рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Лабораторные работы по гидравлике

Лабораторные работы по гидравлике - раздел Образование, Министерство Сельского Хозяйства Российской Федерации ...

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ   «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

 

 

Кафедра природообустройства,

строительства и гидравлики

 

 

ОПД.Ф.03 Гидравлика

Опд.ф.02.05 гидравлика

ОПД.Ф.07.01 Гидравлика

ОПД.Ф.08.03 ГИДРАВЛИКА

ОПД.Ф.07 Гидравлика и гидромашины

ОПД.Р.03 ПРИКЛАДНАЯ ГИДРОМЕХАНИКА

ОПД.Ф.08 ГИДРОГАЗОДИНАМИКА

Лабораторные работы по гидравлике

Методические указания

    Уфа 2010

Лабораторная работа №1

ИЗМЕРЕНИЕ ОСНОВНЫХ ГИДРАВЛИЧЕСКИХ

ХАРАКТЕРИСТИК ЖИДКОСТИ

Общие сведения

 

В лабораторной практике и производственных условиях измеряют следующие параметры: уровень, давление и расход жидкости.

Измерение уровня.Простейшим прибором является стеклянная трубка, соединенная с нижним концом с открытым резервуаром, в котором определяется уровень. В трубке и резервуаре, как в сообщающихся сосудах, положение уровня жидкости будет одинаковым.

Широкое применение получили поплавковые уровнемеры (в топливных баках, групповых автопоилках, различных технологических резервуарах). Рабочий орган прибора – поплавок - следует за измерением уровня жидкости, и соответственно меняются показания по шкале. Механическое перемещение поплавка (первичного датчика) вверх-вниз может быть преобразовано в электрический сигнал посредством реостата или катушки индуктивности и зафиксировано вторичным прибором. В этом случае возможна дистанционная передача показаний.

Из приборов, основанных на косвенных методах определения искомой величины, наибольший интерес представляет емкостный уровнемер. В нем в качестве датчика используется металлический электрод, покрытый тонким слоем изоляции из пластмассы. Система электрод-жидкость-резервуар при подключении тока образует конденсатор, емкость которого зависит от уровня жидкости. К недостаткам емкостных датчиков относят значительную зависимость показаний от состояния изоляции электрода.

Измерение давления. По назначению различат приборы для измерения атмосферного давления (барометры), избыточного давления (манометры – при ризб>0 и вакуумметры - при ризб<0), разности давлений в двух точках (дифференциальные манометры).

По принципу действия различают приборы жидкостные и пружинные.

В жидкостных приборах измеряемое давление уравновешивается столбом жидкости, высота которого служит мерой давления. Отличается простотой конструкции пьезометр, представляющий собой вертикальную стеклянную трубку, соединенную нижним концом с местом

измерения давления (рис.1.1а).

 

 

а) б)

 

Рисунок 1.1 Жидкостные приборы:

а) пьезометр;

б) U – образная трубка

 

Величина давления в точке подключения определяется по высоте h подъема жидкости в пьезометре: р=rgh, где r - плотность жидкости.

Пьезометры удобны для измерения небольших избыточных давлений – порядка 0,1-0,2 ат. Функционально шире возможности у двухтрубных U – образных приборов (рис.1.1б), которые используются в качестве манометров, вакуумметров и дифференциальных манометров. Стеклянную трубку прибора можно заполнить более тяжелой жидкостью (например, ртутью). Жидкостные приборы имеют относительно высокую точность, применяются для технических измерений, а также градуировки и проверки других типов приборов.

В пружинных приборах измеряемое давление воспринимает упругий элемент (трубчатая пружина, мембрана, сильфон), деформация которого служит мерой давления. Широко распространены приборы с трубчатыми пружинами. В таком приборе нижний открытый конец трубки овального сечения (рис.1.2а) жестко закреплен в корпусе, а верхний (закрытый) конец свободен в пространстве.

Под действием давления среды трубка стремится разогнуться (если р>рат) или, наоборот, еще более согнуться (если р<рат). В показывающих приборах упругий элемент, перемещаясь, воздействует через передаточный механизм на стрелку и по шкале ведется отсчет измеряемого давления. В приборах с дистанционной передачей показаний механическое перемещение упругого элемента преобразуется в электрический (или пневматический) сигнал, который регистрируется вторичным прибором.

 

а) б)

 

 

 

в)

 

Рисунок 1.2 Пружинные приборы:

а) с трубчатой пружиной;

б) сильфонный; в) мембранный

;

По классу точности приборы с трубчатыми одновитковыми пружинами делят на:

- технические (для рядовых измерений – класс точности 1,5; 2,5; 4,0);

- образцовые (для точных измерений – класс точности 0,16; 0,25; 0,4; 0,6; 1,0);

- контрольные (для проверки технических приоров – класс точности 0,5 и 1,0).

Класс точности указывается на циферблате прибора; он характеризует предельную ошибку прибора в % от максимального значения шкалы при нормальных условиях (t=20°C, р=760 мм.рт.ст.).

Измерение расхода.Наиболее простой и точный метод определения расхода жидкости – объемный с использованием мерного сосуда. Измерение сводится к регистрации времени Т наполнения сосуда с известным объемом W. Тогда расход Q=W/Т. В производственных условиях в качестве измерителей количества жидкости W применяют различные объемные и скоростные счетчики (крыльчатые и турбинные). Метод позволяет определить осредненные во времени значения Q.

 

а) б) в)

Рисунок 2.5 Счетчики жидкости:

а − объемный с овальными шестернями; б − ротационный;

в − скоростной с крыльчатой вертушкой

 

Для измерений мгновенных расходов в напорных трубопроводах применяют различные типы расходомеров (рис.1.4). Удобны для

измерений расходомеры с сужающими устройствами. Принцип действия прибора основан на создании в потоке с помощью сужающего устройства (например, диафрагмы) перепада статических напоров и его измерения дифференциальным манометром (рис.1.4б). Расход жидкости определяется по тарировочному графику Q = f(h) или по формуле:

Q = mАÖ2gh, (2.2)

где m – коэффициент расхода сужающего устройства;

h – показание дифференциального манометра;

А – постоянная расходомера;

 

где D – диаметр трубопровода;

d – диаметр отверстия сужающего устройства.

 

 

а) б)

 

 

в)

 

 

Рисунок 1.4 Расходомеры жидкости:

 

а) постоянного перепада давления (ротаметр);

б) переменного перепада давления

(с сужающим устройством – диафрагмой);

в) индукционный

 

Цель работы

 

Ознакомиться с устройством, принципом действия и эксплуатацией приборов для измерения уровня, давления и расхода жидкости; усвоить методику тарирования расходомеров.

 

Прядок выполнения работы

1.3.1 Используя учебную литературу, методические указания, плакаты и натурные образцы приборов, ознакомиться с методами измерения уровня, давления и… 1.3.2 На опытной установке выполнить измерение давления величиной р=0,4… 1.3.3 На опытной установке выполнить определение расхода воды с помощью мерного бака. Контроль времени изменения…

Лабораторная работа №2

Экспериментальное изучение уравнения

Бернулли

 

Общие сведения

 

Для установившегося плавно изменяющегося движения реальной жидкости уравнение Бернулли имеет вид:

z1+, (2.1)

где z1, z2 – высоты положения центров тяжести сечений 1и 2;

р1, р2 – давления в сечениях;

u1, u2 - средние скорости потока в сечениях;

a1,a2 - коэффициенты кинетической энергии.

С энергетической точки зрения:

z – удельная потенциальная энергия положения (геометрический напор);

- удельная потенциальная энергия давления (пьезометрический напор);

- удельная кинетическая энергия (скоростной напор).

Сумма z ++ = H выражает полную удельную энергию жидкости (полный напор).

Из уравнения (2.1) следует, что при движении реальной жидкости полный напор уменьшается вниз по течению (Н21). Величина h1-2 = Н1 - Н2 характеризует потери напора на преодоление гидравлических сопротивлений.

Уменьшение полного напора определенным образом отражается и на его составляющих – пьезометрическом и скоростном напорах. Характер изменения напоров в конкретной гидравлической системе представляет практический интерес и наглядно может быть изучен опытным путем.

 

Цель работы

Экспериментально подтвердить справедливость уравнения

Бернулли: установить характер изменения полного, пьезометрического и скоростного напоров при движении жидкости в исследуемом трубопроводе.

 

Методика опыта

 

Лабораторная работа может выполняться на специализированной установке и универсальном стенде.

В первом случае в контрольных сечениях экспериментального участка при установившемся движении жидкости измеряются пьезометрические и полные напоры, во втором – только пьезометрические, с последующим вычислением полных напоров.

По опытным данным строится график напоров и проводится анализ изменения вдоль потока составляющих уравнения Бернулли.

Описание опытной установки

Принципиальная схема специализированной установки для изучения уравнения Бернулли приведена на рисунок 2.1. Она включает напорный резервуар,… мерный бак. Экспериментальный участок - переменного сечения (плавное… Универсальный стенд (рисунок 2.2) имеет такую же конструктивную схему. Его отличительная особенность – наклонно…

Порядок проведения работы

а) напорный бак заполняют водой до постоянного уровня; б) кратковременным открытием вентиля экспериментального трубопровода установку… в) в трубопроводе устанавливают расход жидкости, обеспечивающий наглядность наблюдений, и для заданного режима…

Обработка опытных данных

При работе на специализированной установке по данным измерений вычисляют: - средний за время опыта расход воды Q = W/T, (2.2)

Анализ результатов. Выводы по работе

Приводится анализ графика напоров. Дается заключение о характере изменения вдоль потока полного, пьезометрического и скоростного напоров с соответствующими пояснениями.


КонтРольные вопросы

 

1. В чем заключается физический смысл уравнения Бернулли?

2. Поясните понятия геометрического, пьезометрического и полного напоров?

3. Как можно рассчитать и опытным путем найти пьезометрический, скоростной и полный напоры?

4. Что показывают напорная и пьезометрическая линии?

5. Чем обусловлен характер изменения вдоль потока полного, пьезометрического и скоростного напоров?

6. За счет какой энергии движущейся жидкости преодолеваются гидравлические сопротивления?

Лабораторная работа №3

Изучение режимов движения жидкостей

Общие сведения

 

При движении жидкости в трубопроводе (канале) возможны два режима течения: ламинарный и турбулентный.

Ламинарный режим характеризуется слоистым, упорядоченным движением, при котором отдельные слои жидкости перемещаются относительно друг друга, не смешиваясь между собой. Струйка краски, введенная в ламинарный поток воды, не размывается окружающей средой и имеет вид натянутой нити.

Для турбулентного режима характерно неупорядоченное, хаотическое движение, когда частицы жидкости перемещаются по сложным, все время изменяющимся траекториям. Наличие в турбулентном потоке поперечных составляющих скорости обуславливает интенсивное перемешивание жидкости. Окрашенная струйка в этом случае самостоятельно существовать не может и распадается в виде завихрений по всему сечению трубы.

Опытами установлено, что режим движения зависит от средней скорости u, диаметра трубы d, плотности жидкости r и ее абсолютной вязкости m. Для характеристики режима принято использовать совокупность этих величин, составленных определенным образом в безразмерный комплекс – число Рейнольдса

Re = , (3.1)

где n = m/r - кинематический коэффициент вязкости.

Число Рейнольдса, соответствующее переходу ламинарного течения к турбулентному, называется критическим и обозначается Reкр. Следует подчеркнуть, что в силу неустойчивости течения жидкости на границе ламинарного и турбулентного режимов величина Reкр не является строго определенной. Для цилиндрических труб при движении воды с учетом условий входа потока, шероховатости стенок, наличия первоначальных возмущений Reкр=580-2000. В расчетах обычно принимают Reкр»2300.

При Re<Reкр режим движения ламинарный, а при Re> Reкр – турбулентный.

В большинстве технических приложений, связанных с движением маловязких сред (вода, воздух, газ, пар), реализуется турбулентный режим – системы водоснабжения, вентиляции, газоснабжения, теплоснабжения. Ламинарный режим имеет место в пленочных теплообменниках (при стекании конденсатной пленки под воздействием силы тяжести), при фильтрации воды в порах грунта, при движении вязких жидкостей по трубопроводам.

 

Цель работы

 

Визуальными наблюдениями установить характер движения жидкости при различных режимах; усвоить методику расчетного определения режима давления; для опытной установки определить критическое число Рейнольдса.

 

Описание опытной установки

 

Лабораторная установка (рисунок 3.1) включает напорный резервуар, трубопровод (с прозрачным участком – для визуального наблюдения), сосуд с красителем, мерный бак.

Сосуд с красителем закреплен с помощью штатива на стенке напорного резервуара и снабжен трубкой для подачи красителя в движущийся в трубопроводе поток воды. Расход задается регулирующим вентилем и определяется с помощью мерного бака.

 

Порядок выполнения работы

а) напорный резервуар заполняют водой (до уровня сливной трубы, а сосуд – красителем); б) открытием регулирующего вентиля в трубопроводе устанавливают расход, при… Наблюдения за характером движения жидкости осуществляют, вводя в поток краситель.

Обработка опытных данных

  - по температуре воды t (в °С) определяют кинематический коэффициент вязкости… n = ; (3.2)

Анализ результатов. Выводы по работе

Приводится анализ визуальных наблюдений за характером движения жидкости при различных режимах. Отмечается значение критического числа Рейнольдса для опытной установки и результаты расчетного определения режима.

 

Контрольные вопросы

 

1. Какие режимы течения жидкости вы знаете?

2. Поясните методику опытного определения режима течения.

3. В чем принципиальное отличие турбулентного режима от ламинарного?

4. Как находится режим течения расчетным путем?

5. Дайте определение критического числа Рейнольдса.

6. Приведите примеры технических систем (устройств), в которых имеет место: а) ламинарный режим; б) турбулентный режим.

Лабораторная работа №4

Определение коэффициента гидравличсекого

Трения

 

Общие сведения

 

Равномерно движущийся в трубе (канале) поток жидкости теряет часть энергии вследствие трения о поверхность трубы, а также внутреннего трения в самой жидкости. Эти потери носят название потерь напора по длине потока или потерь напора на трение.

В соответствии с уравнением Бернулли потери напора по длине горизонтальной трубы постоянного диаметра

hдл = , (4.1)

где – пьезометрические напоры в рассматриваемых сечениях.

Опыты показывают, что потери напора по длине пропорциональны безразмерному коэффициенту l, зависят от длины l и диаметра d трубопровода, средней скорости движения u. Указанная зависимость устанавливается известной формулой Дарси-Вейсбаха

hдл = . (4.2)

Коэффициент l, характеризующий сопротивление трения, в общем случае зависит от числа Рейнольдса Re и относительной шероховатости стенок трубы D/d (здесь D - абсолютный размер выступов шероховатости). Однако влияние этих величин на коэффициент l при ламинарном и турбулентном режимах различно.

При ламинарном режиме шероховатость не оказывает влияния на сопротивление трения. В этом случае l = f(Re) и расчет выполняют по формуле

l = 64/Re. (4.3)

При турбулентном режиме влияние Re и D/d обусловлено значением числа Рейнольдса. При сравнительно малых Re, также как и при ламинарном режиме, коэффициент l является функцией только числа Рейнольдса Re (область гидравлически гладких труб). Для расчета здесь применимы формулы Г. Блазиуса при Re£105:

l = 0,316/Re0.25, (4.4)

и формула г.К. Конакова при Re£ 3×106:

l = . (4.5)

В диапазоне умеренных чисел Рейнольдса l = f(Re,) и хорошее совпадение с опытом дает формула А.Д. Альтшуля:

l = 0,11 (4.6)

При достаточно больших значениях Re (развитый турбулентный поток) влияние вязкого трения несущественно и коэффициент l = f(D/d) – так называемая область вполне шероховатых труб. В этом случае расчет можно выполнить по формуле Б.Л. Шифринсона:

l = 0,11. (4.7)

Приведенные выше и другие известные эмпирические формулы для определения коэффициента гидравлического трения получены путем обработки экспериментальных графиков. Сравнивая результаты вычисления l по этим формулам с опытными значениями, можно оценить достоверность проводимых опытов.

 

 

 
 

 

 


Цель работы

 

Усвоить методику опытного определения коэффициента гидравлического трения; для условий проведения опыта установить зависимость коэффициента гидравлического трения от режима течения жидкости и сравнить полученные результаты с расчетами по эмпирическим формулам.

Методика опыта

Коэффициент гидравлического трения определяется косвенным методом с использованием формулы Дарси-Вейсбаха (4.2). При этом непосредственно из опыта находят потери напора hдл – по разности пьезометрических напоров в начале и конце исследуемого участка трубопровода, и скорость движения u по расходу жидкости Q.

Зависимость l = f(Re) устанавливается путем проведения опытов при различных режимах движения жидкости и построения соответствующего графика.

Описание опытной установки

 

Лабораторная установка (рисунок 4.1) включает напорный резервуар, экспериментальный трубопровод и мерный бак.

Экспериментальный трубопровод – горизонтальный, постоянного сечения (l = 1,2 м, d = 25 мм). На участке определения потерь напора имеются два ниппеля статического давления, которые с помощью резиновых шлангов соединены с пьезометрами. За измерительным участком смонтирован вентиль для регулирования расхода воды.

 

Порядок проведения работы

а) напорный резервуар заполняют водой до постоянного уровня; б) кратковременным открытием вентиля установку приводят в действие для… в) в трубопроводе устанавливают различные расходы жидкости в диапазоне от минимального до максимального (всего 5-6…

Обработка опытных данных

4.6.1 По данным измерений вычисляют:   - расход Q, среднюю скорость u, кинематический коэффициент вязкости n, число Рейнольдса Re (см. лабораторную работу…

Анализ результатов. Вывод по работе

  контрольные вопросы  

Лабораторная работа №5

Определение коэффициента местного

Сопротивления

Общие сведения

 

В реальных гидравлических системах движущаяся жидкость теряет механическую энергию на прямолинейных участках труб, а также в арматуре и фасонных частях, других местных сопротивлениях. Потери энергии на преодоление местных сопротивлений (так называемые местные потери напора) обусловлены частично трением, но в большей степени деформацией потока, отрывом его от стенок, возникновением интенсивных вихревых течений.

Местные потери напора определяют расчетом по формуле Вейсбаха:

hм = zм(u2/2g), (5.1)

где zм - коэффициент местного сопротивления; показывающий какая часть скоростного напора расходуется на преодоление сопротивления.

Величина zм в общем случае зависит от вида местного сопротивления и режима течения. Опытные значения коэффициента для квадратичной области турбулентного режима приводятся в справочных таблицах.

 

Цель работы

 

Усвоить методику опытного определения коэффициента местного сопротивления; определить опытным путем коэффициент zм для исследуемого местного сопротивления, установить зависимость его от числа Рейнольдса и сравнить полученные данные с табличными.

Методика опыта

Коэффициент местного сопротивления определяется косвенным методом с использованием зависимости (5.1). При этом местные потери напора hм находят из…    

Описание опытной установки

 

Установка для опытного определения коэффициента местного сопротивления (рисунок 5.1) включает напорный резервуар, трубопровод с исследуемым местным сопротивлением и мерный бак. На трубопроводе перед местным сопротивлением и за ним установлены ниппели статического давления, которые с помощью резиновых шлангов соединены с пьезометрами. Для регулирования расхода воды имеется вентиль.

 

Порядок проведения работы

а) напорный резервуар заполняют водой до постоянного уровня; б) проверяют отсутствие воздуха в пьезометрах (уровни воды в них при закрытом… в) в трубопроводе устанавливают различные расходы воды в диапазоне от минимального до максимального (всего 5-6…

Обработка опытных данных

По данным измерений вычисляют:   - средний за время опыта расход Q = W/Т и среднюю скорость потока u = Q/w (где w - площадь поперечного сечения…

Анализ результатов

  контрольные вопросы  

– Конец работы –

Используемые теги: Лабораторные, работы, гидравлике0.056

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Лабораторные работы по гидравлике

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Задания для выполнения контрольной работы и лабораторной работы для самостоятельной работы студентов Менеджмент и маркетинг
На сайте allrefs.net читайте: "Задания для выполнения контрольной работы и лабораторной работы для самостоятельной работы студентов Менеджмент и маркетинг"

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕХНОЛОГИИ СОЦИАЛЬНОЙ РАБОТЫ. ОБЩИЕ ТЕХНОЛОГИИ СОЦИАЛЬНОЙ РАБОТЫ. МЕЖДИСЦИПЛИНАРНЫЕ ТЕХНОЛОГИИ И МЕТОДИКИ СОЦИАЛЬНОЙ РАБОТЫ
Учебник подготовлен коллективом авторов... гл канд искусствовед наук проф Т В Шеляг гл д р... наук проф П Д Павленок...

Контрольная работа МЕТОДИЧЕСКИЕ УКАЗАНИЯ Для самостоятельной работы и к выполнению контрольной работы для студентов заочного обучения всех специальностей
Информатика... Контрольная работа... Для направлений бакалавриата Землеустройство и кадастры...

Понятие воспитательной работы. Роль и место воспитательной работы в системе работы с кадрами
Это, в свою очередь, требует повышения уровня воспитательной работы с личным составом, выделения приоритетов в системе воспитания личного состава,… Вместе с тем в современных условиях принимаемые меры воспитательного… Коллегия МВД России на заседании 23 декабря 1998 г рассмотрев состояние работы с кадрами в системе кадровой политики…

Лабораторная работа Работа с макросами в СУБД MsAccess
На сайте allrefs.net читайте: "Лабораторная работа Работа с макросами в СУБД MsAccess"

Организационный этап выполнения курсовой работы 2.1 Примерная тематика курсовой работы . 3 Основной этап выполнения курсовой работы 3.1.1 Назначение и место ученого предмета дисциплины
стр Введение... Введение Реформирование национальной системы высшего образования связанное с введением нового перечня специальностей общегосударственного классификатора...

Лабораторная работа № 2 Основы работы в Windows NT
Лабораторная работа Основы работы в Windows NT... Цель работы изучение основных понятий Windows и приобретение навыков работы c интерфейсом Windows...

требования к оформлению текстовой части курсовых работ, рефератов, контрольных работ, отчетов по практикам, лабораторным работам
На сайте allrefs.net читайте: "требования к оформлению текстовой части курсовых работ, рефератов, контрольных работ, отчетов по практикам, лабораторным работам"

Условия производства работ. Общие вопросы проектирования, технологии строительство земляного полотна. Климатические условия района производства работ
I Условия производства работ... II Общие вопросы проектирования технологии строительство земляного... II Климатические условия района производства работ...

Сборник лабораторных работ по механике
При этом необходимо всегда иметь в виду, что при механическом движении всегда действуют силы трения и сопротивления.Поэтому потери механической… Но, учитывая работу сил трения, в любом случае можно приме-нить общий закон… Требуется проверить, что механическая энергия системы одинакова (остает-ся постоянной) в любом положении (в любой…

0.036
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам