рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Газы и тепловые машины

Газы и тепловые машины - раздел Физика, План: 1. Закон Идеального Газа. 2. Первое Начало Термодинамики. Адиабатически...

План: 1. Закон идеального газа. 2. Первое начало термодинамики. Адиабатический процесс. 3. Второе начало термодинамики. 4. Принцип действия тепловых машин. 5. КПД тепловых двигателей и второе начало термодинамики. 6. Уравнение Ван-дер-Ваальса. Закон идеального газа. Экспериментальный: Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.

Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению (рис.1): V~1/P , при T=const. Например, если давление, действующее на газ, увеличится вдвое, то объем уменьшится до половины первоначального. Это соотношение известно как закон Бойля (1627-1691)-Мариотта(1620-1684), его можно записать и так: PV=const.

Это означает, что при изменении одной из величин, другая также изменится, причем так, что их произведение останется постоянным. Зависимость объема от температуры (рис.2) была открыта Ж. Гей-Люссаком. Он обнаружил, что при постоянном давлении объем данного количества газа прямо пропорционален температуре: V~T , при Р=const. График этой зависимости проходит через начало координат и, соответственно, при 0К его объём станет равный нулю, что очевидно не имеет физического смысла. Это привело к предположению, что -2730С минимальная температура, которую можно достичь. Третий газовый закон, известный как закон Шарля, названный в честь Жака Шарля (1746-1823). Этот закон гласит: при постоянном объеме давление газа прямо пропорционально абсолютной температуре (рис.3): Р~T, при V=const.

Хорошо известным примером действия этого закона является баллончик аэрозоля, который взрывается в костре.

Это происходит из-за резкого повышения температуры при постоянном объеме. Эти три закона являются экспериментальными, хорошо выполняющимися в реальных газах только до тех пор, пока давление и плотность не очень велики, а температура не слишком близка к температуре конденсации газа, поэтому слово "закон" не очень подходит к этим свойствам газов, но оно стало общепринятым. Газовые законы Бойля-Мариотта, Шарля и Гей-Люссака можно объеденить в одно более общее соотношение между объёмом, давлением и температурой, которое справедливо для определенного количества газа: PV~T Это показывает, что при изменении одной из величин P, V или Т, изменятся и две другие величины.

Это выражение переходит в эти три закона, при принятии одной величины постоянной. Теперь следует учесть ещё одну величину, которую до сих пор мы считали постоянной - количество этого газа. Экспериментально подтверждено, что: при постоянных температуре и давлении замкнутый объём газа увеличивается прямо пропорционально массе этого газа: PV~mT Эта зависимость связывает все основные величины газа. Если ввести в эту пропорциональность коэффициент пропорциональности, то мы получим равенство.

Однако опыты показывают, что в разных газах этот коэффициент разный, поэтому вместо массы m вводят количество вещества n (число молей). В результате получаем: |PV=nRT |(1) | , где n - число молей, а R - коэффициент пропорциональности. Величина R называется универсальной газовой постоянной.

На сегодняшний день самое точное значение этой величины равно: R=8,31441 ( 0,00026 Дж/Моль Равенство (1) называют уравнением состояния идеального газа или законом идеального газа. Число Авогадро; закон идеального газа на молекулярном уровне: То, что постоянная R имеет одно и то же значение для всех газов, представляет собой великолепное отражение простоты природы. Это впервые, хотя и в несколько другой форме, осознал итальянец Амедео Авогадро (1776- 1856). Он опытным путём установил, что равные объёмы объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул.

Во- первых: из уравнения (1) видно, что если различные газы содержат равное число молей, имеют одинаковые давления и температуры, то при условии постоянного R они занимают равные объёмы. Во-вторых: число молекул в одном моле для всех газов одинаково, что непосредственно следует из определения моля. Поэтому мы можем утверждать, что величина R постоянна для всех газов. Число молекул в одном моле называется числом Авогадро NA. В настоящее время установлено, что число Авогадро равно: NA=(6,022045(0,000031)(10-23 моль-1 Поскольку общее число молекул N газа равно числу молекул в одном моле, умноженному на число молей (N=nNA), закон идеального газа можно переписать следующим образом: PV=nRT=N/NART или |PV=NkT |(2) | , где k называется постоянной Больцмана и имеет значение равное: k= R/NA=(1,380662(0,000044) (10-23 Дж/К Первое начало термодинамики.

Адиабатический процесс.

Внутренняя энергия газа - это сумма кинетической и потенциальной энергии всех молекул этого газа. Очевидно, что внутренняя энергия газа должна увеличиваться либо за счет совершения над газом работы, либо путем сообщения ему некоторого количества теплоты. И наоборот, если газ совершает работу над внешними телами или тепловой поток направлен из газовой системы, то энергия этой системы должна уменьшаться. В результате опытов Джоуля (как и многих других) был сформулирован закон, согласно которому изменение внутренней энергии ((U) замкнутой системы можно записать в следующем виде: |((U)=Q- W |(3) | , где Q-количество теплоты, сообщенное системе, а W-работа совершаемая системой.

Выражение (3) известно как первое начало термодинамики. Поскольку теплота Q и работа W выражают способы передачи энергии в систему или из неё, внутренняя энергия изменяется в соответствии с ними. Таким образом первое начало термодинамики является попросту формулировкой закона сохранения энергии.

Уравнение (3) применимо как к замкнутым системам, так и к не замкнутым, если учесть изменение энергии вследствие изменения количества вещества в данной системе. При переходе системы из одного состояния в другое (1 в 2) количество теплоты Q, сообщённое системе, и работа W, совершённая системой, зависят от конкретного процесса (или пути), в котором участвовала система. И для разных процессов эти величины различны, даже если начальные и конечные состояния системы одинаковы.

Однако эксперименты показали, что при одинаковых начальном и конечном состояниях разность Q-W одинакова для всех процессов, переводящих систему из одного состояния в другое. Адиабатическим называется процесс, при котором от системы не отбирается и не сообщается энергии. Такой процесс может происходить, если система изолирована или протекает столь быстро, что теплообмен практически не происходит. Примером процесса, очень близкого к адиабатическому, является расширение газов в двигателях внутреннего сгорания.

При медленном адиабатическом расширении из уравнения (3) следует (так как Q=0 (по определению адиабатического процесса)): |((U)=- W |(4) | т.е. внутренняя энергия системы убывает, и поэтому температура понижается. Соответственно при адиабатическом сжатии внутренняя энергия повышается и, следовательно, температура повышается. Например в двигателе Дизеля объем быстро уменьшается, и поэтому температура увеличивается, а впрыскиваемая смесь из-за высокой температуры воспламеняется. Второе начало термодинамики.

Мы можем представить себе множество процессов подтверждающих первое начало термодинамики. Также можно представить много процессов, которые согласуются с законом сохранения энергии, но при этом почему-то не встречающихся в природе. Например: рассмотрим, что происходит с камнем, после броска. По мере его падения его начальная потенциальная энергия переходит в кинетическую. Когда же камень соприкасается с землёй, его кинетическая энергия переходит во внутреннюю энергию камня и земли.

Однако никто из нас никогда не наблюдал, что бы внутренняя энергия вдруг перешла в кинетическую и камень самопроизвольно взлетел. Этот процесс не приводит к нарушению первого начала термодинамики. Для того что бы объяснить отсутствие обратимости аналогичных процессов, во второй половине XIX века ученые пришли к формулировке второго начала термодинамики. Одна из его формулировок, принадлежащая Р. Ю. Э. Клаузису (1822-1888), гласит, что теплота в естественных условиях переходит от горячего тела к холодному, в то время как от холодного к горячему теплота сама по себе не переходит.

Эта формулировка относится к определенному процессу и не вполне ясно, каким образом её отнести к иным процессам. Более общая формулировка второго начала термодинамики, в которой явным образом учтены и возможности других процессов, была сформирована в ходе изучения тепловых двигателей.

Принцип действия тепловых машин

Поршень движется вверх и сжимает смесь. При этом температура смеси резко возрастает. Почему? Что бы ответить на этот вопрос представим себе паровую машину ... 3. Процесс сгорания не происходит при постоянном объеме, а начинается в т...

КПД тепловых двигателей и второе начало термодинамики

КПД тепловых двигателей и второе начало термодинамики.

КПД тепловой машины определяется следующей формулой: |(=W/(QH( |(5) | , где W - полезная работа совершенная этой машиной, QH - теплота сообщенная этой машине (Q взято под знак модуля, в связи с тем, что тепловой поток может иметь разное направление). По закону сохранения энергии получаем соотношение: (QH(=W+(QL( , где (QL( - количество теплоты отводимой при низкой температуре.

Таким образом, W=(QH(-(QL(, и КПД двигателя можно записать в виде: Из этого соотношения видно, что чем больше будет КПД двигателя, тем меньше будет теплота(QL(. Однако опыт показал, что величину (QL( невозможно уменьшить до нуля. Если бы это было осуществимо, то мы получили бы двигатель с КПД 100%. То, что такой идеальный двигатель, непрерывно совершающий рабочие циклы, невозможен, составляет содержание ещё одной формулировки второго начала термодинамики: Невозможен такой процесс, единственным результатом, которого было бы преобразование отобранной у источника теплоты Q, при неизменной температуре, полностью в работу W, так, что W=Q. Эта утверждение известно как формулировка второго начала термодинамики Кельвина-Планка.

Существует также аналогичное утверждение относительно холодильника, высказанное Клаузисом: Невозможно осуществить периодический процесс, единственным результатом, которого был бы отбор теплоты у одной системы при данной температуре и передача в точности такого же количества теплоты другой системе при более высокой температуре.

Уравнение Ван-дер-Ваальса.

В реальных тепловых двигателях используются реальные газы. Как было замечено поведение их заметно отклоняется, например, при высоком давлении, от поведения идеального газа. Ян Д. Ван-дер-Ваальс (1837-1923) исследовал эту проблему с точки зрения МКТ и в 1873 году получил уравнение более точно описывающее поведение реальных газов.

Свой анализ он основывал на МКТ, но при этом учитывал: A. Все молекулы имеют конечные размеры (классическая МКТ ими пренебрегает) B. Молекулы взаимодействуют друг с другом всё время, а не только во время столкновений. Предположим, что молекулы газа представляют собой шарики с радиусом r. Если считать, что такие молекулы ведут себя подобно твердым сферам, то две молекулы будут сталкиваться и разлетаться в разные стороны при расстоянии между центрами равным 2r. Таким образом, реальный объем, в котором могут двигаться молекулы несколько меньше, чем объем V сосуда содержащего газ. Величина этого "недоступного объема" зависит от объема молекул газа и от количества этих молекул.

Пусть b представляет собой "недоступный объем" в расчете на один моль газа. Тогда в уравнении состояния идеального газа нужно заменить V на V-nb, где n - число молей газа, и мы получим: P(V-nb)=nRT Если разделить это выражение на n и считать, что величина v==V/n является объемом, который занят одним молем газа (v - удельный объем), то получим: |P(v-b)=RT |(9) | Это соотношение показывает, что при данной температуре давление P=RT/(v-b) будет больше, чем в идеальном газе. Это происходит потому, что уменьшение объема означает, что число столкновений со стенками возрастает.

Следует учесть гравитационное взаимодействие между молекулами, равное: F~m1m2 , где m1 и m2 - массы молекул.

Внутри газа силы притяжения действуют на молекулу во всех направлениях. Однако на молекулу, находящуюся на краю газа действует результирующая сила, направленная внутрь. Молекулы, которые направляются к стенке сосуда, замедляются этой направленной результирующей силой и, таким образом, действуют на стенку с меньшей силой; следовательно, эти молекулы создают меньшее давление, чем в том случае, когда силы притяжения отсутствуют. Уменьшенное давление будет пропорционально числу молекул, приходящихся на единицу объема в поверхностном слое газа, а также числу молекул в следующем слое газа, создающим направленную внутрь силу. Поэтому можно ожидать, что давление уменьшится на величину пропорциональную (N/V)2. Поскольку N=nNA можно записать (N/V)2=( nNA/V)2= NA2/v2; следовательно, давление уменьшится на величину пропорциональную 1/v2. Если для определения давления используется выражение (9), то получаемое давление нужно уменьшить на величину a/v2, где a - коэффициент пропорциональности.

Таким образом, мы имеем: Или (P + )(v - b) = RT Это и есть уравнение Ван-дер-Ваальса.

Где a и b - для разных газов различны и определяются путем подгонки для каждого конкретного газа. Следует заметить, что при низкой плотности газа уравнение Ван-дер-Ваальса сводится к уравнению состояния идеального газа. Однако ни ураневние Ван-дер-Ваальса, ни какое другое уравнение состояния, которое было предложено, не выполняются точно для всех газов при любых условиях. Но тем не менее это уравнение очень полезно, и, поскольку оно достаточно точно определяет поведение газа, его вывод позволяет глубже проникнуть в природу газов на микроскопическом уровне.

Список литературы: 1. Д. Джаконли "ФИЗИКА", I том, Москва "МИР", 1989 г. Douglas C. Gianconli, "General Physics", Prentice-Hall, Inc 1984 2. Дж. Орир "Популярная Физика", Москва " МИР", 1969 г. Jay Orear, "Fundamental Physics", John Willey-New York, 1967 3. Кл. Э. Суарц "Необыкновенная физика обыкновенных явлений", I том,.

– Конец работы –

Используемые теги: газы, тепловые, машины0.056

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Газы и тепловые машины

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Курс лекций по деталям машин Детали машин являются первым из расчетно-конструкторских курсов, в котором изучаются основы проектирования машин и механизмов
Детали машин являются первым из расчетно конструкторских курсов в котором... Машина устройство выполняющее преобразование движения энергии материалов и информации В зависимости от функций...

Химическая реакция в смеси идеальных газов. Константа химического равновесия в смеси идеальных газов
В любом естественно протекающем (самопроизвольном или свободном) процессе свободная энергия системы понижается. При достижении системой состояния… Термодинамическое равновесие в макросистеме совсем не означает, что и в её… Основной целью статистического метода является установление количественной связи между характеристиками механических…

Тепловые машины
Ветер есть не что иное, как конвекционное дви­жение атмосферы, обусловленное неравномерным нагрева­нием ее. Таким образом, энергия, доставляемая… Машины1, производящие механическую работу в резуль­тате обмена теплотой с… В большинстве таких машин нагревание получается при сгорании топлива, благодаря чему нагреватель получает достаточно…

P-V-T соотношения: реальный газ и идеальный газ
В настоящее время не существует такого уравнения состояния, которое было бы применимо для оценки этих свойств любого органического вещества. На… В данном пособии рассматриваются в сопоставлении уравнения состояния каждой… Количественное выражение температурного воздействия было установлено Шарлем и Гей-Люссаком (1802 г.), которые…

Реактивные двигатели и основы работы тепловой машины
Различают циклические и нециклические тепловые машины. Циклическая тепловая машина. Принцип работы. Представим принцип действия машин циклических… Определим принцип работы циклической тепловой машины.Рабочее тело, в… Затем рабочее тело снова переходит в контакт с печкой - процесс повторяется. О ткрытие пути в космос К.Э…

Вторичные энергетические ресурсы. Утилизация тепла отходящих газов
ВЭР нельзя рассматривать как даровые дополнительные источники энергии. Они являются результатом энергетического несовершенства технологических… Пределом идеальной организации производств является создание безотходная по… Горючие ВЭР - побочные газообразные продукты технологических процессов, которые могут быть использованы в качестве…

Лекция 2 - Закономерности образования и роста покрытий, формируемых из газовой фазы. Стадии и механизмы роста покрытий при их осаждении из газового потока
На сайте allrefs.net читайте: "Закономерности образования и роста покрытий, формируемых из газовой фазы. Стадии и механизмы роста покрытий при их осаждении из газового потока"

Производство газового оборудования для автомобилей и специфика перевода автомобилей на газовое топливо
Развитие автомобилестроения обеспечило быстрое развитие нефтяной отрасли. Своему ведущему положению в мировой экономике она во многом обязана двигателю… Это экологические и ресурсные проблемы, проблемы утилизации. Но на сегодня только утилизацию автомобиля можно считать…

Газовые законы. Основные газовые процессы
Лекция Основные классы неорганических соединений номенклатура... Основными классами неорганических соединений являются оксиды кислоты соли и... Оксиды представляют собой соединения элементов с кислородом Оксиды подразделяют на солеобразующие и несолеобразующие...

Тепловые процессы и аппараты. Виды теплообмена и теплообменных пр. Перенос тепла от одного тела к др.
Тепло переносится за счет х явлений теплопроводности конвекции и лучеиспувкания Теплопроводность перенос тепла за счет дв Микрочастиц в газах... Теплообмен может сопровождаться охлаждением или нагреванием М б... Перенос тепла теплопроводность Закон Фурье Произведение Т по нормали к изотермам поверхности наз Градиентом...

0.043
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам