рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Частные производные

Частные производные - Конспект Лекций, раздел Математика, Конспект лекций по дисциплине Высшая математика Определение.Частной Производной Функции ...

Определение.Частной производной функции по переменной в точке называется предел отношения частного приращения функции к соответствующему приращению аргумента , когда последнее произвольным образом стремится к нулю, т.е.

 

.

 

Используются также и другие обозначения частных производных: , , .

 

Аналогично определяют и частную производную функции в точке по переменной :

 

.

 

Таким образом, частная производная функции нескольких переменных определяется как производная функции одной переменной при фиксированных значениях остальных переменных.

Пример.Найти частные производные функции .

Решение.Частную производную функции вычисляем как производную данной функции по переменной , считая постоянной:

. Аналогично .

Пример.Найти частные производные функции .

Решение.Частную производную функции вычисляем как производную данной функции по переменной , считая и постоянными:

.

 

Аналогично и .

Геометрический смысл частных производных функции двух переменных.Пусть графиком функции является некоторая поверхность Q. Возьмем точку Î D. На этой поверхности ей соответствует точка . Пересечем график данной функции плоскостью . В сечении получим кривую ( на рисунке это кривая ), которую можно рассматривать как график функции одной переменной в плоскости .

 

 

 

Тогда, согласно геометрическому смыслу производной функции одной переменной, значение частной производной функции в точке равно тангенсу угла α, образованного положительным направлением оси Ох и касательной, проведенной в точке к линии пересечения поверхности и плоскости .

 

Аналогично трактуется и геометрический смысл частной производной функции по .

Механический смысл частных производных функции двух переменных.Частные производные и характеризуют скорость изменения функции в данной точке , причем частная производная задает скорость изменения функции в направлении прямой , частная производная ― в направлении прямой .


– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций по дисциплине Высшая математика

Высший государственный колледж связи.. кафедра М и Ф.. КОНСПЕКТ ЛЕКЦИЙ..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Частные производные

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные обозначения
Þ — знак логического следования Û — знак равносильности (эквивалентности) — знак тождественного равенства

Понятие функции нескольких переменных
При изучении многих явлений приходится встречаться с функциями двух и более независимых переменных. Приведем несколько примеров.   Пример. Площадь

Поверхности (линии) уровня
Пусть в трехмерном пространстве имеется область D, в которой задана функция . В этом случае говорят, что в области D задан

Предел функции нескольких переменных
Приведем определение предела функции двух переменных по Коши.   Определение. Число А называется пределом функции

Непрерывность функций нескольких переменных
Понятие непрерывности функции нескольких переменных можно определить с помощью предела.   Определение. Функция

Частные и полные приращения функции
Пусть — функция двух независимых переменных и D— область ее определения. Выберем пр

Необходимое и достаточное условия дифференцируемости
  Напомним, что функция одной переменной называется дифференцируемой в точке

Полный дифференциал функции нескольких переменных
  Если функция дифференцируема в точке , то, как было показано выше,

Дифференцирование сложной функции
Пусть — функция двух переменных, каждая из которых, в свою очередь, является функцией независимых переменных

Дифференцирование функции, заданной неявно
  Известно, что функция может быть задана неявно уравнением, связывающим переменные

Частные производные и дифференциалы высших порядков
Частные производные высших порядков.Пусть функция имеет непрерывные частные производные

Локальные экстремумы функции двух переменных
  Определение.Точка называется точкой локального максимума (минимума) функции

Касательная плоскость и нормаль к поверхности
Геометрическим образом (графиком) функции двух независимых переменных в пространстве R3 является некоторая поверхность Q. Выберем

Производная по направлению
Рассмотрим в области D функцию и точку . Проведем из точки

Градиент функции
В каждой точке области D, в которой задана функция , определим вектор, проекциями которого на оси координат являются значения частных произв

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги