рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Производная по направлению

Производная по направлению - Конспект Лекций, раздел Математика, Конспект лекций по дисциплине Высшая математика Рассмотрим В Области D Функцию ...

Рассмотрим в области D функцию и точку . Проведем из точки вектор , направляющие косинусы которого , и . Ha векторе , на расстоянии от его начала, рассмотрим точку .

Длина вектора равна: .

Будем предполагать, что функция непрерывна и имеет непрерывные производные по своим аргументам в области D. В этом случае ее полное приращение представимо в виде:

, (1)

где , и стремятся к нулю при . Разделим все члены равенства (1) на :

.

Очевидно, что , , .

Следовательно, равенство (1) можно переписать так:

. (2)

Определение. Предел отношения при называется производной от функции в точке по направлению вектора и обозначается , т. е. .

 

Таким образом, переходя к пределу в равенстве (2), получим:

.

Величина характеризует скорость изменения функции в точке по выбранному направлению . Если , то функция в точке по направлению возрастает, в противном случае – убывает.

 

Отметим, что для функции двух переменных производная по направлению будет равна

.

Пример. Найти производную функции в точке в направлении вектора .

Решение. Найдем направляющие косинусы вектора :

, , .

Частные производные , ,

в точке будут , , .

Следовательно, .

Пример. Найти производную функции в точке по направлению вектора , если точка .

Решение. Вектор имеет координаты: , длина вектора равна: .

Найдем направляющие косинусы вектора :

, .

Частные производные , .

в точке будут , .

Следовательно, .


– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций по дисциплине Высшая математика

Высший государственный колледж связи.. кафедра М и Ф.. КОНСПЕКТ ЛЕКЦИЙ..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Производная по направлению

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные обозначения
Þ — знак логического следования Û — знак равносильности (эквивалентности) — знак тождественного равенства

Понятие функции нескольких переменных
При изучении многих явлений приходится встречаться с функциями двух и более независимых переменных. Приведем несколько примеров.   Пример. Площадь

Поверхности (линии) уровня
Пусть в трехмерном пространстве имеется область D, в которой задана функция . В этом случае говорят, что в области D задан

Предел функции нескольких переменных
Приведем определение предела функции двух переменных по Коши.   Определение. Число А называется пределом функции

Непрерывность функций нескольких переменных
Понятие непрерывности функции нескольких переменных можно определить с помощью предела.   Определение. Функция

Частные и полные приращения функции
Пусть — функция двух независимых переменных и D— область ее определения. Выберем пр

Частные производные
Определение.Частной производной функции по переменной в точке

Необходимое и достаточное условия дифференцируемости
  Напомним, что функция одной переменной называется дифференцируемой в точке

Полный дифференциал функции нескольких переменных
  Если функция дифференцируема в точке , то, как было показано выше,

Дифференцирование сложной функции
Пусть — функция двух переменных, каждая из которых, в свою очередь, является функцией независимых переменных

Дифференцирование функции, заданной неявно
  Известно, что функция может быть задана неявно уравнением, связывающим переменные

Частные производные и дифференциалы высших порядков
Частные производные высших порядков.Пусть функция имеет непрерывные частные производные

Локальные экстремумы функции двух переменных
  Определение.Точка называется точкой локального максимума (минимума) функции

Касательная плоскость и нормаль к поверхности
Геометрическим образом (графиком) функции двух независимых переменных в пространстве R3 является некоторая поверхность Q. Выберем

Градиент функции
В каждой точке области D, в которой задана функция , определим вектор, проекциями которого на оси координат являются значения частных произв

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги