рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Поверхности (линии) уровня

Поверхности (линии) уровня - Конспект Лекций, раздел Математика, Конспект лекций по дисциплине Высшая математика Пусть В Трехмерном Пространстве Имеется Область D, В Которой Задана Функция...

Пусть в трехмерном пространстве имеется область D, в которой задана функция

.

В этом случае говорят, что в области D задано скалярное поле.

 

Если, например, функция обозначает температуру в точке , то говорят, что задано скалярное поле температур; если область D заполнена жидкостью или газом и обозначает давление, то имеется скалярное поле давлений и т. д.

 

Рассмотрим точки области D, в которых функция имеет постоянное значение :

.

 

Совокупность этих точек образует некоторую поверхность. Если возьмем другое значение , то получим другую поверхность. Эти поверхности называются поверхностями уровня.

Пример. Пусть задано скалярное поле

.

Здесь поверхностями уровня будут поверхности

,

т. е. эллипсоиды с полуосями , , .

 

 

Если функция есть функция двух переменных и :

,

то «поверхностями» уровня будут линии на плоскости :

,

которые называются линиями уровня.

 

Если значения мы будем откладывать по оси , то линиями уровня на плоскости будут проекции линий, которые получаются в пересечении поверхности с плоскостями . Зная линии уровня, легко исследовать характер поверхности .

 

Пример.Определить линии уровня функции .

Решение. Линиями уровня будут линии с уравнениями . Это окружности радиуса . В частности, при получаем окружность . График данной функции, а также получаемые линии уровня изображены на рисунке.


– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций по дисциплине Высшая математика

Высший государственный колледж связи.. кафедра М и Ф.. КОНСПЕКТ ЛЕКЦИЙ..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Поверхности (линии) уровня

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОСНОВНЫЕ ОБОЗНАЧЕНИЯ
Þ — знак логического следования Û — знак равносильности (эквивалентности) — знак тождественного равенства

Понятие функции нескольких переменных
При изучении многих явлений приходится встречаться с функциями двух и более независимых переменных. Приведем несколько примеров.   Пример. Площадь

Предел функции нескольких переменных
Приведем определение предела функции двух переменных по Коши.   Определение. Число А называется пределом функции

Непрерывность функций нескольких переменных
Понятие непрерывности функции нескольких переменных можно определить с помощью предела.   Определение. Функция

Частные и полные приращения функции
Пусть — функция двух независимых переменных и D— область ее определения. Выберем пр

Частные производные
Определение.Частной производной функции по переменной в точке

Необходимое и достаточное условия дифференцируемости
  Напомним, что функция одной переменной называется дифференцируемой в точке

Полный дифференциал функции нескольких переменных
  Если функция дифференцируема в точке , то, как было показано выше,

Дифференцирование сложной функции
Пусть — функция двух переменных, каждая из которых, в свою очередь, является функцией независимых переменных

Дифференцирование функции, заданной неявно
  Известно, что функция может быть задана неявно уравнением, связывающим переменные

Частные производные и дифференциалы высших порядков
Частные производные высших порядков.Пусть функция имеет непрерывные частные производные

Локальные экстремумы функции двух переменных
  Определение.Точка называется точкой локального максимума (минимума) функции

Касательная плоскость и нормаль к поверхности
Геометрическим образом (графиком) функции двух независимых переменных в пространстве R3 является некоторая поверхность Q. Выберем

Производная по направлению
Рассмотрим в области D функцию и точку . Проведем из точки

Градиент функции
В каждой точке области D, в которой задана функция , определим вектор, проекциями которого на оси координат являются значения частных произв

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги