический импеданс среды для звука равен произведению скорости звука в среде сна ее плотность p:z = рс. Для атмосферного воздуха при р == 1,29 кг/м3 и с = 331 м/с ^ = 430 кг/(м2 • с). В табл. 6.8 приведены значения импеданса г для разных сред.

 

Таблица 6.8. Плотность, скорость звука и характеристический импеданс для некоторых сред и материалов

Среда, материал   Плотность ρ, кг/м3   Скорость звука с, м/с   Импеданс z= рс, Па∙ с/м  
Водород   0,084      
Вода       1,45 • 106  
Бензин       0,89 • 106  
Алюминий       16,5 • 106  
Медь       41,1 • 106  
Сталь       47,6 106  
Стекло     4900...5900   (12...15) • 106  
Полистирол       2,94 • 106  
Железобетон       11•106  
Кирпич       4,1 • 106  
Пробка       0,12∙106  
Резина (техниче       0,72 • 106  
ская)              

При распространении звука в атмосфере значение импсданса будет зависеть от температуры и давления. Значение ^ = 400 Па • с/м будуг соответствовать условиям, когда, например, давление и температура будут соответственно равны 0,9 • 105 Па (675 мм рт. ст.) и –27 °С или 1,013 • 1015 Па и +38,8 °С. Однако при изменении давления и температуры в пределах обычной атмосферы уровень импеданса 2^= lOlg^* незначителен и им пренебрегают, полагая, что Lp(f) = Z//).

Уровень интенсивности или плотности потока энергии можно определить, используя зависимости (6.29), (6.30), (6.33).

Для расчета уровня шума в изолированном объеме используют уравнение (6.33), которое записывают в децибелах в виде

Рис. 6.41. Схема расчета уровня шума в изолированном объеме

 

де Z/„( г, В) – уровень плотности потока энергии на сферической поверхности радиуса г, образованной телесным углом излучения Q при данном значении постоянной изолированного объема B=aS/(l–а), где S–общая площадь его внутренней поверхности с коэффициентом поглощения а; ^5 – затухание звука (см, пояснения к формуле (6.29), которое в большинстве случаев можно принять равным нулю, S(r) == 4пу^.Сферическая поверхность описывается радиусом г из акустического центра (АЦ). Если источник расположен на плоскости (и = 2п), то АЦ совпадает с проекцией геометрического центра источника на эту плоскость. Угол излучения Q зависит от местоположения источника шума: и = 2тс при расположении источника на плоско-ста; П = я – в двухгранном угле; Q == я/2 – в трехгранном угле, образованном ограждающими стенками. При отсутствии более точных данных углу О соответствует коэффициент направленности ф = (W/ ^)/( W/4nr1) = 4w/Q.

Формулу (6.43) обычно применяют, коща радиус г > 24пах> гае ^пях – максимальный размер источника.

Чтобы определить уровень шума в точке ^изолированного объема (см. рис. 6.41), в формуле (6.43) следует положить r= /\i. Найденное таким образом значение L^ сравнивают с нормами.

В выражение (6.43) входит коэффициент поглощения а, который зависит от многих факторов, например, от угла падения и частоты. На практике при расчетах по формуле (6.43) используют значения коэффициентов поглощения, полученные при измерениях в трубе или в реверберационной камере, несмотря на то, что их значения могут различаться (например, теоретически при измерениях в трубе а<, 0,95, а для того же случая в реверберационной камере а = 1,2). В практических расчетах коэффициент а вычисляют по правилу: для частот/== 63... 1000 Гц принимают а == ао, где ао определяют по табл. 6.9; для частот /= 2000...8000 Гц коэффициент а вычисляют по формуле: а = « 1–(1–oio)exp(–25/), ще 6 в нужной размерности находят из табл. 6.7, а постоянная

Л

затухания звуковой энергии в объеме Н равна 1= 4 V/ Si .

Таблица 6.9 Коэффициент поглощения а в производственных помещениях

Тип помещения   Среднегеометрическая частота, f, Гц  
               
Машинные за-   0,07   0,08   0,08   0,08   0,08   0,08   0,09   0,09  
лы, испытатель-                                  
ные стенды                                  
Механические   0,10   0.10   0.10   0,11   0,12   0.12   0,12   0,12  
и металлообраба-                                  
тывающие цехи;                                  
цехи агрегатной                                  
сборки в авиа- и                                  
Судостроительной                                  
Промышленности                                  
Цехи деревооб-   0,11   0,11   0,12   0,13   0,14   0,14   0,14   0,14  
работки, посты                                  
управления, ла-                                  
боратории, кон                                  
структорские                                  
бюро                                  

 

Некоторые ориентировочные значения коэффициента поглощения даны в табл. 6.9. Если стенки изолированного объема изготовлены из п разных материалов, то в выражении (6.43) а есть среднее значение коэффициента звукопоглощения:

где Wf – усредненный за период поток энергии, падающий на поверхность /-стенки, площадь и коэффициент поглощения которой соответственно равны *У/ и a/; Sa == ^ а/*У/ – эквивалентная площадь i - внутренней поверхности изолированного объема (i = 1, п).

Из уравнения (6.32) следует, что степень диффузного поля может быть охарактеризована отношением 41д//= ^с. Пространство, где ^ < 1 (т. е. вблизи источников шума), называют зоной прямого звука, а пространство, где ^ > 1 (т. е. вдали от источников, вблизи стенок изолированных объемов),– зоной отраженного звука. Условие % = 1 позволяет^задать границу между этими зонами в виде радиуса г, = = ^Вф/(16пг1) (см. рис. 6.41) и при г» г^ записать выражение (6.43) в виде (^а=0):

lj (г, В) - L(В) = Z.+ ioig(4.y / В). (6.44)

Звукопоглощение. Для уменьшения отраженного звука применяют защитные устройства, обладающие большими значениями коэффициента поглощения, к ним относятся, например, пористые и резонансные поглотители.

Звуковые волны, падающие на пористый материал, приводят воздух в порах и скелет материала в колебательные движения, при которых возникает вязкое трение и переход звуковой энергии в теплоту. Коэффициент звукопоглощения а будет зависеть как от угла падения звуковых волн, так и от частоты. Для пористого поглотителя, находящегося на жесткой стенке, частотная характеристика коэффициента а имеет вид, показанный на рис. 6.42, д. Для усиления звукопоглощения на низких частотах между пористым слоем и стенкой делают воздушную прослойку (рис. 6.42, б). Пористые поглотители изготовляют из органических и минеральных волокон (древесной массы, кокса, шерсти), из стекловолокна, а также из пенопласта с открытыми порами. Для защиты материала от механических повреждений и высыпаний используют ткани, сетки, пленки, а также перфорированные экраны. Последние существенно изменяют характер поглощения звука защитным устройством (рис. 6.42, в).

Резонансные поглотители имеют воздушную полость, соединенную отверстием с окружающей средой. Воздух в резонаторе выполняет роль механической колебательной системы, состоящей из элементов массы, упругости и демпфирования. Если пренебречь рассеиванием звуковой энергии, то импеданс резонатора, равный механическому импедансу (см. формулу (6.18), отнесенному к единице площади, будет равен нулю на частоте со. При импедансе резонатора ^ = 0 коэффициент отражения звукового давления R = –1. Таким образом, снижение шума происходит за счет взаимного погашения падающих и отраженных волн.

Рис. 6.42. Частотные характеристики коэффициента поглощения:

а–для пористого поглотителя на жесткой стенке; б–для пористого поглотителя с воздушной прослойкой; в –при наличии перфорированного экрана; г–для резонансного поглотителя, образованного перфорированным экраном

 

Резонансным поглотителем является также перфорированный экран с отверстиями, затянутыми тканью или мелкой сеткой (рис 6.42, г), который существенно меняет характер поглощения. Пористые и резонансные поглотители крепят к стенкам изолированных объемов.

Кроме того, звукопоглощение может производиться путем внесения в изолированные объемы штучных звукопоглотителей, изготовленных, например, в виде куба, которые в производственных помещениях чаще всего подвешивают к потолку.

К хорошим звукопоглощающим материалам относят те, которые на среднегеометрических частотах октавных полос 250, 500, 1000, 2000 Гц имеют коэффициент а, равный или превышающий соответственно значения: 0,2; 0,3; 0,4; 0,5.

Обозначив постоянную изолированного объема до установки поглощающих материалов через Д== (х-5/(1–а), а после установки – В == аД(1 –а) и записав коэффициент защиты в виде: kw = In(r, B)/In{r, В), найдем эффективность звукопоглощения: . /

е = lOlgA^ = L^ (г. В) – Zi„(r, В), (6.45)

где уровни Z/„ (r,B) и L^ (r, В) оп^юделяют по формуле (6.43).

Для вычисления постоянной В имеет смысл коэффициент а выразить через площадь5», на которой предполагается разместить защитные

устройства со средним коэффициентом звукопоглощения, равным о». Эквивалентная площадь внутренней поверхности изолированного объема до установки защитных устройств Дх == а*У== а'(*У–А)4- + a"S^ где а' и а" – средние коэффициенты звукопоглощения поверхностей площадью (S–iS») и S^ эквивалентная площадь после установки защитных устройств Sa ^dS^a^S–S^) + а^. Из этих уравнений находим а == а–(а"a^S^/Su в тех случаях, когда можно принять aS a"S^ имеем а = Sa(*)/S, где *Уа(*) = = а^ – эквивалентная площадь звукопоглощающих устройств. При внесении в изолированные объемы штучных звукопоглотителей &(*)= ос^ + ^ Sa.(i)fii, где Sa(i} I – экивалентная площадь /-то звукопоглотителя, а/г/ – их число. И < выражений (6.44) и (6.45) видно, что эффективность е в зоне отраженного звука удобно вычислять по формуле:

e=lOig£/R

Требуемая эффективность звукопоглощения определяется по формуле (6.43), исходя из условия безопасности: L//r, В) ^ L». Однако следует учитывать, что практическая реализация звукопоглощения позволяет снижать шум обычно не более чем на б... 8 дБ (в зоне отраженного звука –на 10... 12 дБ).

Звукоизоляция. Звукоизоляция–уменьшение уровня шума с помощью защитного устройства, которое устанавливается между источником и приемником и имеет большую отражающую и (или) поглощающую способность. Обычно роль защитных устройств выполняют глушители шума, экраны или стенки изолированных объемов. Например, защитным устройством является кожух, которым закрывают машины и механизмы, или кабина, в которой находится оператор, управляющий рабочим процессом. Стенки кожухов и кабин изготовляют из листового проката и покрывают изнутри звукопоглощающим материалом. Эффективность звукоизоляции с помощью стенки толщиной h можно определить по формуле (6.39). Если пренебречь затуханием звука в материале, т. е. положить в формуле (6.39) коэффициент распространения А» равным jka, где kz = со/Сз – волновое число, то эффективность

е = 1 Olg[cos2^ 4- 0,25feAi + Zi/^)2sm2^2A],(6.46)

где Zi== pi^i – импеданс воздуха; ^ = рзСз – импеданс материала защитного устройства.

Из выражения (6.46) следует, что эффективность звукоизоляции равна нулю при толщине стенки А==/г^2/2, т. е. кратной половине длины волны (п= 0, 1, 2 ...), а максимальная эффективность будет иметь место, если толщина стенки h = (2п + 1)Х2/4.

Так как для защитного устройства, находящегося в воздухе, всегда выполняется неравенство piCi « рдОг, то для тонкой стенки (h^ « ^2/271) из выражения (6.46) находим

^=101g[l+(wo)/2pici)2], (6.47)

где т == рзА – поверхностная плотность (масса защитного устройства, отнесенная к единице площади).

При достаточно больших частотах единицей в правой части формулы (6.47) можно пренебречь:

е = 20 Ig-^ = 20 lg(w/)–const. (6M) 2piCi

Как видно из формулы (6.48), единственным свойством защитного устройства, определяющим эффективность звукоизоляции при принятых допущениях, является поверхностная плотность т. Эффективность звукоизоляции растет с увеличением плотности т и частоты / Константу, входящую в выражение (6.48), определяют, осредняя коэффициент передачи т по углам падения. Если т и / выражены соответственно в кг/м2 и Гц, то константа равна 47,5 дБ.

Найдем требуемую эффективность звукоизоляции. По определению

<?= 10 lgl/т == 10 IgW^/y = Lw^–Lw. (6.49)

Будем обозначать параметры, относящиеся к изолированному объему, в котором установлен источник шума мощностью W, индексом 1, а параметры, относящиеся к изолированному объему, где расположен приемник, индексом 2. Суммарная плотность потока энергии t звука, падающего на ограждающие стенки изолированного объема 1, в общем случае складывается из интенсивности W/[S\(r)} прямого звука и плотности потока энергии ^ = wib\ диффузного поля

Обозначая через S^ площадь поверхности тех стенок изолированного объема 1, через которые звук излучается в изолированный объем 2, находим падающий поток энергии W^ = -/У и с учетом выражения (6.50) имеем:

Допустимый уровень Lw"– потока энергии, переданного в изолированный объем, находим из выражения (6.43), полагая 1^(г, В) ^ L^ (e^O)

| Lw ^ zh–io ^[фА/ад + 45^]. (6.52)

Подставив соотношения (6.49) и (6.51) в формулу (6.52), получим значение требуемой эффективности звукоизоляции:

Для точечного источника шума, находящегося в изолированном объеме 7, образованным стенками кожуха (рис. 6.43, а), и излучающего шум в изолированный объем 2 (например помещение), можно в первом приближении принять S^ = 5'i(r)= 5p Тогда из выражения (6.53) требуемая эффективность

На рис. 6.43, б показано помещение 7, в котором установлен источник шума, отделенное от помещения 2 где расположены рабочие места, стенкой, площадь которой равна 5. Принимая, что в помещении 2 уровень шума во всех точках примерно одинаков (т. е. 2?2/(452(г)) « 1), из выражения (6.53) находим

где радиус г равен минимальному расстоянию от акустического центра источника шума до стенки площадью *У\ На рис. 6.43, в показана кабина, защищающая оператора от шума, создаваемого источником в помещении 7. Если кабина расположена на большом расстоянии от источника, то она находится в зоне отраженного звука. Для этого источника из выражения (6.53) находим, что требуемая эффективность

Р и с. 6.43. Схемы снижения шума:

а–изолирующим кожухом; б–звукоизолирующей перегородкой; в –с помощью звукоизолирующей кабины

Рис. 6.44. Схема снижения шума экраном

 

При установке экрана между источником и приемником (рис. 6.44) за экраном образуется звуковая тень. Уровень шума в теневой зоне от точечного источника может быть рассчитан на основе законов дифракции. Эффективность звукоизоляции при защите экраном

 

где N–число Френеля; N=£2(a^-b–d)/'k (формула применима при условии N>:0,2). Кроме того, формулу не рекомендуется применять при малых теневых углах 0. Если не вы полняется указанное неравенство, то е = 0. Расстояние + А) складывается из расстояния а от источника до верхней кромки экрана и расстояния Ь от верхней кромки экрана до приемника. Число вберется со знаком минус, если экран расположен ниже визирной линии (расстояние по визирной линии между источником и приемником равно d). Экраны, установленные в производственных помещениях, обычно покрывают с одной или двух сторон поглощающим материалом.

Кожухи и кабины, рассмотренные выше, имеют технологические отверстия (например, отверстия или проходы для воздуха в целях вентиляции), через которые может проникать шум. Во время рабочего цикла ряда установок (компрессоров, двигателей внутреннего сгорания, турбин и др.) через специальные отверстия происходит истечение отработавших газов в атмосферу и (или) всасывание воздуха из атмосферы, при этом генерируется сильный шум. В этих случаях для снижения шума используют глушители.

Система глушения шума включает источник шума, обладающий некоторым внутренним импедансом ^и; источник соединен с помощью трубопровода длиной 1\ с глушителем шума, а трубопроводом длиной /2 – с приемником шума, который характеризуется импедансом излучения ^п. Эффективность глушения определяют по формуле (6.49), полагая, что W^ –усредненная во времени звуковая мощность на входе в глушитель, а IV –на выходе. Конструктивно глушители состоят из активных и реактивных шумоглушащих элементов. Простейшим активным элементом является любой канал, стенки которого покрыты изнутри звукопоглощающим материалом.

Если звуковая мощность в сечении площадью S (рис. 6.45, а) равна W, то плотность потока энергии, падающего на поверхность стенки канала, по формуле (6.31) равна /ц = W/^S. Таким образом, на повер-" хности канала площадью Pdl (где Р – периметр) поглощающая звуковая мощность dW= –oL^PdIn эффективность активного элемента е «1,09аЖУ.

Рис. 6.45. Применение в глушителе поглощающих материалов:

а –схема активного элемента глушителя; б–схема снижения шума при повороте трубопровода,покрытого изнутри звукопоглощающим материалом

 

Трубопроводы всегда имеют повороты, которые будут снижать шум, если их покрыть звукопоглощающим материалом. Как видно из рис. 6.45, б, на участке АВ существуют преимущественно волны, направленные вдоль оси канала (другие волны будут поглощаться). Изгиб канала будет поглощать или отражать осевые волны назад к источнику. Таким образом, после изгиба останутся преимущественно дифрагиро-ванные волны, которые в значительной мере подавляются на участке CD, так что в конце этого участка останутся ослабленные волны в направлении оси канала.

Реактивный камерный элемент (рис. 6.46) представляет собой участок канала (трубы), на котором внезапно меняется площадь сечения от S\ до So, и образуется камера длиной /. При изменении площади сечения звук отражается. Эффективность камерного элемента можно определить по формуле (6.46), заменив отношение импедансов на отношение площадей [см. формулу (6.34)] и толщину h на длину / камеры (h = k = о/с):

На очень низких частотах, когда kl -> 0 или когда длина глушителя равна V2, X,, ЗХ/2 и т. д., образуются стоячие волны, которые увеличивают давление на концах камерной полости. В результате импеданс трубопровода с поперечным сечением Sh. также увеличивается от значения pc/Sz до значения wpc/&, которое в точности равно импе-дансам входного и выходного трубопроводов, т. е. равно рс/Д. Таким образом, на этих резонансных частотах взаимодействие волн приводит к рассогласованию импедансов и отражению звуковой энергии к источнику шума. На более высоких частотах, когда длина волны \ равна или меньше поперечного размера камеры, эффективность будет зависеть от других параметров (теоретически максимум эффективности достигается при разности диаметров dz–d\ = V2, 3V2, 5V2 и т. д.).

Рис. 6.46. Реактивный камерный элемент глушителя: а – схема элемента; б – зависимость эффективности камерного глушителя от длины камеры и отношения площадей

 

Эффективность е растет с увеличением числа камер и длины соединяющей трубы. Однако уже добавление третьей камеры создает незначительный эффект по сравнению с двумя предыдущими (рис. 6.47).

На рис. 6.48 для сравнения показаны эффективность глушителя, состоящего из двух последовательных камер и эффективность глушителя из двух камер, но со входом или выходом, введенным в полости камер, и оканчивающимися на середине их длины. Эффективность последнего глушителя выше. Изменяя длину входа и выхода, можно варьировать эффективность и частотный диапазон.

Если в спектре шума присутствуют дисперсные составляющие высокого уровня, то эффективность камерных элементов может оказаться недостаточной. В этом случае применяют реактивные элементы резонаторного типа: кольцевые и ответвления (рис. 6.49). Такой глушитель отличается от предыдущих тем, что поток газа через камеру не протекает и она подсоединяется к основному трубопроводу через одно или некоторое количество небольших отверстий или трубок. Этот тип глушителя называют объемным резонатором или глушителем Гельм-гольца. Резонансные частоты определяются размерами отверстий и подсоединенным объемом. Предполагается, что линейные размеры подсоединенного объема меньше 1/10 длины волны на всех рассматриваемых частотах. Если это условие нарушается, то надо принимать во внимание движение волн в резонаторе. Ситуация становится похожей на глушитель, рассмотренный выше. Эффективность объемного глушителя.

 
 

 

Рис. 6.47. Зависимость эффективности глушителя от числа камер и длины соединительной трубы

 

 

 

натора; (3 = s\c/it^v– безразмерное реактивное сопротивление резонатора; *Si и sq –соответственно площадь трубопровода и суммарная площадь отверстий;^ –резонансная частота; V–объем резонатора. При резонансе (f^fo) эффективность зависит только от величины ос и может быть записана в виде

e=20lg[(α+0,5)/α]

При а < 0,25 и при частотах намного больших или меньших частоты fо

 

На рис. 6.50 показана эффективность глушителя рассматриваемого типа при а = 0,5р.

Эффективность глушителя, синтезированного из типовых элементов, может быть определена по формуле:

– эффективность i-го шумоглушащего элемента.

 

Рис. 6.49. Схемы глушителей резонаторного типа: а –кольцевые; б–ответвления

 

Рис. 6.50. Эффективность резонаторного глушителя при α = 0,5р

Экранирование электромагнитных полей*. Электромагнитное поле имеет зоны индукции и излучения, которые для элементарных излучателей (диполей) в воздух определяются соответственно неравенствами:

 

Обычно считают, что на расстоянии от источника, не большем длины волны – зона индукции. Например, для частот 109 и 106 Гц расстояние, которое определяет зону индукции, меньше 0,3 м и 300 м.

Для антенн зону излучения обозначают неравенствами: r > e2 / λ и r > 3/λ, где l – размер антенны. В зоне излучения поле практически принимает плоскую конфигурацию и распространяется в виде плоской волны, составляющие которой равны:

е«

где ε*=ε-jς/ω – комплексная диэлектрическая проницаемость среды; ε иμ. –абсолютные проницаемости соответственно диэлектрическая и магнитная;ς–удельная проводимость среды; комплексное волновое число k*= ω√με*.

Сравнивая выражения (6.24) и (6.54), видим, что импеданс среды электромагнитному полю z = √με*. С учетом формулы (6.54) найдем, что для непроводящей среды ς = 0)

для проводящей среды (ε = 0)

Здесь термин «изоляция» заменен термином «экранирование»,который обычно используется в специальной литературе.

В табл. 6.10 приведены ориентировочные значения волнового числа и импеданса

для металлов. Для вакуума импеданс равен Z0 = √μ∕ε120π,Ом, где μо и εo – so соответственно электрическая и магнитная постоянные: ε = 1/(36π∙10-9)=8,85 • 10-12 ф/м μо = •10'7 Гн/м. В зоне индукции импеданс среды зависит от источника.

 

Таблица 6.10. Характеристика металлов, применяемых для экранирования ЭМП

Металл   Электрическая проводимость   Магнитная проницаемость μ/μо   Коэффициент распространения   Импеданс  
    ς • 106. См/м       │К*│=√ωμς, мм'1   │Z│=√ω∕μς
Медь   57,1     21,2•10'З7√f   0,372 • 10'6 √f  
Алюминий   34.5     16,4 .10'3 √f   0,478 • 10"6 √f  
Сталь   7,2     75,4. 10'3 √f   10,47 • 10'6 √f  
Свинец   4,8     6,2 • 10'3 √f   1.28 • 10'6 √f  

 

При определении электромагнитного поля сложных источников их разбивают на элементарные, а затем используют принцип суперпозиции полей. Импеданс среды для поля элементарного электрического излучателя

Z=Z0(1+jkr+1/jkr)(1+jkr), (6.57)

Импеданс среды для поля элементарного магнитного излучателя

Z=Z0(1+1/jkr)/(1+jkr+1/jkr), (6.58)

Из выражений (6.57) и (6.58) видно, что вблизи источника, т. е. в зоне индукции (kr «1), импеданс среды преимущественно электрическому полю

Z=ZE≈Z/jkr (6.59)

импеданс среды преимущественно магнитному полю

Z=ZH≈jk/Z0 (6.60)

С увеличением расстояния от источника импеданс ZE уменьшается, а импеданс ZH увеличивается (рис. 6.51). Оба импеданса будут стремиться к одному значению, которое они достигают в зоне излучения Z=ZEH=Z0.

Различают экранирование магнитного, электрического и электромагнитного (плоская волна) полей. В большинстве случаев с двух сторон от экрана находится одна и та же диэлектрическая среда – воздух, и эффективность экранирования, пользуясь формулой (6.39), можно записать в виде

E=20lg│chk*h│+20lg│1+0,5(Z2/Z1+Z1/Z2)thk*h│

Чтобы произвести расчет по этой формуле, кроме толщины экрана h необходимо знать коэффициент распространения k* и импедансы Z1 и Z2. Так как экран обычно изготовляют из металла, то с учетом зависимостей (6.27) и (6.56) коэффициент распространения k* и импеданс Z2 будут равны: k* = √jwμ2ς2. Более сложно определяется импеданс Z1. В зоне излучения импеданс диэлектрической

Рис. 6.51. Импеданс среды для элементарных излучателей в зависимости от расстояния от источника:

 

среды – воздуха – будет равен (для воздуха μ≈μ0, ε≈ε) Z1=ZEH=√μ1/ε1≈√μ0ε0≈ 377 Ом. Однако в зоне индукции импеданс Z1 зависит не только от вида основной составляющей электромагнитного поля |см. формулы (6.59) и (6.60)]. Он определяется также формой конструкции экрана (рис. 6.52). С учетом формы импеданс Z1 при экранировании электрического поля записывают в виде

Z1=Z1E=Z*/jkr*m=1/jωε1r*m

а при экранировании магнитного поля в виде Z1 = Z1H=jk1r*mZ*=jωμ1r*m,

где т = 2 при r* = l/2 для плоского экрана; т = 1 при r* = р –для цилиндрического экрана; т = 1/√z при r* = r–для сферического экрана (см. рис. 6.52).

Тогда при k*h, что обычно достигается на низких частотах (f< 104 Гц), chk*h ≈ 1, a thk*h ≈k*h и эффективность экранирования электрического поля (Z1E/Z2>Z2/Z1H)

Рис. 6.52. Конструкции экранов

 

Эта эффективность будет большой на низких частотах, а в диапазоне относительно высоких частот е → 0.

 
 

При экранировании магнитного поля необходимо учитывать особенности материала, из которого изготовлен экран. Обычно для магнитных металлов (сталь, пермаллой, феррит)Z1/Z2H>Z1H/Z2, а для немагнитных металлов (медь, алюминий, свинец) Z1H/Z2 > Z2/Z1H. Тогда для защитных устройств из магнитных металлов эффективность экранирования.

 

Она не зависит от частоты. Для защитных устройств из немагнитных металлов.


Эта эффективность зависит от частоты и при частоте ω→0 тоже стремится к нулю.

В области относительно высоких частот (104 <f, Гц < 109) эффективность экранирования удобно определять* по формуле

 

Из соотношения импедансов следует, что амплитудные коэффициенты [формула (6.38)] для плоского Tn, цилиндрического Tц и сферического Тc экранов при Z1>Z2 и имеют приблизительно следующее соотношение: Tn:Tц:Tс = 1:2:3. Это соотношение справедливо для экранов, изготовленных из одинакового материала и имеющих равную толщину стенок, причем расстояние между параллельными пластинами плоского экрана равно диаметру сферического или цилиндрического экранов (l = 2r или 2p). Таким образом, если эффективность экранирования плоским экраном принять за исходное значение en = 20lg1/Tn , то эффективность экранирования цилиндром ец = 201g |1/Tц| = 201g|l/Tn| = en–20 lg 2 ≈ Сп–6 дБ, а эффективность экранирования сферой eс= en–9,5 дБ. При экранировании магнитного поля магнитными материалами (Z2>Z1) соотношение амплитудных коэффициентов передачи будет иметь обратную закономерность Тn:Тц:Тe = 1:1/2:1/3. На практике полученными соотношениями пользуются при определении, например, эффективности цилиндрического экрана по формулам плоского.

 

В области СВЧ, охватывающей дециметровые, сантиметровые и миллиметровые волны (f ^ 109...1010 Гц), длина волны λ соизмерима с диаметром экрана d, т. е. λ≥d, и эффективность экранирования носит колебательный характер (рис. 6.53). В этой области импеданс Z1 при экранировании

Р и с . 6.53. Колебательный характер эффективности экранирования ЭМП в диапазоне СВЧ:

а – электрическое поле; б – магнитное поле; h1 - 0,01мм, h2 = 0,001мм, r = 5 мм

магнитного и электрического полей цилиндрическим экраном следует определять по формулам:

(6.63)

 

где Jn(u и Нп(и) – функции Бесселя* соответственно первого и третьего рода, порядка п (штрихом отмечены производные). С учетом соотношений (5.63) эффективность экранирования рассчитывают по формуле (6.61), при этом надо иметь в виду, что во многих случаях можно принять Z1/Z2<<1 и пренебречь этим слагаемым.

При наличии в экране для радиоэлектронной аппаратуры отверстий или щелей, возникающих вследствие несовершенства его конструкции и технологии изготовления, среднюю эффективность экранирования можно определить по эмпирической формуле

(6.64)

где импеданс Z1 = Z1H при экранировании электрического поля; Z1≈Z1H при экранировании магнитного поля; импеданс | Z2│ =│ ωμ2σ2│; слагаемые А и множитель В = 2πh/l учитывают негерметичность экрана

где r*=0,62V1/3 эквивалентный радиус экрана любой геометрической формы (V–внутренний объем экрана); l–наибольший размер отверстия (щели) в экране; k1=ω√μ0ε0 . Формула (6.64) применима в диапазоне частот, пока kl < 2, l > 0.

Для защиты от ЭМП обычно применяют металлические листы, которые обеспечивают быстрое затухание поля в материале. Однако во многих случаях экономически выгодно вместо металлического экрана использовать проволочные сетки, фольговые и радиопоглощающие материалы, сотовые решетки.

Эффективность экранирования электрического поля при использовании проволочных сеток

е =10lg│ZE/Z│+A+8,686C

* Обычно функцию Н1(и) находят по формуле: H1(и) = J1(u) + jY(u). Чтобы найти производную, можно использовать соотношение: Q1(Z) = Q0(u)–1/2Q(u), где и означает любую функцию Y, Н или любую их линейную комбинацию. Функции Бесселя даны в виде таблиц в справочниках [6.1].

Здесь слагаемое А означает то же, что в выражении (6.64) (k1l< 2), а множитель С и величину z при заданном диаметре провода d и шаге s сетки рассчитывают по формулам: С= πd/(s–d), z =l/G2h*, где эквивалентная толщина сетки L*=πd2/4s.

В сортамент фольговых материалов толщиной 0,01...0,05 мм входят в основном диамагнитные материалы–алюминий, латунь, цинк. Расчет эффективности экранирования фольговых материалов производится по формулам для тонких материалов. При негерметичности эффективность экранирования электрического поля

где Z=1/σ2h.

Радиопоглощающие материалы изготовляют в виде эластичных и жестких пенопластов, тонких листов, рыхлой сыпучей массы или заливочных компаундов. В табл. 6.11 приведены характеристики некоторых радиопоглощающих материалов. В последнее время все большее распространение получают керамикометаллические композиции.

Эффективность экранирования сотовыми решетками зависит вплоть до сантиметрового диапазона от отношения глубины к ширине ячейки.

Таблица 6.1.1. Основные характеристики радиопоглощающих материалов

Марка погло   Диапазон ра-   Отражающая   Размер пласти   Масса 1 м2 ма-   Толщина мате-  
тителя и мате-   бочих волн,см   мощность, %   ны, м ∙10-3   териала, кг   риала, MM  
риал,                      
лежащий в его                      
основе                      
СВЧ–068,   15…200     100 х 100   18...20    
феррит                      
«Луч», дре   15…150   1...3   600 х 1000   –   –  
весное во-                      
локно                      
В2Ф2, ре-   0,8...4     345 х 345   4…5   11…14  
зина                      
В2ФЗ:ВКФ1   0,8...4     345 х 345   4…5   (включая вы-  
                    соту шипа)  
«Болото»,   0,8...100   1...2   –   –   –  
поролон       /              

Ориентировочно эффективность

e≈27l/lм+20lgn

где l и lм – глубина и максимальный поперечный размер ячейки сотовой решетки; п –число ячеек.

Ослабление лазерного излучения светофильтрами. Если при прямом лазерном облучении невооруженного глаза (рис. 6.54) на поверхность

Р и с. 6 54 Схема воздействия на роговицу глаза лазерного излучения: а –прямое облучение, б –диффузное излучение

роговицы площадью πr2 приходится энергия ε,то энергетическая экспозиция H=ε∕πr2. Как видно из рис. 6.54, а, расстояние до расчетной точки ввиду малости угла YR = (r*– r)/Y. Поэтому опасное расстояние

где H*. –допустимое нормами значение H для роговицы глаза.

При облучении диффузным излучением, отраженным от площадки, которая характеризуется углом θ (рис. 6.54, б) и коэффициентом отражения, опасное расстояние


При использовании для защиты светофильтра толщиной h коэффициент передачи через светофильтр τ= = е-δh = 10h где δ и δ=δ’ ln10 – соответственно натуральный и десятичный показатели ослабления. В общем случае показатель ослабления светофильтра зависит от толщины h и спектра излучения. Поэтому при расчете ослабления пользуются оптической плотностью светофильтра D = lgl/т. Она связана с эффективностью защиты соотношением: e=10 lgkw = 10 lgl/τ = 10D. Оптическую плотность D рассчитывают в зависимости от характеристик излучения.

Защита от ионизирующих излучений

A(t)=N(t)ω=N0ωe-ωt=Aoe-ωt (6.65) * Здесь и далее приняты следующие обозначения, точка над некоторой величиной х… Так как масса одного атома равна а/п (где а –атомная масса, а п= = 6,022∙1023 –число Авогадро), то N атомов…

Таблица 6.12. Фактор накопления линейный коэффициент ослабления некоторых материалов, используемых при защите от излучений

Материал   е=4МэВ   8, см-1   Дозовый фактор накопления В при δh  
I        
Вода   0,05   0,20   4,42   22,6   90,9    
    0,50   0,10   2,44   12,8   62,9    
    1,00   0,07   2,08   7,68   26,1   74,0  
    5,00   0,03   1,57   3,16   6,27   11,41  
    10,00   0,02   1,37   2,25   3.86   6,38  
Алюминий   0,05   0,86   1,70   6,20      
    0,50   0,22   2,37   9,47   38,9    
    1,00   0,16   2,02   6,57   21.2   58,5  
    5,00   0,08   1,48   2,96   6,19   11,9  
    10,00   0,06   1,28   2,12   3,96   7,32  
Свинец   0,05   82.1   –   –   –   –  
    0,50   1,70   1,24   1,69   2,27   2,73  
    1,00   0,77   1,37   2,26   3,74   5,86  
    5,10   0,48   1,21   2,08   5,55   23,6  
    10,00   0,55   1,11   1,58   4,34   39,2  

 

Защита от нейтронного излучения. Пространственное распределение плотности потока (мощности дозы) нейтронов в большинстве случаев можно описать экспериментальной зависимостью φ = φ0с8h. В расчетах вместо линейного коэффициента ослабления δ часто используют массовый коэффициент ослабления δ=δ/p, где р–плотность защитной среды. Тогда произведение 6h может быть представлено в виде δh=δ*∙(ph)=δ*m* где m, –поверхностная плотность экрана. С учетом этого

где L и L* – соответственно линейная и массовая длина релаксации нейтронов в среде. На длине релаксации, т. е. при h = L или при m* = L*, плотность потока (мощность дозы) нейтронов ослабляется в е раз (kw = е). Некоторые значения т* и L*, для разных защитных сред даны в табл. 6.13.

Таблица 6.13. Длины релаксации нейтронов в среде в зависимости от среды и энергии нейтронов

Среда   ε=4МэВ   ε=14... 15 МэВ  
m* г/см2   L* r/см2   Θ   m* , г/см2   L* г/см2   Θ  
Вода Углерод Железо Свинец     6,2 59,5   5,4 1,4 4,9 4,0     14,2 32,9 64,2   1,3 2,7 2,9  

 

Так как длина релаксации зависит от толщины защиты, плотность потока (мощность дозы) нейтронов обычно определяют по формуле

где ∆ hi и т – соответственно толщина i-го слоя защиты, при которой длина релаксации может быть принята постоянной, равной Li, и число слоев, на которые разбита защита.

На начальном участке толщиной (2...3)L закон ослабления может отличаться от экспоненциального, что учитывают коэффициентом θ (см. табл. 6.13), на который умножаются правые части соотношений (6.68) и (6.69).

При проектировании защиты от нейтронного излучения необходимо учитывать, что процесс поглощения эффективен для тепловых, медленных и резонансных нейтронов, поэтому быстрые нейтроны должны быть предварительно замедлены. Тяжелые материалы хорошо ослабляют быстрые нейтроны. Промежуточные нейтроны эффективнее ослаблять водородосодержащими веществами. Это означает, что следует искать такую комбинацию тяжелых и водородосодсржащих веществ, которые давали бы наибольшую эффективность (например, используют комбинации Н2О + Fe, Н2О + Pb).

Защита от заряженных частиц. Для защиты от α и β-частиц излучения достаточно иметь толщину экрана, удовлетворяющую неравенству: h > Ri,, где Ri, – максимальная длина пробега α (i = α) или β(i = β) частиц в материале экрана. Длину пробега рассчитывают по эмпирическим формулам. Пробег Rα-частиц (см) при энергии ε= 3...7 МэВ и плотности материала экрана ρ(г/см3)

Максимальный пробег β-частиц

2,5ε в экране из аллюминия 450ε в воздухе

 


Обычно слой воздуха в 10 см, тонкая фольга, одежда полностью экранируют α-частицы, а экран из алюминия, плексигласа, стекла толщиной несколько миллиметров полностью экранируют поток β-частиц. Однако при энергии β-частиц ε> 2 МэВ существенную роль начинает играть тормозное излучение, которое требует более усиленной защиты.

СРЕДСТВА ИВДИВИДУАЛЬНОЙ ЗАЩИТЫ

Номенклатура СИЗ включает обширный перечень средств, применяемых в производственных условиях (СИЗ повседневного использования), а также средств,… При выполнении ряда производственных операций (в литейном производстве, в… Во избежание травм стоп и пальцев ног необходимо носить защитную обувь (сапоги, ботинки). Ее применяют при следующих…

Раздел III

ЧРЕЗВычАЙНЫЕ СИТУАЦИИ

ЗАЩИТА В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ И ЛИКВИДАЦИЯ ПОСЛЕДСТВИЙ

ОБЩИЕ СВЕДЕНИЯ О ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ

Под источником чрезвычайной ситуации понимают опасное природное явление, аварию или опасное техногенное происшествие, широкораспространенную… Чрезвычайные ситуации могут быть классифицированы по значительному числу… Первая в нашей стране классификация ЧС была разработана Научно-техническим комитетом ГО СССР и утверждена в инструкции…

УСТОЙЧИВОСТЬ ПРОМЫШЛЕННЫХ ОБЪЕКТОВ

Повышение устойчивости технических систем и объектов достигается главным образом организационно-техническими мероприятиями, которым всегда…  

ПРОГНОЗИРОВАНИЕ ПАРАМЕТРОВ ОПАСНЫХ ЗОН

Рассмотрим способы хранения веществ в жидком состоянии. Вещества, у которых критическая температура существенно ниже температуры… Вещества, у которых критическая температура больше температуры окружающей среды, а температура кипения меньше, тоже…

Таблица.8.1. Категории помещений и зданий по пожарной и взрывной опасности

Категория помещения   Характеристика веществ и материалов, находящихся (обращающихся) в помещении  
А (взрывопожарная)   Горючие газы, легковоспламеняющиеся жидкости с тем-  
    пературой вспышки не более 28 ° С в таком количестве, что  
    могут образовывать взрывоопасные парогазовоздушные  
    смеси, при воспламенении которых развивается расчетное  
    избыточное давление взрыва в помещении, превышающее  
    5кПа  
    Вещества и материалы, способные взрываться и гореть при  
    взаимодействии с водой, кислородом воздуха или друг с  
    другом в таком количестве, что расчетное избыточное дав  
    ление взрыва в помещении превышает 5 кПа  
Б (взрывопожароопасная)   Горючие пыли или волокна, легковоспламеняющиеся  
    жидкости с температурой вспышки более 28 ° С, горючие  
    жидкости в таком количестве, что могут образовывать взры  
    воопасные пылевоэдушные или паровоэдушныс смеси, при  
    воспламенении которых развивается расчетное избыточное  
    давление взрыва в помещении, превышающее 5 кПа  
В1–В4 (пожароопасные)   Горючие и трудногорючие жидкости, твердые горючие и  
    трудногорючие вещества и материалы (в том числе пыли и  
    волокна), вещества и материалы, способные при взаимо-  
    действии с водой, кислородом воздуха или друг с другом  
    только гореть при условии, что помещение, в котором они  
    имеются в наличии или обращении, не относятся к катего  
    риям А или Б  
Г   Горючие вещества и материалы в горячем, раскаленном  
    или расплавленном состоянии, процесс обработки которых  
    сопровождается выделением лучистой теплоты, искр пла-  
    мени, горючие газы, жидкости и твердые вещества, которые  
    сжигаются или утилизируются в качестве топлива  
Д   Негорючие вещества и материалы в холодном состоянии  

 

Категории помещений определяются путем последовательной проверки принадлежности помещения к категориям от высшей (А) к низшей (Д). Категорию здания определяют согласно следующим рекомендациям:

– здание относится к категории А, если в нем суммарная площадь помещений категории А превышает 5 % всех помещений, или 200 м2. В блучае оборудования помещений установками автоматического пожаротушения допускается не относить к категории А здания и сооружения, в которых доля помещений категории А менее 25 % (но не более 1000 м2);

– к категории Б относят здания и сооружения, если они не относятся к категории А и суммарная площадь помещений категорий А и Б превышает 5 % суммарной площади всех помещений, или 200 м2, допускается не относить здание к категории Б, если суммарная площадь помещений категории А и Б в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 1000 м2) и эти помещения оборудуют установками автоматического пожаротушения;

– здание относится к категории В, если оно не относится к категории А или Б и суммарная площадь помещений категорий А, Б и В превышает 5 % (10 %, если в здании отсутствуют помещения категорий А и Б) суммарной площади всех помещений. В случае оборудования помещений категории А, Б и В установками автоматического пожаротушения допускается не относить здание к категории В, если суммарная площадь помещений категории А, Б и В не превышает 25 % (но не более 3500 м2) суммарной площади всех размещенных в нем помещений;

– если здание не относится к категориям А, Б и В и суммарная площадь помещений А, Б, В и Г превышает 5 % суммарной площади всех помещений, то здание относится к категории Г; допускается не относить здание к категории Г, если суммарная площадь помещений категорий А, Б, В и Г в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 5000 м2), а помещения категорий А, Б, В и Г оборудуют установками автоматического пожаротушения;

– здания, не отнесенные к категориям А, Б, В и Г, относят к категории Д.

На объектах категорий В, Г и Д возникновение отдельных пожаров будет зависеть от степени огнестойкости зданий, а образование сплошных пожаров – от плотности застройки.

Под огнестойкостью понимают способность строительной конструкции сопротивляться воздействию высокой температуры в условиях пожара и выполнять при этом свои обычные эксплуатационные функции.

Время (в часах) от начала испытания конструкции на огнестойкость до момента, при котором она теряет способность сохранять несущие или ограждающие функции, называется пределом огнестойкости.

Потеря несущей способности определяется обрушением конструкции или возникновением предельных деформаций и обозначается индексом R. Потеря ограждающих функций определяется потерей целостности или теплоизолирующей способности. Потеря целостности обусловлена проникновением продуктов сгорания за изолирующую преграду и обозначается индексом Е. Потеря теплоизолирующей способности определяется повышением температуры на необогреваемой поверхности конструкции в среднем более чем на 140 °С или в любой точке этой поверхности более чем на 180 °С и обозначается иднексом J.

Основные положения методов испытаний конструкций на огнестойкость изложены в ГОСТ 30247.0–94 «Конструкции строительные. Методы испытаний на огнестойкость. Общие требования» и ГОСТ 30247.1–94 «Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции».

Степень огнестойкости здания определяется огнестойкостью его конструкций в соответствии с табл. 8.2 (СНиП 21–01–97).

Таблица 8.2. Огнестойкости строительных конструкций

Степень огнестойкости здания   Максимальные пределы огнестойкости строительных конструкций  
несущие элементы здания   наружные стены   перекрытия междуэтажные чердачные и над подвалом   покрытия бесчердач-ные   лестничные клетки  
внутренние площадки стены   марши лестниц  
I II III IV   R120 R45 R15   RE30 RE15 RE15   REJ60 REJ45 REJ15     RE30 RE15 RE15   REJ120 REJ90 REJ45   R60 R45 R30  
IV Не нормируется

 

СНиП 21–01–97 регламентирует классификацию зданий по степени огнестойкости, конструктивной и функциональной пожарной опасности. Эти нормы введены в действие с 1 января 1998 г.

Класс конструктивной пожарной опасности здания определяется степенью участия строительных конструкций в развитии пожара и образовании его опасных факторов.

По пожарной опасности строительные конструкции подразделяются на классы: КО, Kl, K2, КЗ (ГОСТ 80–403–95 «Конструкции строительные. Метод определения пожарной опасности»). Класс пожарной опасности конструкции определяется по табл. 8.3 (по наименее благоприятному фактору).

Таблица 8.3. Классы пожарной опасности конструкции

Класс по-   Допустимый размер   Наличие   Допускаемые характеристики по-  
жарной   повреждения конст-         жарной опасности поврежденного  
опасности   ции, см       материала  
конструк-   Вертика- Горизон-   теплового   горения   Группа  
ции   льные   тальные   эффекта       горючести   воспламе-   дымообра-  
                        няемости   зующей  
                            Способно-  
                            сти  
КО       Н.Д.   НД.   –   –   –  
Kl   До 40   До 25   Н.Д.   Н.Д.   Н.Р.   Н.Р.   Н.Р  
    »   »   Н.Р.   Н.Р.   Г2   В2   Д2  
K2   Более   Более   Н.Д.   Н.Д.   Н.Р.   Н.Р.   Н.Р  
    40, но до   25, но до                      
                           
    »   »   Н.Р.   Н.Д.   ГЗ.   ВЗ   Д2  
КЗ               Н.Р.              

 

Примечание: Н.Д.– не допускается; Н.Р.– не регламентируется; обозначение группы горючести поврежденного материала приняты по ГОСТ 30244, воспламеняемости по ГОСТ 30402. Дымообразующая способность Д2 соответствует материалам с умеренной дымообразующей способностью по ГОСТ 12.1.044.

Здания и пожарные отсеки по конструктивной пожарной опасности подразделяются на классы согласно табл. 8.4.

Таблица 8.4. Классы конструктивной пожарной опасности здания

Класс конструктивной пожарной опасности здания   Допускаемые классы пожарной опасности строительных конструкций  
Несущие стержневые элементы (колонны, ригели, фермы и ДР)   Стены наружные с внешней стороны   Стены, перегородки и перекрытия и бесчердачные покрытия   Стены лестничных клеток и противопожарные преграды   Марши и площадки лестниц  
СО С1 С2     КО К2 КЗ   К1 К2 КЗ   КО К1 К2   КО КО К1   КО КО К1  
С3 Не нормируется

 

По функциональной пожарной опасности здания и помещения подразделяются на классы в зависимости от способа их использования и от того, в какой мере безопасность людей в них, в случае возникновения пожара, находится под угрозой, с учетом их возраста, физического состояния, сна или бодрствования, вида основного функционального контингента и его количества.

К классу Ф1 относятся здания и помещения, связанные постоянным или временным проживанием людей, в который входят:

– Ф1.1–детские дошкольные учреждения, дома престарелых и инвалидов, больницы, спальные корпуса школ-интернатов и детских учреждений;

– Ф1.2–гостиницы, общежития, спальные корпуса санаториев и домов отдыха, кемпингов и мотелей, пансионатов;

– Ф1.3–многоквартирные жилые дома;

– Ф1.4–индивидуальные, в том числе блокированные дома.

К классу Ф2 относятся зрелищные и культурно-просветительские учреждения, в который входят:

– Ф2.1–театры, кинотеатры, концертные залы, клубы, цирки, спортивные сооружения и другие учреждения с местами для зрителей в закрытых помещениях;

– Ф2.2–музеи, выставки, танцевальные залы, публичные библиотеки и другие подобные учреждения в закрытых помещениях;

– Ф2.3– то же, чтоФ2.1, но расположенные на открытом воздухе.

К классу ФЗ относятся предприятия по обслуживанию населения:

– Ф3.1–предприятия торговли и общественного питания;

– Ф3.2–вокзалы;

– ФЗ.З– поликлиники и амбулатории;

– Ф3.4–помещения для посетителей предприятий бытового и коммунального обслуживания населения;

– Ф3.5–физкультурно-оздоровительные и спортивно-тренировочные учреждения без трибун для зрителей.

К классу Ф4 относятся учебные заведения, научные и проектные организации:

– Ф4.1– общеобразовательные школы, средние специальные учебные заведения, профтехучилища, внешкольные учебные заведения;

– Ф4.2–высшие учебные заведения, учреждения повышения квалификации;

– Ф4.3–учреждения органов управления, проектно-конструкторские организации, информационно-издательские организации, научно-исследовательские организации, банки, офисы.

К пятому классу относятся производственные и складские помещения:

– Ф5.1–производственные и лабораторные помещения;

– Ф5.2–складские здания и помещения, стоянки автомобилей без технического обслуживания, книгохранилища и архивы;

– Ф5.3–сельскохозяйственные здания.

Производственные и складские помещения, а также лаборатории и мастерские в зданиях классов Ф1, Ф2, ФЗ, Ф4 относятся к классу Ф5.

Согласно ГОСТ 30244–94 «Материалы строительные. Методы испытаний на горючесть» строительные материалы, в зависимости от значения параметров горючести, подразделяются на горючие (Г) и негорючие (НГ) (табл. 8.5).

Таблица 8.5. Характеристики групп горючести строительных материалов

Группа горючести материалов   Параметры горючести  
Температура дымовых газов t ° С   Степень повреждения по длине, Si%   Степень повреждения по массе Sm, %   Продолжительность самостоятельного горения tсr, °С  
Г1 Г2 ГЗ Г4     < 135 <235 <450 >450   <65 <85 >85 >85   <20 <50 <50 >50     <30 <300 >300  
НГ Прирост температуры в печи за счет горения образца не превысил 50˚С, потеря массы образца была не более 50 %, а продолжительность пламенного горения не более 10 ˚С

 

Определение горючести строительных материалов проводят экспериментально.

Для отделочных материалов кроме характеристики горючести вводится понятие величины критической поверхностной плотности теплового потока (КППТП), при которой возникает устойчивое пламенное горение материала (ГОСТ 30402–96). В зависимости от значения КППТП все материалы подразделяются на три группы воспламеняемости:

– Bl –КППТП равна или больше 35 кВт на м2;

– В2 –больше 20, но меньше 35 кВт на м2;

– ВЗ –меньше 20кВт на м2.

По масштабам и интенсивности пожары можно подразделить на:

– отдельный пожар, возникающий в отдельном здании (сооружении) или в небольшой изолированной группе зданий;

– сплошной пожар, характеризующийся одновременным интенсивным горением преобладающего числа зданий и сооружений на определенном участке застройки (более 50 %);

– огневой шторм, особая форма распространяющегося сплошного пожара, образующаяся в условиях восходящего потока нагретых продуктов сгорания и быстрого поступления в сторону центра огневого шторма значительного количества свежего воздуха (ветер со скоростью 50 км/ч);

– массовый пожар, образующийся при наличии в местности совокупности отдельных и сплошных пожаров.

Распространение пожаров и превращение их в сплошные пожары при прочих равных условиях определяется плотностью застройки территории объекта. О влиянии плотности размещения зданий и сооружений на вероятность распространения пожара можно судить по ориентировочным данным, приведенным ниже:

 

Расстояние между зданиями, м
Вероятность распространения пожара, %

 

Быстрое распространение пожара возможно при следующих сочетаниях степени огнестойкости зданий и сооружений с плотностью застройки: для зданий I и II степени огнестойкости плотность застройки должна быть не более 30 %; для зданий III степени –20%, для зданий IV и V степени – не более 10 %.

Влияние трех факторов (плотности застройки, степени огнестойкости здания и скорости ветра) на скорость распространения огня можно проследить на следующих цифрах:

1) при скорости ветра до 5 м/с в зданиях I и II ступени огнестойкости скорость распространения пожара составляет примерно 120 м/ч; в зданиях IV степени огнестойкости –примерно 300 м/ч, а в случае сгораемой кровли до 900 м/ч; 2) при скорости ветра до 15 м/с в зданиях I и II степени огнестойкости скорость распространения пожара достигает 360 м/с.

Средства локализации и тушения пожаров. К основным видам техники, предназначенной для защиты различных объектов от пожаров, относятся средства сигнализации и пожаротушения.

Пожарная сигнализация должна быстро и точно сообщать о пожаре с указанием места его возникновения. Наиболее надежной системой

пожарной сигнализации является электрическая пожарная сигнализа­ция- Наиболее совершенные виды такой сигнализации дополнительно обеспечивают автоматический ввод в действие предусмотренных на объекте средств пожаротушения. Принципиальная схема электриче­ской системы сигнализации представлена на рис. 8.4. Она включает пожарные извещатели, установленные в защищаемых помещениях и включенные з сигнальную линию; приемно-контрольную станцию, источник питания, звуковые и световые средства сигнализации, а также автоматические установки пожаротушения и дымоудаления.

Надежнисть алектрической системы сигнализации обеспечивается тем, чти все ее алсменты и связи между ними постоянно находятся под напряжением. Этим обеспечивается исуществление постоянного кон­троля за исправностью установки.

Важнейшим элементом системы сигнализации являются пожарные извещатели, которые преобразуют физические параметры, характери­зующие пожар, в электрические сигналы. По способу приведения в действие извещатели подразделяют на ручные и автоматические. Руч­ные извещатели выдают в линию связи электрический сигнал опреде­ленной формы в момент нажатия кнопки. Автоматические пожарные извещатели включаются при изменении параметров окружающей сре­ды в момент возникновения пожара. В зависимости от фактора, вызывающего срабатывание датчика, извещатели подразделяются на тепловые, дымовые, световые и комбинированные. Наибольшее рас­пространение получили тепловые нзвещатели, чувствительные элемен­ты которых могут быть биметаллическими, термопарными, полуп­роводниковыми.

Дымовые пожарные извещатели, реагирующие на дым, имеют в качестве чувствительного элемента фотоэлементили ионизационные камеры, а также дифференциальное фотореле. Дымовые извещатели бывают двух типов: точечные, сигнализирующие о появлении дыма в месте их установки, и линейно-объемные, работающие на принципе затенения светового луча между приемником и излучателем.

Световые пожарные извещатели основаны на фиксации различных составных частей спектра открытого пламени. Чувствительные элементы таких датчиков реагируют на ультрафиолетовую или инфракрасную область спектра оптического излучения.

Инерционность первичных датчиков является важной характеристикой. Наибольшей инерционностью обладают тепловые датчики, наименьшей –световые.

Комплекс мероприятий, направленных на устранение причин возникновения пожара и создание условий, при которых продолжение горения будет невозможным, называется пожаротушением.

Для ликвидации процесса горения необходимо прекратить подачу в зону горения либо горючего, либо окислителя, или уменьшить подвод теплового потока в зону реакции. Это достигается:

– сильным охлаждением очага горения или горящего материала с помощью веществ (например воды), обладающих большой теплоемкостью;

– изоляцией очага горения от атмосферного воздуха или снижением концентрации кислорода в воздухе путем подачи в зону горения инертных компонентов;

– применением специальных химических средств, тормозящих скорость реакции окисления;

– механическим срывом пламени сильной струёй газа или воды;

– созданием условий огнепреграждения, при которых пламя распространяется через узкие каналы, сечение которых меньше тушащего диаметра.

Для достижения вышеуказанных эффектов в настоящее время в качестве средств тушения используют:

– воду, которая подается в очаг пожара сплошной или распыленной струёй;

– различные виды пен (химическая или воздушно-механическая), представляющих собой пузырьки воздуха или углекислого газа, окруженные тонкой пленкой воды;

– инертные газовые разбавители, в качестве которых могут использоваться: углекислый газ, азот, аргон, водяной пар, дымовые газы и т. д.;

– гомогенные ингибиторы – низкокипящие галогеноуглеводороды;

– гетерогенные ингибиторы – огнетушащие порошки;

– комбинированные составы.

Вода является наиболее широко применяемым средством тушения.

Обеспечение предприятий и регионов необходимым объемом воды для пожаротушения обычно производится из общей (городской) сети водопровода или из пожарных водоемов и емкостей. Требования к системам противопожарного водоснабжения изложены в СНиП 2.04.02–84 «Водоснабжение. Наружные сети и сооружения» и в СНиП 2.04.01–85 «Внутренний водопровод и канализация зданий».

Противопожарные водопроводы принято подразделять на водопроводы низкого и среднего давления. Свободный напор при пожаротушении в водопроводной сети низкого давления при расчетном расходе должен быть не менее 10 м от уровня поверхности земли, а требуемый для пожаротушения напор воды создается передвижными насосами, устанавливаемыми на гидранты. В сети высокого давления должна обеспечиваться высота компактной струи не менее 10 м при полном расчетном расходе воды и расположении ствола на уровне наивысшей точки самого высокого здания. Системы высокого давления более дорогие вследствие необходимости использовать трубопроводы повышенной прочности, а также дополнительные водонапорные баки на соответствующей высоте или устройства насосной водопроводной станции. Поэтому системы высокого давления предусматривают на промышленных предприятиях, удаленных от пожарных частей более чем на 2 км, а также в населенных пунктах с числом жителей до 500 тыс. человек.

 

Рис.8.5. Схема объединенного водоснабжения:

1–источник воды; 2–водоприемник; 3–станция первого подъема; 4–водоочистныесооружения и станция второго подъема; 5–водонапорная башня; 6–магистральные линии; 7– потребители воды; 8–распределительные трубопроводы; 9–вводы в здания

 

Принципиальная схема устройства системы объединенного водоснабжения показана на рис 8.5. Вода из естественного источника поступает в водоприемник и далее насосами станции первого подъема подается в сооружение на очистку, затем по водоводам в пожарорегулирующее сооружение (водонапорную башню) и далее по магистральным водопроводным линиям к вводам в здания. Устройство водонапорных сооружений связано с неравномерностью потребления воды по часам суток. Как правило, сеть противопожарного водопровода делают кольцевой, обеспечивающей две линии подачи воды и тем самым высокую надежность водообеспечения.

 

Рис. 8.6. Спринклерная головка

Нормируемый расход воды на пожаротушение складывается из расходов на наружное и внутреннее пожаротушение. При нормировании расхода воды на наружное пожаротушение исходят из возможного числа одновременных пожаров в населенном пункте, возникающих в течение трех смежных часов, в зависимости от численности жителей и этажности зданий (СНиП 2.04.02–84). Нормы расхода и напор воды во внутренних водопроводах в общественных, жилых и вспомогательных зданиях регламентируются СНиП 2.04.01–85 в зависимости отихэтажности, длины коридоров, объема, назначения.

 

 

 

 

Рис.8.7. Дренчерная головка

1–корпус; 2–дуга; 3–дефлектор; 4– розетка

 

Для пожаротушения в помещениях используют автоматические огнегасительные устройства. Наиболее широкое распространение получили установки, которые в качестве распределительных устройств используют спринклерные (рис. 8.6) или дренчерные (рис. 8.7) головки.

Спринклерная головка–это прибор, автоматически открывающий выход воды при повышении температуры внутри помещения, вызванной возникновением пожара. Спринклерные установки включаются автоматически при повышении температуры среды внутри помещения до заданного предела. Датчиком является сама спринклерная головка, снабженная легкоплавким замком, который расплавляется при повышении температуры и открывает отверстие в трубопроводе с водой над очагом пожара. Спринклерная установка состоит из сети водопроводных питательных и оросительных труб, установленных под перекрытием. В оросительные трубы на определенном расстоянии друг от друга ввернуты спринклерные головки. Один спринклер устанавливают на площади 6–9 м2 помещения в зависимости от пожарной опасности производства. Если в защищаемом помещении температура воздуха может опускаться ниже +4 °С, то такие объекты защищают воздушными спринклерными системами, отличающимися от водяных тем, что такие системы заполнены водой только до контрольно-сигнального устройства, распределительные трубопроводы, расположенные выше этого устройства в неотапливаемом помещении, заполняются воздухом, нагнетаемым специальным компрессором.

Дренчерные установки (см. рис. 8.7) по устройству близки к спринклерным и отличаются от последних тем, что оросители на распределительных трубопроводах не имеют легкоплавкого замка и отверстия постоянно открыты. Дренчерные системы предназначены для образования водяных завес, для защиты здания от возгорания при пожаре в соседнем сооружении, для образования водяных завес в помещении с целью предупреждения распространения огня и для противопожарной защиты в условиях повышенной пожарной опасности. Дренчерная система включается вручную или автоматически по сигналу автоматического извещателя о пожаре с помощью контрольно-пускового узла, размещаемого на магистральном трубопроводе.

В спринклерных и дренчерных системах могут применяться и воздушно-механические пены. Основным огнегасительным свойством пены является изоляция зоны горения путем образования на поверхности горящей жидкости паронепроницаемого слоя определенной структуры и стойкости. Состав воздушно-механической пены следующий: 90 % воздуха, 9,6 % жидкости (воды) и 0,4 % пенообразующего вещества. Характеристиками пены, определяющими ее огнегасящие свойства, являются стойкость и кратность. Стойкость–это способность пены сохраняться при высокой температуре во времени; воздушно-механическая пена имеет стойкость 30–45 мин, кратность – отношение объема пены к объему жидкости, из которой она получена, достигающая 8–12.

Получают пену в стационарных, передвижных, переносных устройствах и ручных огнетушителях. В качестве пожаротушащего вещества широкое распространение получила пена следующего состава: 80 % углекислого газа, 19,7 % жидкости (воды) и 0,3 % пенообразующего вещества. Кратность химической пены обычно равна 5, стойкость около 1 ч.

 

ЛИКВИДАЦИЯ ПОСЛЕДСТВИЙ ЧС

Ликвидация чрезвычайной ситуации осуществляется силами и средствами предприятий, учреждений и организаций независимо отихорганизационно-правовой… К ликвидации ЧС могут привлекаться Вооруженные силы РФ, Войска гражданской… Ликвидация чрезвычайной ситуации считается завершенной по окончании проведения аварийно-спасательных и других…

Таблица 8.3. Степень поражения объекта в зависимости от объема разрушений

 

Степень поражения D Степень разрушения Объем разрушений, %
<0,2 <0,2…0,5 <0,5…0,8 >0,8 Слабая Средняя Сильная Полная Отдельные элементы До 30 30…50 50…100

 

Для определения числа жертв можно использовать следующее выражение:

 

Пп = SпopLc/So6щ,

 

где Ппчисло жертв при внезапном взрыве; Lc –численность работающих данной смены (всего предприятия).

Ущерб и число жертв при ЧС подсчитывают, как правило, при проведении комплекса спасательных работ или после них.

План ремонтно-восстановительных работ. Готовность предприятия к выполнению восстановительных работ оценивается наличием проектно-технической документации по вариантам восстановления, обеспеченностью рабочей силой и материальными ресурсами.

Планирование восстановления работоспособности предприятия может предусматривать как первоочередное восстановление, так и капитальное. Первое может быть выполнено силами самого объекта создающего для этих целей восстановительные бригады. В проекте восстановления освещаются следующие вопросы:

– объем работ по восстановлению с расчетом потребностей в рабочей силе, материалах, строительной технике, оборудовании деталях, инструменте;

– оптимальные инженерные решения по восстановлению работоспособности предприятия;

– календарный план или сетевой график восстановительных работ, очередность восстановления цехов, исходя из важности их в выпуске основной продукции;

– состав восстановительных бригад и др.

Методика определения сроков проведения восстановительных работ изложена в СН 440–72.

 

Раздел IV

УПРАВЛЕНИЕ БЕЗОПАСНОСТЬЮ ЖИЗНЕДЕЯТЕЛЬНОСТИ

 

ПРАВОВЫЕ И ОРГАНИЗАЦИОННЫЕ ОСНОВЫ

 

ПРАВОВЫЕ И НОРМАТИВНО-ТЕХНИЧЕСКИЕ ОСНОВЫ

Законы и подзаконные акты. Правовую основу обеспечения безопасности жизнедеятельности составляют соответствующие законы и постановления, принятые… Правовую основу охраны окружающей среды в стране и обеспечение необходимых… Важнейшим законодательным актом, направленным на обеспечение экологической безопасности, является закон РСФСР «Об…

Таблица 9.1. Классификация системы стандартов в области охраны природы

 

Шифр группы Группа стандартов
Основные положения
Термины, определения, классификация
Показатели качества природных сред, параметры загрязняющих выбросов и сбросов и показатели интенсивности использования природных ресурсов
Правила охраны природы и рационального использования природных ресурсов
Методы определения параметров состояния природных объектов и интенсивности хозяйственных воздействий
Требования к средствам контроля и измерений состояния окружающей природной среды
Требования к устройствам, аппаратам и сооружениям по защите окружающей среды от загрязнений
Прочие стандарты

 

Обозначение стандартов в области охраны природы состоит из номера системы по классификатору, шифра комплекса, шифра группы, порядкового номера стандарта и года регистрации стандарта. Так, стандарт на предельно допустимый выброс СО бензиновых двигателей автомобилей стоит в комплексе 2 группа 2, обозначение его ГОСТ 17.2.2.03–87.

Нормативно-техническая документация по охране труда включает правила по технике безопасности и производственной санитарии, санитарные нормы и правила, стандарты системы стандартов безопасности труда, инструкции по охране труда для рабочих и служащих.

Согласно ст. 143 КЗОТ РСФСР правила по охране труда подразделяются на единые, межотраслевые и отраслевые. Единые распространяются на все отрасли экономики. Они закрепляют важнейшие гарантии обеспечения безопасности и гигиены труда, которые одинаковы для всех отраслей. Межотраслевые закрепляют важнейшие гарантии обеспечения безопасности и гигиены труда в нескольких отраслях, либо в отдельных видах производства, либо при отдельных видах работ (например, на отдельных типах оборудования во всех отраслях).

Инструкции по охране труда делятся на типовые (для рабочих основных профессий отраслей) и действующие в масштабах предприятия, организации или учреждения.

Система стандартов безопасности труда (ССБТ) –одна из систем государственной системы стандартизации (ГСС). Шифр (номер) этой системы ГСС–12. В рамках этой системы производятся взаимная увязка и систематизация всей существующей нормативной и нормативно-технической документации по безопасности труда, в том числе многочисленных норм и правил по технике безопасности и производственной санитарии как федерального, так и отраслевого значения. ССБТ представляет собой многоуровневую систему взаимосвязанных стандартов, направленную на обеспечение безопасности труда.

Стандарты подсистемы 0 устанавливают: цель, задачи, область распространения, структуру ССБТ и особенности согласования стандартов ССБТ; терминологию в области охраны труда; классификацию опасных и вредных производственных факторов; принципы организации работы по обеспечению безопасности труда в промышленности. Большую часть этой подсистемы составляют стандарты предприятий (СТП).

Объектами стандартизации на предприятиях являются: организация работ по охране труда, контроль состояния условий труда, порядок стимулирования работы по обеспечению безопасности труда; организация обучения и инструктажа работающих по безопасности труда; организация контроля за безопасностью труда и всех других работ, которыми занимается служба охраны труда.

Стандарты подсистемы 1 устанавливают требования по видам опасных и вредных производственных факторов и предельно допустимые значения их параметров; методы и средства защиты работающих от их воздействия; методы контроля уровня указанных факторов. Стандарты подсистемы 2 устанавливают: общие требования безопасности к производственному оборудованию; требования безопасности к отдельным группам производственного оборудования; методы контроля выполнения этих требований.

Стандарты подсистемы 3 устанавливают общие требования безопасности к производственным процессам, к отдельным группам технологических процессов; методы контроля выполнения требований безопасности. Стандарты подсистемы 4 устанавливают требования безопасности к средствам защиты; подсистемы 5 – к зданиям и сооружениям.

В ССБТ принята следующая система обозначений (рис. 9.1).

Таким образом, если нас интересуют требования безопасности к электросварочным работам, ищем стандарт класса 12 подсистемы 3 (производственные процессы), где он фигурирует под номером 3 (ГОСТ 12.3.003–86*). Стандарт требований к защитному заземлению и занулению (их применению, устройству) следует искать в подсистеме 1 – это ГОСТ 12.1.030–81* «ССБТ. Электробезопасность. Защитное заземление, зануление». Нельзя путать стандарты такого рода со стандартами требований безопасности к средствам защиты (подсистема 4), например, ГОСТ 12.4.021–75* «ССБТ. Системы вентиляционные. Общие требования». Стандарт на обучение работающих безопасности труда, метрологическое обеспечение охраны труда следует искать в подсистеме 0 как стандарты на организационные вопросы. Это ГОСТ 12.0.004–90 и ГОСТ 12.0.005–84.

 

 

Рис.9.1. Система обозначений в ССБТ

 

Если перечень методов и средств защиты, необходимых для обеспечения требований безопасности по рассматриваемому фактору оказывается емким, его стандартизуют в рамках отдельного стандарта подсистемы 1. Примером такого документа является ГОСТ 12.1.029–80 «ССБТ. Средства и методы защиты от шума. Классификация». Так же поступают при информативно емких методах контроля требований безопасности. Так, в подсистеме 1 имеются отдельные стандарты на метод измерения на рабочих местах шума (ГОСТ 12.1.050–86), шумовых характеристик машин (ГОСТ 12.1.023–80*, ГОСТ 12.1.024–81*, ГОСТ 12.1.025–81*, ГОСТ 12.0.026–80; ГОСТ 12.1.027–80, ГОСТ 12.1.028–80) и т. д.

Требования безопасности устанавливают применительно к производственному, а не технологическому оборудованию, к производственным, а не технологическим процессам. Так, требования ГОСТ 12.2.009–80* «ССБТ. Станки металлообрабатывающие. Общие требования безопасности» относятся к станкам всех типов (токарным, сверлильным, шлифовальным, заточным и т. п.); ГОСТ 12.3.025–80* «ССБТ. Обработка металлов резанием. Требования безопасности» относится ко всем видам металлообработки резанием.

Стандарты предприятий по безопасности труда разрабатываются непосредственно на предприятии и согласовываются с профсоюзным комитетом. Они регламентируют принципы работ по обеспечению безопасности труда: организацию контроля условий труда; надзора за установками повышенной опасности; обучение работающих безопасности труда; аттестации лиц, обслуживающих установки повышенной опасности, проведение аттестации рабочих мест на предприятии и т. д.

Основные нормативно-технические документы по чрезвычайным ситуациям объединены в комплекс стандартов «Безопасность в чрезвычайных ситуациях» (БЧС).

Основные цели комплекса:

– повышение эффективности мероприятий по предупреждению и ликвидации ЧС на всех уровнях (федеральном, региональном, местном) для обеспечения безопасности населения и объектов народного хозяйства в природных, техногенных, биолого-социальных и военных ЧС; предотвращение или снижение ущерба в ЧС;

– эффективное использование и экономия материальных и трудовых ресурсов при проведении мероприятий по предупреждению и ликвидации ЧС.

Задача комплекса – установление:

– терминологии в области обеспечения безопасности в ЧС, номенклатуры и классификации ЧС, источников ЧС, поражающих факторов;

– основных положений по мониторингу, прогнозированию и предотвращению ЧС, по обеспечению безопасности продовольствия, воды, сельскохозяйственных животных и растений, объектов народного хозяйства в ЧС, по организации ликвидации ЧС;

– уровней поражающих воздействий, степеней опасности источниковЧС;

– методов наблюдения, прогнозирования, предупреждения и ликвидации ЧС;

– способов обеспечения безопасности населения и объектов народного хозяйства, а также требований к средствам, используемым для этих целей.

Обозначение отдельного стандарта в комплексе состоит из индекса (ГОСТ Р), номера системы по классификатору (ГСС–22), номера (шифра) группы (табл. 9.2), порядкового номера стандарта в группе и года утверждения или пересмотра стандарта. Например, ГОСТ Р 22.0.01–94. Безопасность в чрезвычайных ситуациях. Основные положения.

Стандарты группы 0 устанавливают:

– основные положения (назначение, структуру, классификацию) комплекса стандартов;

– основные термины и определения в области обеспечения безопасности в ЧС;

– классификацию ЧС;

 

Таблица 9.2. Классификация стандартов, входящих в комплекс стандартов БЧС

 

Номер группы Группа стандартов Кодовое наименование
Основополагающие стандарты Основные положения
Стандарты в области мониторинга и прогнозирования Мониторинг и прогнозирование
Стандарты в области обеспечения безопасности объектов народного хозяйства Безопасность объектов народного хозяйства
Стандарты в области обеспечения безопасности населения Безопасность населения
Стандарты в области обеспечения безопасности продовольствия, пищевого сырья и кормов Безопасность продовольствия
Стандарты в области обеспечения безопасности сельскохозяйственных животных и растений Безопасность животных и растений
Стандарты в области обеспечения безопасности водоисточников и систем водоснабжения Безопасность воды
Стандарты на средства и способы управления, связи и оповещения Управление, связь, оповещение
Стандарты в области ликвидации чрезвычайных ситуаций Ликвидация чрезвычайных ситуаций
Стандарты в области технического оснащения аварийно-спасательных формирований, средств специальной защиты и экипировки спасателей Аварийно-спасательные средства
10,11 Резерв  

 

– классификацию продукции, процессов, услуг и объектов народного хозяйства по степени их опасности;

– номенклатуру и классификацию поражающих факторов и воздействий источников ЧС;

– предельно допустимые уровни (концентрации) поражающих факторов и воздействий источников ЧС;

– основные положения и правила метрологического контроля состояния технических систем в ЧС.

Содержание остальных групп стандартов определяется их кодовым наименованием (см. табл. 9.2).

 

ОРГАНИЗАЦИОННЫЕ ОСНОВЫ УПРАВЛЕНИЯ

Управление охраной окружающей природной среды. На федеральном уровне оно осуществляется Федеральным Собранием, Президентом, правительством РФ и… На региональном уровне управление охраной окружающей среды ведется… На всех уровнях разработка обязательных для исполнения предложений по проведению мероприятий, обеспечивающих…

ЭКСПЕРТИЗА И КОНТРОЛЬ ЭКОЛОГИЧНОСТИ И БЕЗОПАСНОСТИ

Экологическая экспертиза. Основными нормативными показателями экологичности предприятий, транспортных средств, производственного оборудования и… Экологическая экспертиза техники, технологий, материалов включает общественную… Общественная экологическая экспертиза проводится общественными организациями (объединениями), основным направлением…

МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО

Ученые и специалисты России принимают участие в осуществлении специальной международной программы «Человек и биосфера», Международном совете охраны… Большое значение в решении проблемы охраны природы имело подписание в 1975 г.… По инициативе СССР принята также резолюция «Об исторической ответственности государств за сохранение природы Земли для…

ПРИЛОЖЕНИЯ

Пыле- и туманоуловители для очистки газовых выбросов, применяемые в машиностроении и приборостроении

ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ЗОН ЗАРАЖЕНИЯ СДЯВ

Процесс заражения объекта в условиях аварии подразделяют на две стадии: образование первичного и вторичного облака. Первичное облако – облако загрязняющего вещества, образующееся в результате… Сложность расчетов процесса рассеивания и многообразие реальных условий и факторов, влияющих на размеры зон…

Таблица П.2.1. Характеристика некоторых СДЯВ и вспомогательные коэффициенты для определения глубины зоны заражения

СДЯВ   Плотность СДЯВ, т/м3 газ   tкип ˚C Поро   Значения коэффициентов    
говая токсо-доза   К1   K2   K3   K7 для температуры воздуха, 0 С    
    – 40   –20          
    жидкость    
  NH3   HF     HCl   NОx     HS     Фос   F   Cl     0,0008   – 33,42     19,52     – 85,10         – 60,35     8,2   – 188,2     – 34,1             1,5     16,1   0,6   0,2   0,6   0,18       0,28       0,27   0,05   0,95   0,18     0,25   0,028     0,037   0,04     0,042   0,061   0,038   0,52     0,04   0,15     0,3   0,4     0,036   1,0   3,0   1,0     0,9     0,1     0,4         0,3     0,1     0,7     0,9     0,3     0,2     0,6         0,5     0,3     0,8     0,3     0,6     0,5     0,8     0,4     0,8     0,7     0,9     0,6                                     1,4         1,2         1,2     2,7     1,1   1,4    
0,681     – –  
0,989   0,0016    
1,191     – – –  
1,491 0,0015      
0,964     0,0035    
1,432     0,0017    
1,512     0,0032    
1,553    

 

Примечание. Полный список СДЯВ см. РД 52.04.253-90.

Ниже приведены значения коэффициента К4, учитывающего скорость ветра:

 

Скорость ветра, м/с
К4……….. 1,0 1,33 1,67 2,0 2,34 2,67 3,0 3,34 3,67 4,0

Коэффициент, зависящий от времени N, прошедшего после начала аварии,

где Т–время полного испарения, ч; T=hd/(K2K4K7); при Т< 14 K6 принимается для 1 ч; N – время, прошедшее после аварий.

Если время, прошедшее после аварии, меньше времени, необходимого для полного испарения пролитого вещества, то в расчетах вместо N используется время полного испарения [T=hd/(K2K4K7)];

Глубину зоны заражения первичным (вторичным) облаком СДЯВ при авариях на технологических емкостях, хранилищах и транспорте рассчитывают, используя данные табл. П.3.2. В ней приведены максимальные значения глубины заражения первичным Г1 или вторичным Г2 облаком СДЯВ. определяемой в зависимости от эквивалентной массы вещества и скорости ветра

Полная глубина зоны заражения Г (км), обусловленная воздействием первичного и вторичного облака СДЯВ,

Г=Г΄+1,5Г´´

где Г΄ –наибольший и Г" –наименьший из размеров глубины зоны заражения

Таблица П.2.2 Глубина зоны заражения, км

u. м/с   Эквивалентная масса СДЯВ, т  
0,01   0,1   1,0       КЮО  
  0,38   1,25   4,75   19,20   81,91    
  0,22   0,68   2,17   7,96   31,30    
  0,17   0,53   1,68   5,53   20,82   83,6  
  0,14   0,45   1,42   4,49   16,16   63,16  
  0,12   0,40   1,25   3,96   13,50   51,6  
  0,11   0,36   1,13   3,58   11,74   44,15  
  0,10   0,33   1,04   3,29   10,48   38,90  
> 15   0,10   0,31   0,92   3,07   9,70   34,98  

 

Полученное значение сравнивают с предельно возможным значением глубины переноса воздушных масс (км)

Гп=Nv

где v– скорость переноса переднего фронта зараженного воздуха при данных скорости ветра и степени вертикальной устойчивости воздуха, км/ч (табл. П. 2.3).

За окончательную расчетную глубину зоны заражения принимается меньшее из двух сравниваемых между собой значений.

Площадь зоны возможного заражения (км2 ) для первичного (вторичного) облака СДЯВ

где Г– глубина зоны заражения,км; φ–угловые размеры зоны возможного заражения, определяемые в зависимости от скорости ветра по следующим данным:

u, м/с ...... <0,5 0,6...1,0 1,1...2 >2

φ°. ....... 360 180 90 45

Таблица П. 2.3. Скорость переноса переднего фронта облака

Состояние атмосферы   Скорость ветра, м/с [», М/С  
                     
Инверсия Изотермия Конверсия           – –   –   –   –   –   –   –  

 

Площадь зоны фактического заражения (км2 )

гдеКsкоэффициент, зависящий от степени вертикальной устойчивости воздуха; при инверсии Ks=0,081; при изотермии 0,133, при конверсии –0,235.

Время подхода облака СДЯВ к заданному объему зависит от скорости переноса облака воздушным потоком

t=X/v,

где Х – расстояние от источника заражения до заданного объекта, км; v – скорость переноса переднего фронта облака зараженного воздуха, км/ч.

Прогнозирование глубины зоны заражения при разрушении химически опасного объекта производится в предположении одновременности выброса суммарного запаса СДЯВ на объекте и наличии неблагоприятных метеорологических условий (инверсия, скорость ветра 1 м/с). В этом случае суммарная эквивалентная масса СДЯВ:

где K2i–коэффициент, зависящий от физико-химических свойств i-го СДЯВ; K3i– коэффициент, равный отношению пороговой токсодозы хлора к пороговой токсодозе i-го СДЯВ; K6i – коэффициент, зависящий от времени, прошедшего после поступления i-го вещества в атмосферу; К7i–поправка на температуру для i-го СДЯВ; Qi–запасы i-го СДЯВ на объекте, т; diплотность i-го СДЯВ, т/м3.

Полученные согласно табл. П.2.2 глубины зон заражения Г в зависимости от рассчитанного значения O3 и скорости ветра сравнивают с предельно возможным значением глубины переноса воздушных масс Гп. За окончательную расчетную глубину зоны заражения принимают меньшее из двух сравниваемых между собой значений.

Для ориентировочного, быстрого определения глубины распространения СДЯВ в условиях городской застройки можно пользоваться данными табл. П.2.4.

Таблица П. 2.4 Ориентировочные значения глубины (км) распространения некоторых СДЯВ в условиях городской застройки при инверсии и скорости ветра 1 м/с

Масса СДЯВ, т   Аммиак   Хлор   Синильная кислота  
5 25 50 100   0,5/01 1,3/0,4 2,1/0,6 3,4/1,0   4/0.9 11,5/2.5 18/3.8 30/6,3   24/1.8 7,1/5.5 12/9 18/14  

Примечания. 1. В числителе указано расстояние для поражающей, в знаменателе смертельной концентрации. 2. Табличные значения уменьшаются при изотермии в 1,3 раза; при конверсии в 1,6 раза. 3. При скорости ветра более 1 м/с применяются следующие поправочные коэффициенты:

Скорость ветра, м/с ..... 1            
Поправочный коэффициент . 1   2,1   3,7   2,9   4,3   4,6  

Таблица П. 2.5. Возможные потери людей в очаге химического заражения, %

Условия нахождения людей   Без противогазов   При обеспеченности людей противогазами, %  
                             
На открытой местности   90... 100              
                                         
В простейших укрытиях                      
                                           

Ширина зоны химического заражения СДЯВ приближенно может быть определена по степени вертикальной устойчивости атмосферы и по колебаниям направления ветра: при инверсии принимается 0,03 глубины зоны; при изотермии –0,15, при конверсии –0,8, при устойчивом ветре (колебания не более шести градусов)–0,2; при неустойчивом ветре –0,8 глубины зоны. При этом к ширине добавляются линейные размеры места разлива СДЯВ.

Возможные потери рабочих, служащих и населения в очаге химического поражения (Р, %) определяют по данным табл П. 2.5.

Ориентировочная структура потерь людей в очаге химического поражения составит: легкой степени – 25% средней и тяжелой степени (с выходом из строя не менее, чем на 2…3 недели и нуждающихся в госпитализации) –40%, со смертельным исходом –35%.

СТЕПЕНЬ РАЗРУШЕНИЯ КОММУНАЛЬНО-ЭНЕРГЕТИЧЕСКИХ И ТЕХНОЛОГИЧЕСКИХ СЕТЕЙ

  4.ОСНОВНЫЕ ТИПЫ ПРИБОРОВ ДЛЯ КОНТРОЛЯ ТРЕБОВАНИЙ БЕЗОПАСНОСТИ…  

СПИСОК ЛИТЕРАТУРЫ

Введение

0.1. Безопасность жизнедеятельности. Конспект лекций. Ч. 2/ П.Г. Белов, А.Ф. Козьяков. С.В. Белов и др.; Под ред. С.В. Белова. –М.: ВАСОТ. 1993.

0.2. Безопасность жизнедеятельности/ Н.Г. Занько. Г.А. Корсаков, К. Р. Малаян и др. Под ред. О.Н. Русака. –С.-П.: Изд-во Петербургской лесотехнической академии, 1996.

0.3. Белов С.В., Морозова Л.Л., Сивков В.П. Безопасность жизнедеятельности. Ч. 1.–-М. ВАСОТ, 1992

0.4. Белов С.В. Безопасность жизнедеятельности–наука о выживании в техносфсре –М.: ВИНИТИ, Обзорная информация. Проблемы безопасности при чрезвычайных ситуациях, 1996. вып. 1.

0.5. Белов С.В. Техносфера: аспекты безопасности и экологичности. – М.: Вестник МГТУ. 1998, сер. ЕН.№1.

0.6. Небел Б. Наука об окружающей среде. Как устроен мир. Т. 1: Пер с англ. – М.: Мир, 1993.

0.7. Рамад Ф. Основы прикладной экологии: Пер. с франц. –Л.: Гидрометеоиздат, 1981.

0.8. Реймерс Н.Ф. Надежды на выживание человечества. Концептуальная экология. –М.: изд-во ИЦ «Россия молодая» –Экология, 1992.

0.9. Русак О.Н. Введение в охрану труда. –Л.: изд-во Ленинград, лесотехнической академии, 1982.

Глава 1

1.1. Охрана труда в машиностроении/Е.Я. Юдин, С.В. Белов, С. К. Баланцев и др.;

Под ред. Е.Я. Юдина и С.В. Белова. 2-е изд. –М.: Машиностроение, 1983.

1.2. Справочная книга для проектирования электрического освещения/ Под ред. Г.Н. Кнорринга. –Л.: Энергия. 1976.

1.3. Справочник проектировщика. Вентиляция и кондиционирование воздуха. – М.: Стройиздат, 1978.

Глава 2

2.1. Атаманюк В.Г., Ширшев Л.Г., Акимов Н.И. Гражданская оборона.–М.:

Высшая школа, 1986.

2.2. Государственный доклад. «О состоянии окружающей природной среды Российской Федерации в 1996 году». –М.: Государственный комитет РФ по охране окружающей среды, 1996.

2.3. Ежегодник состояния загрязнения воздуха городов и промышленных центров Советского Союза, 1990 год / Под ред. Э.Ю. Безуглой. –Л.: Главная геофизическая обсерватория им. А.И. Воейкова, 1991.

2.4. Защита атмосферы от промышленных загрязнений: Справочник: Пер. с англ.:

В 2 т. / Под ред. Е. Калверта и Г.М. Инглунда. – М.: Металлургия, 1988.

2.5. Сборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами. –Л.: Гидрометеоиздат, 1986.

2.6. Хорват Л. Кислотный дождь: Пер. с венгр. – М.: Стройиздат, 1990.

Глава 3

3.1. Алексеев С.В., Усенко В.Р. Гигиена труда. –М.: Медицина, 1988.

3.2. Артамонова В.Г., Шаталов Н.Н. Профессиональные болезни. – М.: Медицина, 1988.

3.3. Реакции организма человека на воздействие опасных и вредных производственных факторов: Справочник: в 2 т. – М.: Изд-во стандартов. 1990.

Глава 4

4.1. Анализ безопасности на базе теории четких и нечетких множеств: Отчет по НИР / МГТУ им. Н.Э. Баумана. ГР № 019. 70000006. инв. № 02970000003.-М.. 1996.

4.2 Крышевич О.В., Переездчиков И.В.Модель управления опасностями системы человек-машина-среда/Вестник МГТУ. Сер. Машиностроение, 1998, № 2. С. 32–43.

4.3. Мушик Э., Мюллер П. Методы принятия технических решений: Пер. с нем. – М.: Мир, 1990.

4.4 Переездчиков И.В., Крышевич О.В. Надежность технических систем и техногенный риск. 4.1: Управление риском системы человек-машина-среда. М.: Изд-во МГТУ им. Н.Э. Баумана, 1998.

4.5. Kjellen, U. and Hovden J. Reducing risks by deviation control – a retrospection into a research strategy. Safety Science. 1993. 16; 417 –438 p.

4.6. Hale A. R, Swuste P. Safety rules: procedural freedom or action constraint? Safety Science Group. Delft University of Technology. 1993.

4.7. Hovden, J. and Larsson T.J. Risk; Culture and Concepts. In: T. Singeleton and J. Hovden (Eds). Risk and Decisions. Wilcy. New York, 1987.

4.8. Kulmann A. Introduction to safety science. New York, 1986.

Глава 5

5.1. Водяник В.И. Взрывозащита технологического оборудования. –М.: Химия, 1991.

5.2. Средства защиты в машиностроении. Расчет и проектирование: Справочник/ С.В. Белов. А.Ф. Козьяков, О.Ф. Партолин и др.; Под ред. С.В. Белова.–М.: Машиностроение, 1989.

Глава 6

6.1. Абрамович М., Стриган И. Справочник по специальным функциям.–М.:

Наука. 1979.

6.2. Аполонский С.М. Справочник по расчету электромагнитных экранов. –Л.:

Энергоатомиздат, 1988.

6.3. Богодепов И.И. Промышленная звукоизоляция. –Л.: Судостроение, 1986.

6.4. Борьба с шумом на производстве: Справочник / Е.Я. Юдин, Л.А. Борисов, И.В. Го-ренштейн и др.; Под ред. Е.Я. Юдина. –М.. Машиностроение, 1985.

6.5. Жуков А.И., Монгайт И.Л., Родзиллер И.Д. Методы очистки производственных сточных вод. –М.: Стройиздат, 1977.

6.6. Канализация населенных мест и промышленных предприятий: Справочник проектировщика / Под ред. В.Н. Самохина. –М.: Стройиздат, 1991.

6.7. Козлов В.Ф. Справочник по радиационной безопасности. 4-е изд.–М.:

Энергоатомиздат, 1991.

6.8. Лаптев Н.Н. Расчеты выпусков сточных вод. – М.: Стройиздат, 1977.

6.9. Охрана окружающей среды / С.В. Белов, Ф.А. Барбинов, А.Ф. Козьяков и др.;

Под ред. С.В. Белова. –М.: Высшая школа, 1991.

6.10. Переездчиков И.В. Введение в теорию защиты от энергетического воздействия источников гармонических колебаний. –М.: Изд-во МВТУ им. Н.Э. Баумана, 1987.

6.11. Справочник по пыле-золоулавливанию / Под ред. А.А.. Русанова.–М.:Энергия, 1975.

6.12. Bics D., Hansen С. Engineering noise control. London, 1988, 414 p.

Глава 7

7.1. Каталог средств индивидуальной защиты персонала предприятий и организаций Минэнерго. –М.: СПО «Союзтехэнерго». 1987.

7.2. Промышленная коллекция моделей спецодежды и спецобуви, разработанная организациями систем Минлегпрома СССР: Каталог/Н.М.Федоткин. Н.Е. Квирквелия, А.Е. Карева. Г.М. Осьмушко. –-М.. ЦНИИТЭИтехпрома. 1986.

7.3. Средства индивидуальной защиты работающих на производстве. Каталог-справочник / Под ред В.Н. Ардасенова. – М : Профиздат, 1988.

Глава 8

8.1 Бесчастнов М.В. Промышленные взрывы. Оценка и предупреждение. –М.:

Химия, 1991.

8.2 Драйздейл Д. Введение в динамику пожаров: Пер. с англ. К.Г. Бомштейна / Под ред. Ю.А. Кошмарова, В.Е. Макарова. –М.: Стройиздат, 1990.

8.3. Каммерер Ю.Ю., Харкевич А.Е. Аварийные работы в очагах поражения / Под ред. Б. П. Иванова. –М.: Энергоатомиздат, 1991.

8.4. Маршалл В. Основные опасности химических производств: Пер. с англ / Под ред. Б.Б. Чайнова, А.Н. Черноплекова. –М.: Мир, 1989.

8.5. Проблемы безопасности при чрезвычайных ситуациях / Реферативный сборник ВИНИТИ.–М.: Вып. 1-12. 1991. Вып. 1-6, 1992.

8.6. Убежища гражданской обороны: Конструкции и расчет/В.А. Котляревский, В.И. Га-нушкин. А.А. Костин и др.; Под ред. В.А. Котляревского. –М.: Стройиздат. 1989.

Глава 9

9.1. Алферова Л.А., Нечаев А.П. Замкнутые системы водного хозяйства промышленных предприятий комплексов и районов. –М.: Стройиздат, 1984.

9.2. Охрана природы: Справочник 2-е изд. –М.: Агропромиздат, 1987.

9.3. Охрана труда в машиностроении: Сборник нормативно-технических документов. Т 1.2. –М.: Машиностроение, 1990.

9.4. Положение о порядке обеспечения пособиями по государственному социальному страхованию. Утверждено постановлением Президиума ВЦСПС от 12.11.84 № 13-6 (с изменениями, внесенными постановлениями Президиума ВЦСПС от 10.11.89 № 11-11 от 21.08.90 №9-6; 29.03.91 № 3-8. постановлениями Президиума Совета ВКП CCCPor28.06.91 № 6-7, от 30.08.91 № 9-6, от 11.10.91 № 10-11). ~М.:ВКП, 1992.

9.5. Положение о расследовании и учете несчастных случаев на производстве. Утверждено постановлением правительства РФ от 03.06.95 № 588.

9.6. Порфирьев Б.Н. Государственное управление в чрезвычайных ситуациях. – М.:

Наука, 1991.

9.7. Правила устройства и безопасной эксплуатации грузоподъемных кранов. – М.:

Металлургия, 1994.

9.8. Руководство по контролю источников загрязнения атмосферы. ОНД-90. С.-П.:

Министерство природопользования и охраны окружающей среды, 1992.

9.9. Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах. –М.: Гидрометеоиздат, 1984.

9.10. Шариков Л.П. Охрана окружающей среды: Справочник. –Л.: Судостроение, 1978.

 


Содержание

 

Предисловие................................................................................................................................................................................. 1

ВВЕДЕНИЕ........................................................................................................................................................................................... 3

ОСНОВЫ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ................................................................................................... 3

ОСНОВНЫЕ ПОНЯТИЯ, ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ................................................................................................ 3

Таблица 0.1. Состав площадей на некоторых континентах Земли............................................................................. 8

Зоны.............................................................................................................................................................................................. 19

Вредные факторы.................................................................................................................................................................... 20

Раздел I............................................................................................................................................................................................. 32

ЧЕЛОВЕК И ТЕХНОСФЕРА....................................................................................................................................................... 32

1. ОСНОВЫ ФИЗИОЛОГИИ ТРУДА И КОМФОРТНЫЕ УСЛОВИЯ ЖИЗНЕДЕЯТЕЛЬНОСТИ.......................... 32

1.1. КЛАССИФИКАЦИЯ ОСНОВНЫХ ФОРМ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА......................................................... 32

1.2. ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ТРУДОВОЙ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА.............................. 35

1.3. ФИЗИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ НА ЧЕЛОВЕКА....................... 38

1.4. ПРОФИЛАКТИКА НЕБЛАГОПРИЯТНОГО ВОЗДЕЙСТВИЯ МИКРОКЛИМАТА............................................ 47

1.5. ПРОМЫШЛЕННАЯ ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ...................................................................... 50

1.6. ВЛИЯНИЕ ОСВЕЩЕНИЯ НА УСЛОВИЯ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА......................................................... 59

2. НЕГАТИВНЫЕ ФАКТОРЫ ТЕХНОСФЕРЫ...................................................................................................................... 66

2.1. ЗАГРЯЗНЕНИЕ РЕГИОНОВ ТЕХНОСФЕРЫ ТОКСИЧНЫМИ ВЕЩЕСТВАМИ............................................... 66

2.2. ЭНЕРГЕТИЧЕСКИЕ ЗАГРЯЗНЕНИЯ ТЕХНОСФЕРЫ............................................................................................. 74

2.3. НЕГАТИВНЫЕ ФАКТОРЫ ПРОИЗВОДСТВЕННОЙ СРЕДЫ................................................................................. 76

2.4. НЕГАТИВНЫЕ ФАКТОРЫ ПРИ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ...................................................................... 80

3. ВОЗДЕЙСТВИЕ НЕГАТИВНЫХ ФАКТОРОВ НА ЧЕЛОВЕКА И ТЕХНОСФЕРУ............................................... 83

3.1. СИСТЕМЫ ВОСПРИЯТИЯ ЧЕЛОВЕКОМ СОСТОЯНИЯ ВНЕШНЕЙ СРЕДЫ............................................... 83

3.2. ВОЗДЕЙСТВИЕ НЕГАТИВНЫХ ФАКТОРОВ И ИХ НОРМИРОВАНИЕ............................................................... 91

3.2.1. Вредные вещества......................................................................................................................................................... 91

3.2.2 Вибрации и акустические колебания...................................................................................................................... 102

3.2.3. Электромагнитные поля и излучения.................................................................................................................... 112

3.2.4. Ионизирующие излучения.......................................................................................................................................... 118

3.2.5. Электрический ток..................................................................................................................................................... 122

3.2.6. Сочетанное действие вредных факторов........................................................................................................... 124

Раздел II......................................................................................................................................................................................... 127

ОПАСНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ И ЗАЩИТА ОТ НИХ............................................................................... 127

4. АНАЛИЗ ОПАСНОСТЕЙ...................................................................................................................................................... 127

4.1. ПОНЯТИЯ И АППАРАТ АНАЛИЗА ОПАСНОСТЕЙ................................................................................................ 127

4.2. КАЧЕСТВЕННЫЙ АНАЛИЗ ОПАСНОСТЕЙ............................................................................................................ 132

4.3. КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ОПАСНОСТЕЙ...................................................................................................... 149

4.4. АНАЛИЗ ПОСЛЕДСТВИЙ ЧЕПЕ................................................................................................................................. 159

5. СРЕДСТВА СНИЖЕНИЯ ТРАВМООПАСНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ.................................................. 161

5.1. ВЗРЫВОЗАЩИТА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ.......................................................................... 161

5.2. ЗАЩИТА ОТ МЕХАНИЧЕСКОГО ТРАВМИРОВАНИЯ......................................................................................... 170

5.3. СРЕДСТВА АВТОМАТИЧЕСКОГО КОНТРОЛЯ И СИГНАЛИЗАЦИИ.............................................................. 173

5.4. ЗАЩИТА ОТ ОПАСНОСТЕЙ АВТОМАТИЗИРОВАННОГО И РОБОТИЗИРОВАННОГО ПРОИЗВОДСТВА 173

5.5. СРЕДСТВА ЭЛЕКТРОБЕЗОПАСНОСТИ.................................................................................................................. 174

5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА....................................................................... 175

6. ИДЕНТИФИКАЦИЯ ВРЕДНЫХ ФАКТОРОВ И ЗАЩИТА ОТ НИХ........................................................................ 177

6.1. СОСТАВ И РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ..................................... 177

6.2. СРЕДСТВА ЗАЩИТЫ АТМОСФЕРЫ......................................................................................................................... 184

6.3. СОСТАВ И РАСЧЕТ ВЫПУСКОВ СТОЧНЫХ ВОД В ВОДОЕМЫ...................................................................... 195

6.4. СРЕДСТВА ЗАЩИТЫ ГИДРОСФЕРЫ....................................................................................................................... 197

6.5. СБОР И ЛИКВИДАЦИЯ ТВЕРДЫХ И ЖИДКИХ ОТХОДОВ................................................................................ 207

6.6. ЗАЩИТА ОТ ЭНЕРГЕТИЧЕСКИХ ВОЗДЕЙСТВИЙ............................................................................................... 210

6.6.1. Обобщенное защитное устройство и методы защиты.................................................................................. 210

6.6.2. Защита от вибрации................................................................................................................................................. 212

6.6.3. Защита от шума, электромагнитных полей и излучений................................................................................ 221

Уровень интенсивности в свободном волновом поле................................................................................................... 221

6.6.4. Защита от ионизирующих излучений.................................................................................................................... 240

7. СРЕДСТВА ИВДИВИДУАЛЬНОЙ ЗАЩИТЫ................................................................................................................ 242

Раздел III........................................................................................................................................................................................ 248

ЧРЕЗВычАЙНЫЕ СИТУАЦИИ............................................................................................................................................. 248

8. ЗАЩИТА В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ И ЛИКВИДАЦИЯ ПОСЛЕДСТВИЙ.......................................... 248

8.1. ОБЩИЕ СВЕДЕНИЯ О ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ.................................................................................... 248

8.2. УСТОЙЧИВОСТЬ ПРОМЫШЛЕННЫХ ОБЪЕКТОВ............................................................................................. 250

8.3. ПРОГНОЗИРОВАНИЕ ПАРАМЕТРОВ ОПАСНЫХ ЗОН........................................................................................ 252

8.4. ЛИКВИДАЦИЯ ПОСЛЕДСТВИЙ ЧС......................................................................................................................... 266

Раздел IV........................................................................................................................................................................................ 269

УПРАВЛЕНИЕ БЕЗОПАСНОСТЬЮ ЖИЗНЕДЕЯТЕЛЬНОСТИ.............................................................................. 269

9. ПРАВОВЫЕ И ОРГАНИЗАЦИОННЫЕ ОСНОВЫ......................................................................................................... 269

9.1. ПРАВОВЫЕ И НОРМАТИВНО-ТЕХНИЧЕСКИЕ ОСНОВЫ................................................................................. 269

9.2. ОРГАНИЗАЦИОННЫЕ ОСНОВЫ УПРАВЛЕНИЯ.................................................................................................. 273

9.3. ЭКСПЕРТИЗА И КОНТРОЛЬ ЭКОЛОГИЧНОСТИ И БЕЗОПАСНОСТИ.......................................................... 282

9.4. МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО............................................................................................................... 287

СПИСОК ЛИТЕРАТУРЫ........................................................................................................................................................... 299

Введение.................................................................................................................................................................................... 299

Глава 1....................................................................................................................................................................................... 300

Глава 2....................................................................................................................................................................................... 300

Глава 3....................................................................................................................................................................................... 300

Глава 4....................................................................................................................................................................................... 300

Глава 5....................................................................................................................................................................................... 300

Глава 6....................................................................................................................................................................................... 300

Глава 7....................................................................................................................................................................................... 301

Глава 8....................................................................................................................................................................................... 301

Глава 9....................................................................................................................................................................................... 301

содержание............................................................................................................................................................................... 303

 

– Конец работы –

Используемые теги: Безопасность, жизнедеятельности0.057

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Безопасность жизнедеятельности

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Реферат по курсу безопасность жизнедеятельности Тема: Безопасность мобильных телефонов.
Поэтому пока не заметны особенно вредные массовые последствия работы мощных радиостанций и мощных телецентров, хотя их мощность составляет десятки и… Все остальные источники излучения (сам передатчик, гетеродины приемника,… Эти изменения, как правило, необратимы. Данный процесс сопровождается резью в глазах и шумом в голове. Воздействие…

Методические указания по выполнению курсовой работы по дисциплине Безопасность жизнедеятельности в ЧС” Тема: Прогнозирование и оценка химической обстановки в ЧС
Федеральное государственное бюджетное общеобразовательное учреждение высшего профессионального образования... Ростовский государственный строительный университет...

Ситуационные задания к курсу Безопасность жизнедеятельности
Башкирский государственный педагогический университет им м акмуллы... Ситуационные задания к курсу Безопасность жизнедеятельности Уфа...

Безопасность жизнедеятельности БЖД
Конспект лекций сентябрь г Группы... Введение...

Для подготовки к практическим занятиям по дисциплине Безопасность жизнедеятельности методическое пособие для студентов Методические указания
высшего профессионального образования... Волгоградский государственный медицинский университет... Министерства здравоохранения и социального развития РФ...

Безопасность жизнедеятельности
На сайте allrefs.net читайте: "Безопасность жизнедеятельности"...

Безопасность жизнедеятельности
На сайте allrefs.net читайте: "Безопасность жизнедеятельности"

ЗАОЧНОЕ ОБУЧЕНИЕ БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ
На сайте allrefs.net читайте: "ЗАОЧНОЕ ОБУЧЕНИЕ БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ"

Безопасность жизнедеятельности
На сайте allrefs.net читайте: "Безопасность жизнедеятельности"

Вопросы охраны труда являются частью курса Безопасность жизнедеятельности
ФГАОУ Уральский федеральный университет... имени первого Президента России Б Н Ельцина... А А Волкова В Г Шишкунов...

0.033
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам