рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дифференцирование сложной функции

Дифференцирование сложной функции - Конспект Лекций, раздел Математика, Конспект лекций по дисциплине Высшая математика Пусть — Функция Двух...

Пусть — функция двух переменных, каждая из которых, в свою очередь, является функцией независимых переменных и : , . Тогда — сложная функция двух независимых переменных и , а переменные и — промежуточные аргументы.

 

Теорема. Если функция дифференцируема в точке , а функции и дифференцируемы в точке D, то сложная функция , где ; , дифференцируема в точке D, причем ее частные производные вычисляются по формулам:

, .

Доказательство. Докажем первую из формул. В точке переменной дадим приращение , сохранив постоянной. Тогда функции и получат частные приращения , , а функция — полное приращение (так как и — приращения по обоим промежуточным аргументам). Функция дифференцируема в точке , поэтому ее приращение в этой точке представимо в виде

.

 

Разделим данное равенство на :

(1)

 

Если , то и в силу непрерывности функций и ,

, .

 

Переходя к пределу в равенстве (1) с учетом того, что

, имеем

 

.

 

Аналогично

.

 

Теорема доказана.

 

Рассмотрим функцию трех переменных , каждая из которых, в свою очередь, является функцией независимых переменных , , : , , . Тогда функция является сложной функцией трех независимых переменных , , , а переменные , , называются промежуточными. Частные производные этой функции вычисляются по формулам:

,

,

.

Пример.Вычислить частные производные сложной функции двух переменных , где ; .

Решение. Найдем частные производные

, , , , , . Следовательно,

.

Найдем теперь полный дифференциал сложной функции в точке . Подставим выражения и в формулу полного дифференциала сложной функции двух переменных

. (2)

Получим

или

 

Так как , , то

. (3)

 

Сравнивая формулы (2) и (3), замечаем, что форма записи полного дифференциала функции двух переменных не зависит от того, являются ли и независимыми переменными, или функциями других независимых переменных. В этом и заключается инвариантность формы первого дифференциала функции нескольких переменных. (Напомним, что первый дифференциал функции одной переменной также обладает этим свойством.)


– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций по дисциплине Высшая математика

Высший государственный колледж связи.. кафедра М и Ф.. КОНСПЕКТ ЛЕКЦИЙ..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дифференцирование сложной функции

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные обозначения
Þ — знак логического следования Û — знак равносильности (эквивалентности) — знак тождественного равенства

Понятие функции нескольких переменных
При изучении многих явлений приходится встречаться с функциями двух и более независимых переменных. Приведем несколько примеров.   Пример. Площадь

Поверхности (линии) уровня
Пусть в трехмерном пространстве имеется область D, в которой задана функция . В этом случае говорят, что в области D задан

Предел функции нескольких переменных
Приведем определение предела функции двух переменных по Коши.   Определение. Число А называется пределом функции

Непрерывность функций нескольких переменных
Понятие непрерывности функции нескольких переменных можно определить с помощью предела.   Определение. Функция

Частные и полные приращения функции
Пусть — функция двух независимых переменных и D— область ее определения. Выберем пр

Частные производные
Определение.Частной производной функции по переменной в точке

Необходимое и достаточное условия дифференцируемости
  Напомним, что функция одной переменной называется дифференцируемой в точке

Полный дифференциал функции нескольких переменных
  Если функция дифференцируема в точке , то, как было показано выше,

Дифференцирование функции, заданной неявно
  Известно, что функция может быть задана неявно уравнением, связывающим переменные

Частные производные и дифференциалы высших порядков
Частные производные высших порядков.Пусть функция имеет непрерывные частные производные

Локальные экстремумы функции двух переменных
  Определение.Точка называется точкой локального максимума (минимума) функции

Касательная плоскость и нормаль к поверхности
Геометрическим образом (графиком) функции двух независимых переменных в пространстве R3 является некоторая поверхность Q. Выберем

Производная по направлению
Рассмотрим в области D функцию и точку . Проведем из точки

Градиент функции
В каждой точке области D, в которой задана функция , определим вектор, проекциями которого на оси координат являются значения частных произв

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги