рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ

КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ - раздел Психология,   И.з.цехмистро, В.и.штанько И Др. Концепция Ц...

 


И.З.Цехмистро, В.И.Штанько и др.
КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ

Харьков: Изд-во Харьковского гос. ун-та, 1987

 

Введение

Глава 1
ГЕНЕЗИС КОНЦЕПЦИИ ЦЕЛОСТНОСТИ
В СОВРЕМЕННОЙ НАУКЕ

1. Понятие действия, его история и методологическое значение

A. Понятие действия в классической механике

B. Появление идеи кванта действия

2. Квант действия и принцип стационарности действия

3. Критика идеалистических спекуляций на принципе стационарности действия

Глава 2
КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ
КАК ОСНОВА ПРЕОДОЛЕНИЯ СУБЪЕКТИВИЗМА
В ИНТЕРПРЕТАЦИИ КВАНТОВОЙ МЕХАНИКИ

1. Экспликация концепции целостности на основе идеи относительности понятия множества в описании физической реальности

A. Релятивизация понятий как источник развития познания

B. Что может означать отказ от универсальности и абсолютности понятия множества в описании природы?

C. Постоянная Планка и соотношение неопределенностей Гейзенберга как конкретные формы физически содержательного отказа от абсолютности понятия множества в описании природы

2. Редукция волновой функции

3. Несиловая корреляция в поведении квантовых систем

Глава 3
КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ И ЭКСПЕРИМЕНТ:
ПРИЧИННОСТЬ И ЛОКАЛЬНОСТЬ В КВАНТОВОЙ ФИЗИКЕ,
ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ТЕОРЕМЫ БЕЛЛА

1. Природа статистичности в квантовой механике

2. Возможна ли теория скрытых параметров?

3. Парадокс Эйнштейна-Подольского-Розена и нелокальность

4. Теорема Белла и возможность выбора между теорией скрытых параметров и квантовой механикой на основании эксперимента

5. Экспериментальная проверка теоремы Белла

Глава 6
КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ
В ПРОБЛЕМЕ МЫШЛЕНИЯ И СОЗНАНИЯ

1. Критика метафизического истолкования теоретико-информационного подхода в исследовании мышления

A. Сущность теоретико-информационного подхода

B. Является ли мышление частным случаем информационного процесса?

C. Неадекватность исходной методологической установки теоретико-информационного процесса феномену целостности мышления

D. О методологической роли концепции целостности в исследовании мышления

2. Концепция целостности и типы детерминизма и управления в системах

3. Психофизическая проблема в свете концепции целостности

A. Сознание как реальный, но несводимый к физико-химическим событиям процесс в мозгу

B. ЭПР-корреляции в синаптических переходах в мозгу как возможная основа порождения сознания

4. О необходимости привлечения идеи целостности к методологическому анализу экспериментального исследования грани между сознанием человека и психикой животных

Глава 7
КРИТИКА ИДЕИ СИНТЕЗА НАУКИ И РЕЛИГИИ

1. Религиозно-мистическое истолкование идеи целостности

Список литературы

 

 

Иван Захарович Цехмистро, Валентина Игоревна Штанько и др.
КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ

Изд-во Харьковского гос. ун-та. Харьков, 1987 — 223 с. Тираж 1000 экз.
© Издательское объединение «Вища школа», 1987.

ВВЕДЕHИЕ
(И.З.Цехмистро, В.И.Штанько, с сокр.)

 

/.../...Основу книги составляет диалектико-материалистическая концепция целостности, суть которой состоит в осмыслении факта неуниверсальности и относительности предельно общего и абстрактного понятия множества (многого) в описании физической реальности, структур психики и сознания.

У истоков европейской философской мысли была в определенной мере осознана негативная составляющая отношения единого и многого. Парменид, видимо, первым со всей логической строгостью определил единое как не — многое, как полное отрицание многого. Однако отношение противоположностей не исчерпывается их взаимным отрицанием, но предполагает их единство, превращение друг в друга [2, т. 29, с. 98, 203]. Этого не увидели элеаты, но именно в направлении преодоления разрыва единого и многого пошло развитие философской мысли, что породило целую систему категорий [128]. Раздувание метафизиками некоторых черт этого необходимого процесса в конце концов привело к неправомерному подчинению единого многому, что вылилось в абсолютизацию множественной картины реальности, чисто аналитическое видение и описание ее. Гениально угаданная элеатами несводимость противоположностей (единое — многое) оказалась, таким образом, утраченной. Идея целостности как неделимости и неразложимости на какое-либо множество состояний, как противоположность и отрицание самого состояния множественности совершенно чужда классическому естествознанию. В значительной мере она чужда и современной науке, базирующейся на принципах классической парадигмы. Нет ничего удивительного, что такая односторонность послужила источником различных объективно-идеалистических, субъективистских и даже откровенно религиозных, мистических спекуляций в западной литературе. Поэтому в основном книга посвящена развитию диалектико-материалистической концепции целостности и на этой основе — критике субъективистской интерпретации квантовой механики, идеалистических спекуляций на принципе стационарности действия, разнообразных метафизических и идеалистических версий теоретико-информационного подхода в исследовании сознания и мышления. В дополнение к собственно критической линии доказывается конструктивность идеи материалистического понимания целостности в решении ряда конкретных проблем, например, в поисках единой теории макроквантовых эффектов, истолковании обменного взаимодействия и т. п. 4 /.../

Бурное развитие методологической проблематики современной науки отнюдь не ведет к идейному и методологическому плюрализму. Наоборот, принцип материалистического монизма и учение о материальном единстве мира находят в квантовой физике свое законченное и наиболее полное выражение в понимании мира как физически неделимого и неразложимого на какие-либо множества целого. Вырастающая на этой почве идея относительности и неуниверсальности абстрактного понятия множества в познании закономерно ведет к диалектико-материалистической концепции целостности, охватывающей с единых позиций наиболее важные методологические проблемы современной науки, далеко не исчерпанные в предлагаемой работе.

Авторы монографии считают нужным подчеркнуть, что данная книга может служить лишь началом исследования названной проблемы.

* * *

Авторы глав и параграфов: И.З.Цехмистро (руководитель) — введение (совместно с В.И.Штанько), §2 гл. 1, гл. 2, §4 гл. 5 (совместно с А.В.Тягло), §3 гл. 6, заключение (совместно с В.И.Штанько), В.И.Штанько (руководитель) — §3 гл. 5 (совместно с А.В.Тягло), §1 гл. 6; В.С.Забелина — л. 4; Л.Э.Паргаманик — л. 3; В.Л.Пасисниченко — §2 гл. 7; В.С.Поликарпов — §1 гл. 7; Н.Т.Синицын — §2 гл. 6; С.А.Таглин — §4 гл. 6; А.В.Тягло — §1, 2 гл. 5; Л.Н.Цехмистро — §1, 3 гл. 1.

Примечание сканера: 4-я, 5-я и часть 7-й главы опущена.

 

 

ГЛАВА 1

ГЕНЕЗИС КОНЦЕПЦИИ ЦЕЛОСТНОСТИ
В СОВРЕМЕННОЙ НАУКЕ

 

Обычно с помощью понятия целостности характеризуют отношения элементов некоторой совокупности (или элементов,входящих в структуру отдельного объекта), а также те связи, которые объединяют эти элементы и приводят к появлению 5у совокупности новых (интегративных) свойств и закономерностей, не присущих элементам в их разобщенности [141, с. 763, 768]. Таким образом, целостность всегда реализуется на некоторой множественной основе за счет того или иного физически-причинного связывания элементов множества в целостную совокупность. Назовем понимаемое так целое несобственной целостностью. Понятие целостности может иметь и совсем другой, еще совершенно не изученный смысл, когда целостности присущ изначальный характер (она первична) и в целом нет ни частей, ни элементов, а значит, нет необходимости в представлении о каком-либо связывании их для получения целого. Такая целостность характеризуется уникальным свойством неделимости и неразложимости на множества каких-либо элементов, и мы определим ее как собственно, или подлинно, целое. Именно это целое в настоящей книге составляет центральную идею предлагаемой концепции целостности.

В рамках данной концепции целостности понятия «элемент», «множество», «совокупность» теряют изначальность, выделенность и абсолютность и, наоборот, обнаруживают свою относительность, состоящую в том, что выражаемый перечисленными понятиями чисто множественный аспект реальности всегда должен быть дополнен прямо противоположным и дополнительным аспектом — целостностью как свойством неделимости и неразложимости реальности на множества элементов.

Отвергаемая здесь множественная концепция целостности, а вместе с нею и чисто множественная парадигма классического естествознания были связаны с абсолютизацией таких физических понятий, как «пространство», «время», «причинность», «масса», «энергия» и т. п. По поводу истории и методологической роли каждого из этих понятий написаны десятки книг и сотни статей. Новая же концепция целостности, зародившаяся в основаниях квантовой физики, опирается на фундаментальную роль в современной науке совершенно другого, не столь наглядного, но более общего и более абстрактного понятия — понятия действия. Поэтому исследование новой концепции целостности в методологии науки целесообразно начать с краткого изучения истории и методологической роли понятия действия в физике.

Выдвинутая квантовой физикой идея конечной физической неделимости и неразложимости мира на множества различных элементов обычно понимается как некая вещественно-субстратная неделимость, якобы проявляющаяся в каком-то из пространств физического опыта. В действительности не существует принципиальных пределов уменьшения пространственных или временных величин, масс, энергии и т. п., хотя достижение все меньших их значений сопряжено с известными трудностями, вытекающими из 6 соответствующих выбранному способу описания соотношений неопределенностей.

В представлении квантовой физики о мире как о неделимом целом речь идет не о непосредственно-чувственной стороне реальности, а о свойстве, косвенно проглядываемом в чувственной стороне реальности. Непосредственной основой идеи неделимости является не неделимость элементов эмпирически верифицируемых пространств (геометрическое пространство, время, пространства масс, энергии, импульсов и т. п.), а конечная неделимость элементарной ячейки существенно более общего и абстрактного фазового пространства величины действия, имеющего конфигурационную и по существу бесконечномерную природу.

Существование в пространстве действий далее неделимой и конечной ячейки, вводимой постулатом Планка, ограничивает применимость эмпирически верифицируемых образов отдельного элемента и множества элементов в описании состояний физической реальности безотносительно к их конкретной физической природе. Это означает, что для адекватного отражения свойств квантовой целостности и неделимости мира нужно отказаться от образов отдельного элемента и их множеств и перейти к прямо противоположному и дополнительному представлению — представлению о конечной неразложимости мира на множества каких-либо элементов вообще. Поскольку в генезисе и обосновании идеи целостности понятие действия играет исключительно важную роль, представляется целесообразным начать исследование с истории и методологической роли данного понятия в физике.

1. ПОНЯТИЕ ДЕЙСТВИЯ, ЕГО ИСТОРИЯ
И МЕТОДОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ

(Л.Н.Цехмистро)

В огромном потоке литературы, вызванном к жизни стремлением подвергнуть анализу стержневые понятия физической науки («масса», «энергия», «пространство», «время», «причинность»), особо важное из этих понятий (быть может, самое важное из них) — понятие действия — до сих пор остается не исследованным. В то же время понятие действия единственное, которое, в отличие от всех других понятий классической механики, и сегодня обозначает инвариантную физическую величину, сохранившую свою инвариантность в релятивистской физике. Потому оно как бы возвышается над остальными, утратившими абсолютность и неизменность понятиями классической механики — пространством, временем, массой и даже энергией. Энергия не является неизменной по отношению к преобразованиям Лоренца; так же, как и раньше она не была неизменной по отношению к преобразованиям Галилея. Принцип сохранения энергии дополняется принципом сохранения количества движения, «но над обоими принципами 7 возвышается, объединяя их, принцип наименьшего действия, который, таким образом, господствует над всеми обратимыми явлениями физики» [101, с. 95].

Одновременно понятие действия стоит у истоков другой важнейшей физической теории — квантовой механики. Уже то обстоятельство, что допущение минимального кванта действия привело к появлению квантовой теории, может служить основанием для постановки вопроса о тщательном анализе истории и значения понятия действия в физике. Сегодня, по словам Л. Б. Окуня, понятие действия занимает центральное положение в физике [97, с. 11].

A. Понятие действия в классической механике

Понятие действия — гораздо более сложное и трудное для понимания, чем любое из остальных понятий механики. Хотя его название кажется в высшей степени антропоморфным, его физическое содержание значительно менее антропоморфно, чем у таких понятий, как «сила», «энергия», «работа», «масса», и лишено непосредственной наглядности.

История возникновения понятия действия столь же своеобразна, как и его последующая судьба в физике, нынешнее положение и значение. Впервые оно было сформулировано Г. Лейбницем в 1669 г. в не опубликованном при жизни и оставшемся незавершенным большом произведении [212].

Лейбниц называет действие «actio formalis» и определяет его как величину, мерой которой служит «определенное количество» материи, передвинувшееся на определенное расстояние (при поступательном равномерном движении) в течение определенного времени ...Формальные действия движений пропорциональны... произведению количества материи, расстояний, на которые они передвигаются, и скоростей». Тут же он дает и второе определение действия через произведение «движущихся тел, пройденных промежутков времени и квадратов скоростей» [212, т. 3, с. 22]. Оба определения являются строго эквивалентными и могут быть выражены как mvs или mv2t, что вполне совпадает с современным пониманием величины действия. Обращает на себя внимание определение «formalis», которое Лейбниц прилагает к понятию действия. По-видимому, с помощью данного термина Лейбниц хотел подчеркнуть всеобщность вводимого им понятия и его важность не только для механики, но и для философии. Об этом свидетельствует, в частности, обстоятельность изложения Лейбницем понятия действия. «В ходе рассуждений Лейбница хорошо видно, что для него дело заключается в том, чтобы обязательно доказать правильность определения величины действия...» [105, с, 21]. 8 И хотя непосредственная цель, ради которой ему потребовалось ввести понятие действия, остается до сих пор не выясненной ввиду незавершенности указанной работы, можно предположить, что Лейбниц хотел использовать свои исследования по механике, связанные с понятием действия, для обоснования выдвинутого им миропонимания. В основу последнего он положил своеобразный вариационный принцип: истинным миром среди всех возможных миров должен быть тот, который одновременно с неизбежным злом содержит в себе максимум добра [77, с. 253—297]. Тогда обнаруживаемое механикой устройство природы, исходя из которого во всех ее процессах достигается максимум результатов при минимуме действия, должно было бы служить своеобразным естественнонаучным подтверждением этой философской концепции.

Согласно опубликованному С. Кенигом в 1751 г. отрывку из утерянного письма Лейбница, он первым (его письмо датировано 1707 г.) обнаружил, что в истинных движениях физических систем действие может быть как минимальным, так и максимальным. Это в корне подрывало телеологические мотивы его замысла: «В действие входит не только время, как Вы полагаете, но оно есть произведение массы на время или времени на живую силу. Я заметил, что в изменениях движений оно остается обычно максимумом или минимумом. Отсюда можно вывести различные предложения...» [105, с. 22]. Возможно, это обстоятельство объясняет, почему работа, которую Лейбниц начал двадцатитрехлетним юношей, осталась незавершенной и почему он, вплотную подошедший к формулировке принципа наименьшего действия, вынужден был остановиться перед открытым им минимаксом, несовместимым ни с теологией, ни с телеологией. В свете этого открытия «наилучший из миров» Лейбница с равной степенью вероятности мог оказаться и наихудшим, в котором содержался бы лишь минимум добра при максимуме зла.

Только в связи с конкретной необходимостью в понятии действия, связанной с открытием принципа наименьшего действия, оно было принято другими учеными и обрело гражданские права в механике. Сам принцип наименьшего действия никогда не был сформулирован Лейбницем. Тем не менее Мопертюи, автору принципа наименьшего действия, в середине XVIII в. пришлось отстаивать свой приоритет в борьбе со сторонниками Лейбница.

Несмотря на фундаментальность, которую Мопертюи постарался сразу же придать открытию, и шумную дискуссию, длившуюся несколько лет вокруг принципа наименьшего действия, многие ученые не имели четких представлений о содержании понятия действия, не говоря уже о принципе наименьшего действия и его математической формулировке. Даже великий Эйлер, который первым нашел математически ясную форму принципа наименьшего 9 действия, в письме к Мопертюи признался, что не видит «достаточно ясно, каким образом рассмотрение пройденного за данное время расстояния должно войти в определение количества действия», склоняясь, видимо, к трактовке действия лишь как произведения тv2 (массы на квадрат скорости) [36, с. 747].

Мопертюи трактует понятие действия весьма широко: в смысле «деятельности», которая проявляется всюду, где имеют место какие-либо движение и изменение в природе. Вслед за Декартом Мопертюи основной величиной механики считал количество движения mv, поэтому мерой действия у него является произведение количества движения на пространственное перемещение (mvs), что совпадает с пониманием, предложенным Лейбницем, но оспаривалось П. Д'Арси, который обращал внимание на антропоморфность наименования действия и на произвольность его математического выражения. Конечно, определение действия как произведения количества движения на перемещение или произведение энергии на время обладает оттенком произвольности, почти неизбежным в рамках классической механики, поскольку его инвариантный и, следовательно, необходимый смысл был установлен лишь в новой физике XX в. О данной трудности свидетельствует также то, что и Лагранж, по-видимому, рассматривал действие как величину, порождаемую лишь «произвольным наименованием» [73, с. 318]. Это отвечало занятой им методологической позиции в вопросе о принципе наименьшего действия, ориентированной исключительно на разработку математической формы принципа.

Однако то, что Д'Арси предлагал взамен критикуемого им определения действия, не могло быть признано удовлетворительным ни тогда, ни теперь. Исходя из смутных метафизических представлений, он понимал под действием некую способность системы производить явления, мера которой к тому же зависит от взаимной ориентации сил: «способность двух противоположных сил производить действие есть разность этих сил; если же эти силы действуют в одном и том же направлении — это их сумма» [105, с. 34].

О трудностях становления понятия действия в механике и не всегда ясном его понимании свидетельствуют и более поздние сочинения. В «Лексиконе чистой и прикладной Математики», составленном В. Я. Буняковским, читаем: «Действие — так называется в Механике усилие, изъявляемое силою на тело или просто на материальную точку» [34, с. 8]. Из содержания следующей статьи, посвященной принципу наименьшего действия, можно догадаться, что под «усилием» подразумевается произведение «живой силы» (т. е. кинетической энергии) на время. Приведенное в статье математическое выражение действия как произведение mvs или mv2t верно, тогда как словесное его определение («усилие», «сумма 10 элементов живых сил») отражает еще не установившийся в языке механики характер этого понятия. А такой автор, как Е. Дюринг, имя которого дало название знаменитому труду Ф. Энгельса, путает понятие действия с понятием кинетической энергии даже в работе, написанной им в 1872 г. [53, с. 200—201].

Такова вкратце чисто внешняя история становления понятия действия, своеобразие которой лучше всего оттеняет вопрос, адресованный Ж. Д'Аламбером последователям Лейбница со страниц знаменитой энциклопедии Дидро и Д'Аламбера: «Г-н Вольф в «Memoires de St-Petersburg», т. 1, вздумал умножить живую силу на время, и это произведение он назвал действием, допуская, по-видимому, что действие тела есть результат всех сил, производимых им в каждое мгновение, и, следовательно, есть сумма всех мгновенных живых сил. Можно было бы спросить у сторонников Лейбница, вождем которых как бы считался Вольф * , к чему они выдумали это метафизическое различие между действием и живой силой — различие, которое, быть может, они не должны были бы полагать между ними, по крайней мере, следуя созданному ими представлению о живой силе (курсив наш. — Л. Ц.) [36, с. 111]. Д'Аламбер также указывает на произвольность математического выражения действия, под которым, по его мнению, можно было бы понимать произведение массы на скорость, массы на квадрат скорости или на любую другую функцию пространства и времени, «но первоначальное и метафизическое понятие слова действие не будет от этого яснее» [36, с. 115].

* Христиан Вольф, как известно, был популяризатором и систематизатором философии Г. Лейбница.

Вопрос, поставленный Д'Аламбером, заставляет обратиться к выяснению рожденной развитием механики XVII—XVIII вв. внутренней необходимости, которая привела к формированию понятия действия и которая еще далеко не была осознана в то время.

Можно предположить, что исторически генезис понятия действия связан с рассмотрением задач о моментах количества движения в поведении простейших механизмов (рычага, винта), в особенности при нахождении условий равновесия для них. Момент количества движения материальной точки относительно некоторого центра равен векторному произведению радиуса-вектора r на ее количество движения mv (mvr), что дает величину, совпадающую с действием по ее размерности. Однако поскольку момент количества движения является вектором, физический смысл этих понятий различен. Возможно, что общее изменение, связанное с актом полного опускания или подъема плеча рычага, могло дать некоторые представления о произведенном действии и побудить к введению соответствующего понятия. 11

Достоверные источники введения понятия действия в механику, несомненно, связаны с разработкой вариационных принципов механики.

Вариационные принципы позволяют выделить истинное или реальное движение (или состояние) физической системы из неограниченной совокупности кинематически возможных при тех же условиях движений (или ее состояний). Это достигается благодаря тому, что вариационные принципы указывают некоторый признак истинного движения системы: для истинного движения определенная функция, зависящая от координат и их производных, дает экстремум по сравнению со всеми остальными движениями, совместимыми с заданными условиями. Так, путем варьирования координат системы и их производных можно найти такую траекторию движения системы, на которой вариация указанной функции будет равной нулю, что свидетельствует о ее экстремальном характере, который, в свою очередь, расценивается как признак истинности найденной траектории. Таким образом, в вариационных принципах речь идет об экстремальных свойствах истинных движений или состояний в природе.

Экстремальный характер поведения физических систем является весьма общим свойством природы, которое прослеживается, например, в образовании шаровидных дождевых капель, обладающих минимальной поверхностью при максимальном объеме, в движении тел и распространении луча света в однородной среде по кратчайшим линиям, т. е. прямым, и т. д. С глубокой древности известны задачи, решение которых связано с нахождением того или иного экстремума. Такую задачу, например, должна была решить, согласно Вергилию, бежавшая из Финикии Дидона, когда, добравшись до Карфагена, она обратилась к его жителям с просьбой продать ей участок земли. В ответ ей предложили взять не больше того, что она сможет огородить с помощью шкуры быка-Тогда Дидона разрезала шкуру быка на тонкие полоски и, соединив их концами, огородила с помощью образованной из них окружности значительный участок земли, решив таким образом задачу о наибольшей площади фигуры при заданном периметре * . Подобные изопериметрические задачи — нахождение тела, обладающего максимальным объемом среди всех других тел, равных ему по площади, или нахождение фигуры с максимальной площадью при равном периметре — уже решали Архимед, Герон Александрийский, Зенодор. Герону Александрийскому принадлежит первый принцип минимума в физике: когда луч света отражается зеркалом, то расстояние, взятое от предмета до глаза, будет наикратчайшим из возможных путей отражения. 12

* В тексте «Энеиды» говорится: «Разрезав ту кожу на тонкие нити, она получила огромный участок» [171, с, 23].

В XVII в. П. Ферма, следуя принципу Герона Александрийского, сформулировал принцип геометрической оптики, согласно которому действительный путь распространения света из одной точки в другую такой, для прохождения которого свету потребуется минимальное время по сравнению с любым другим геометрически возможным путем, связующим данные точки. Согласно этому принципу величиной, вариация которой должна быть равной нулю при варьировании траекторий движения света, является время. Следовательно, минимальность времени в данном случае есть признак истинного движения системы.

Принципы минимума и максимума находились в центре внимания многих математиков XVI и XVII вв. Ими были установлены многие частные принципы, позволяющие описать распространение света в однородной среде, законы отражения света и упругих тел, условия равновесия механической системы и т. п. Назревала важная задача — объединить частные принципы в один общий принцип, применимый для всех случаев движения (не только света, но и материальных тел, что имело особенно большое значение для достижения внутреннего единства механики). Для этого необходимо было найти величину, которая обладала бы экстремальным свойством во всех случаях движения в природе и единообразным способом обусловила бы решение любых конкретных задач.

Масштаб и глубина проблемы требовали перехода от представлений о минимальности пути или минимальности времени в истинных движениях природы (подтверждаемых только в наиболее простых случаях) к какой-то более общей величине, которая бы явно зависела не только от координат и их производных, но и от действующих сил и позволила бы объединить частные принципы статики и динамики, сведя всю механику к принципу минимума. Величиной, отвечающей этим требованиям, оказалось действие.

В 1744 г. Пьер Луи Моро де Мопертюи изложил знаменитый принцип наименьшего действия. Исходя из ограниченности принципов минимума времени (и расстояния) для случая преломления, если скорость распространения света обратно пропорциональна плотности сред, Мопертюи пришел к выводу, что «свет при пересечении различных сред не идет ни более коротким путем, ни путем более короткого времени... Он не следует ни по какому из них; он выбирает путь, имеющий более реальное преимущество: (тот — Л. Ц.) ... для которого количество действия будет наименьшим» [36, с. 26]. Под количеством действия Мопертюи понимает введенную Лейбницем величину mvs. Отличительной чертой принципа наименьшего действия Мопертюи считал его всеобщность в природе. Именно количество действия, говорит он, «является истинной тратой природы, и именно оно выгадывается как можно более при движении света». Столь же всеобщий характер присущ и 13 физическому содержанию действия, ибо оно есть «необходимое для того, чтобы произвести некоторое изменение в природе» [36, с. 26, 55].

Напомним, что ни значение понятия действия и истинная потребность в нем в механике, ни его выражение через произведение количества движения на перемещение или энергии на время не были очевидными в то время (как, впрочем, и много лет спустя). Поэтому при всех недостатках работы Мопертюи и совершенно несостоятельной в философском отношении попытке доказать существование бога на основании принципа наименьшего действия нужно отдать должное его гениальной догадке о значении и роли понятия действия в механике и открытого им принципа. Если теологические спекуляции Мопертюи вызвали справедливую и крайне острую критику со стороны прогрессивных мыслителей того времени, то принцип, выведенный им, открывал поистине прекрасную сторону природы. Законы движения и покоя, следующие из этого принципа, считает Мопертюи, являются точно такими же, какие наблюдаются в природе. Движение животных, произрастание растений, вращение звезд — все является только следствием принципа наименьшего действия.

Следующий этап в истории принципа наименьшего действия связан с более прозаической, но и более плодотворной в получении конкретных физических результатов деятельностью великих математиков — Эйлера, Лагранжа, Гамильтона, Якоби, Остроградского. Ими установлены математически строгие выражения принципа наименьшего действия, в которых точно указывается функция, представляющая действие системы в конкретном случае, и величины, подлежащие варьированию, а также условия варьирования.

В эпистемологическом отношении эпоха математической разработки принципа наименьшего действия ознаменовалась важным открытием, согласно которому в истинных движениях физических систем действие, чаще всего минимальное, не обязательно должно быть таким, т. е. оно может быть и максимальным. Даже если в отдельных случаях действие не принимает ни максимума, ни минимума, оно обязательно должно отличаться стационарностью. Иными словами, было найдено существенное уточнение признака 14 истинности движения системы: истинной траекторией является та, на которой вариация действия равна нулю. Данный факт непосредственно указывает на стационарный характер действия в реальных процессах, а то, что за ним скрывается (максимум или в отдельных случаях даже не максимум и не минимум), может быть установлено дополнительными исследованиями. В свете этого открытия разнообразные телеологические привески в работах Лейбница, Мопертюи, а также Эйлера оказались излишними, поскольку природа не ставит перед собой никаких целей и не стремится в своем движении ни к максимуму, ни к минимуму действия (правда, удивительным образом всегда следует стационарности действия).

Очищение принципа от теологических и метафизических спекуляций не привело к снижению его всеобщности. Наоборот, его особое положение среди всех других принципов механики стало еще более отчетливым. Возможность выразить действие через произведение энергии на время обеспечила принципу широкую. применимость далеко за рамками механики: в термодинамике обратимых процессов и в электродинамике. Хотя первоначально казалось, что использование принципа стационарности действия опирается на постулирование закона сохранения энергии, в действительности установлено, что закон сохранения энергии вытекает из принципа стационарности действия.

К тому же закон сохранения энергии ничего не говорит о реальном пути движения и не позволяет вывести уравнения движения, тогда как принцип наименьшего действия дает исчерпывающий ответ на перечисленные вопросы. И если в качестве основания механики «избрать принцип стационарности действия, то нет необходимости принимать какие-либо дополнительные условия, так как из этого принципа фактически вытекает вся совокупность уравнений механики» [36, с. 466]. Даже первый и второй законы Ньютона могут быть представлены как следствия принципа стационарности действия [138, с. 99—97, 104].

Столь же исключительное место занимает принцип стационарности действия и в новой физике XX в. Уже при его формулировке Мопертюи отправлялся от принципа Ферма для случая, когда скорость света обратно пропорциональна плотности среды (что может иметь место для групповой скорости волны). В то же время принцип Ферма, будучи приложен к фазовым волнам, тождествен принципу Мопертюи, приложенному к движущейся частице. Это позволило де Бройлю сопоставить данамически возможные траектории движения частицы и лучи фазовых волн, затем, исходя из оптико-механической аналогии, развивать волновую механику. Позже Шредингер положил принцип стационарности действия и идею оптико-механической аналогии в основу разработки математического аппарата квантовой механики. 15

Благодаря теории относительности был наконец осознан необходимый характер математического выражения действия, ибо входящие в выражение действия величины импульса и пути (или энергии и времени) подвержены взаимным обратно пропорциональным релятивистским изменениям так, что их произведение (действие) всегда остается одним и тем же при переходе от покоящейся к движущейся системе отсчета. Сам Эйнштейн указывает на возможность разработать общую теорию относительности на основе «одного-единственного вариационного принципа» [170. т. 1, с. 524]. Своеобразная всеобщность величины действия приобретает в этой теории особенно наглядную форму: в ней действие имеет смысл произведения плотности материи на четырехмерный объем пространства—времени [169, с. 148]. Действие, таким образом, как бы сплавляет воедино мировой пространственно-временной «каркас» и его «начинку», и с этой точки зрения все в мире есть только действие, что не совсем невероятно для диалектического мировоззрения, которое издревле утверждает, что сущностью материи является движение.

Со временем все большее число физиков сходится во мнении, что в принципе стационарности действия «заключена вся механика» (А. Зоммерфельд), что он есть «высший физический закон», «венец всей системы» (М. Планк) и т. д. Таким образом, принцип стационарности действия никого не оставляет равнодушным — ни физика, ни математика, ни историка науки, и для этого есть особые причины. Тот факт, что истинное движение системы не всегда совершается с минимумом действия, но имеются случаи максимума данной величины, в корне подрывает телеологическое истолкование принципа наименьшего действия, хотя экстремальный характер действия в истинных движениях не становится менее загадочным, а эпистемологический смысл и основания экстремальности в поведении физических систем остаются столь же непонятными и сегодня. Несмотря на всю исключительность принципа стационарности действия, в настоящее время не существует никаких теоретических разъяснений поразительной успешности и плодотворности его применения, им просто пользуются, ибо. реальное движение в физических системах всегда подчиняется ему, а почему — неизвестно. «Мы не знаем еще, — пишет Л. С. Полак, — почему из известных нам физических явлений природы значительная часть укладывается в вариационную схему, почему значительная часть физической науки может с математической точки зрения рассматриваться как класс задач вариационного исчисления» [104, с. 258].

Неизбежен, таким образом, вопрос о выяснении природы экстремального поведения физических систем. Вполне естественным 16 кажется обращение к новому в современной физике, замечательному во всех отношениях экстремуму, который опять-таки оказывается связанным с действием.

 

 

 

B. Появление идеи кванта действия

Физическая величина действия с 1900 г. вновь оказалась в центре наиболее жгучих проблем физики. Основной эпистемологической посылкой классического естествознания является… Тепловое движение частиц вещества приводит к колебанию электрических зарядов, несомых этими частицами; колебание…

A. Релятивизация понятий как источник развития познания

Геоцентрическая система Птолемея естественным образом вводила представление о выделенной точке — центре мира. Переход к гелиоцентрической системе… Для классической физики безусловно абсолютными были понятия пространства,… Спустя десятилетие общая теория относительности релятивировала метрику этого четырехмерного многообразия так, что в…

B. Что может означать отказ от универсальности и абсолютности понятия множества в описании природы

Может показаться желательной и даже необходимой какая-то иллюстрация так понимаемого единого. Нужно подчеркнуть, что это понятие единого по самому… Например, была бы просто неуместной попытка указать какую-то чувственную… Разумеется, физик может развить свою интуицию до такой степени, что окажется способным непосредственно «переживать»…

C. Постоянная Планка и соотношение неопределенностей Гейзенберга как конкретные формы физически содержательного отказа от абсолютности понятия множества в описании природы

То обстоятельство, что в общепринятом изложении оснований квантовой механики гипотеза Планка о существовании h и соотношения неопределенностей Гейзенберга принимаются в качестве исходных постулатов или фактов, на которых строится квантовая механика, без достаточного осознания оснований самих фактов и в особенности их эпистемологического смысла, безусловно, является серьезным недостатком, ведущим к «непостижимости» многих естественных следствий принятия таких фактов, как вероятностная природа пси-функции, редукция волновой функции, несиловая корреляция систем, описываемых единой пси-функцией, и т. п. Естественно, что преодолеть этот недостаток можно лишь путем снятия всякой «загадочности» с константы h и связанных с ее введением соотношений неопределенностей. В рамках введенных в подпараграфе Б исходных представлений это легко сделать. По своему физическому смыслу введение константы h есть не что иное, как введение предела для произвольного уменьшения величины размерности г´см2/с, которая может быть расписана как произведение энергии на время или произведение импульса на пространственное перемещение и т. п.

Важно, однако, понять константу h как естественное ограничение всякой возможности абсолютно множественного истолкования состояний физических систем не только в обычном физическом пространстве, но и в пространствах любых других физических 35 величин, которые могут быть представлены в качестве сомножителей, входящих в размерность действия. Для этого можно обратиться к исходной задаче Планка — исследованию спектрального распределения равновесного излучения — и показать, что вся трудность проблемы ультрафиолетовой расходимости как раз и состояла в классическом допущении о неограниченной делимости вещества и излучения в рамках понятий «элемент» и «множество элементов» [156]. С классической точки зрения, абсолютизирующей множественность и неограниченную дифференцированность в природе, излучение, находящееся в виде стоячих волн в замкнутой полости, должно было включать в себя волны сколь угодно малой длины, а энергия возбуждения должна была расходоваться сколько угодно малыми порциями на возбуждение колебаний все более высоких частот, что и вело к ультрафиолетовой катастрофе. Введение же Планком гипотезы о наименьшей порции действия сделало это классическое допущение бессодержательным и одновременно обеспечило решение проблемы.

Квант действия в скрытом виде содержит существенно отличную от классической посылку о конечной неделимости физических состояний, поскольку кладет предел произвольному уменьшению произведения г´см²/с, а значит, и каждого из входящих в него членов. Квант действия делает принципиально недостижимым классический идеал полного и исчерпывающего разложения состояний физических систем на множества каких-либо элементов. Любая реальная, т. е. имеющая физический смысл и поддающаяся эмпирической верификации детализация или разложение состояний физических систем на множества элементов, может быть осуществлена либо в обычном пространстве, либо в пространстве импульсов, энергий и других подобных им эмпирически верифицируемых физических величин. Но ни в одном из названных пространств такая детализация-разложение не может быть абсолютной и исчерпывающей в силу существования конечной и далее неделимой порции действия, влекущей за собой появление соотношения неопределенностей для сопряженных величин, соответствующих проведению того или иного конкретного способа физической детализации. Для импульсов и расстояний или энергии и времени это очевидно; для электрического заряда, например, возникает такая не коммутирующая с ним величина, как г½´см½, для массы — см´с½ и т. д.

Итак, постоянная Планка содержит в себе принципиальный отказ от неограниченной детализации состояний физических систем в рамках понятий «элемент» и «множество элементов». Неизбежным логическим завершением такого отказа от полной и исчерпывающей разложимости физических состояний на 35 множества элементов должен быть следующий решающий шаг: нужно провести отказ вполне последовательно и до конца и признать, что в конечном счете любое физическое состояние (и вместе с ним весь мир в целом [27]) обладает свойством конечной физической неделимости, по отношению к которому полностью и безоговорочно теряют всякий смысл понятия разложимости на какое-либо множество элементов и сами образы множеств и элементов.

Такое признание сразу же дает естественное объяснение объективному онтологическому статусу потенциальных возможностей и представляющих их вероятностей в квантовой механике: поскольку физическая система неразложима в исчерпывающем смысле на множества каких-либо элементов, описание ее в терминах элементов и их множеств приобретает неизбежно вероятностный смысл. Иными словами, если в нашем математическом языке мы не можем описывать физические системы иначе, лишь как в классических по своей сути терминах элементов и множеств элементов (каким бы ни был их конкретный физический смысл), а физические системы не поддаются исчерпывающей разложимости на множества элементов, то часть классических образов (элементов и их множеств) приобретает, так сказать, фантомный характер. Это и порождает понятия потенциальные возможности, виртуальные частицы и процессы и т. п. Но в их основе лежит нечто реальное — свойство неделимости систем на множества элементов.

 

 

 

2. РЕДУКЦИЯ ВОЛНОВОЙ ФУНКЦИИ

 

Полное описание максимально детализированного состояния физической системы представлено волновой функцией,которая, однако, описывает не элементы, якобы входящие в якобы множественную структуру системы, а лишь распространение вероятностей их обнаружения или получения в силу реальной неразложимости систем на множества каких-либо элементов. Необходимо вероятностный смысл пси-функции есть неизбежное и естественное следствие отказа от абсолютности и универсальности понятия множества в описании физических систем. При этом первое и важнейшее свойство пси-функции, представленное условием ее нормировки, коренится не в субъекте ("разумно потребовать, чтобы..."), а в объекте: если система неразложима на множество четко определенных элементов и должна быть описываема лишь в терминах вероятностей их получения, данное объективное и реальное свойство ее целостности – свойство конечной неделимости и неразложимости на какие-либо множества – является также и естественной основой взаимной согласованности и скоррелированности присущих ей потенциальных возможностей, представляющих теперь лишь ее виртуальную множественную структуру. Например, 37 если в системе нельзя в принципе выделить с абсолютной точностью такой элемент, как определенный импульс, а существует лишь некоторая вероятность получить его с тем или иным значением, то весь набор относящихся к определению импульса потенциальных возможностей системы оказывается внутренне согласованным именно свойством конечной неразложимости ее на какие-либо множества. Увеличению вероятности получения импульса в пределах данного интервала значений соответствует уменьшение вероятностей обнаружения его со значениями, лежащими за пределами данного интервала, и наоборот. Для системы с точным значением импульса волновая функция приобретет вид, соответствующий монохроматической волне, т. е. полному исключению возможности других значений переменной величины, кроме осуществившегося.

Итак, внутренняя корреляция и взаимная согласованность потенциальных возможностей квантовой системы проистекает из ее фундаментального свойства быть неделимой целостностью, означающей отрицание и исключение всякой множественности в субквантовом уровне.

Свойство конечной неделимости и неразложимости физических систем на множества элементов выступает: а) объективным основанием существования потенциальных возможностей квантовой системы; б) естественным основанием их взаимной согласованности и скоррелированности, т. е. основанием условия нормирования пси-функции.

С этой точки зрения в редукции волновой функции нет ничего загадочного; наоборот, было бы странным и загадочным ее отсутствие.

Полный набор потенциальных возможностей системы представлен в исходной волновой функции суперпозицией ее частных состояний:

Y(x) = c1f1(x) + c2f2(x) + ... + cifi(x)

 

Корреляция между этими частными потенциально возможными состояниями и сама возможность нормировки их коэффициентов обеспечена конечной неразложимостью системы на множества независимых элементов: все присущие системе потенциальные возможности должны быть взаимосогласованы и увязаны в одно именно потому, что сама система – носитель этих потенциальных возможностей – есть в конечном счете одно, а вовсе не многое и не распадается в исчерпывающем смысле на какие-либо множества независимых и не связанных между собой элементов.

Если теперь над системой выполняется акт измерения, который по необходимости имеет физический характер, одного кванта передаваемой ей энергии может оказаться достаточно для 38 скачкообразного перехода системы из состояния Y(x) в состояние Yn(х). Но реализация состояния Yn(х) означает исключение других возможностей, представленных в первоначальной волновой функции, т. е. коэффициент при Yn(х) становится равным единице с одновременным "свертыванием" к нулю всех остальных коэффициентов: с1, ..., сi (кроме сn-го). Иначе и быть не может с точки зрения того общего сохранения, корреляции и взаимосогласованности потенциальных возможностей, которые диктуются квантовым свойством системы как неразложимой в конечном счете единицы. Эта взаимосогласованная "игра" потенциальных возможностей системы, сопровождающая ее переход в результате измерения из одного состояния в другое, имеет целиком объективный характер и не зависит от того, зарегистрирует ли наблюдатель результаты измерения или нет. Объективно они "регистрируются" через свойство фундаментальной целостности и неразложимости квантовых систем путем перераспределения присущих им потенциальных возможностей в зависимости от реально осуществившихся. В этом вся суть дела. Разумеется, речь может и не идти о каких-то измерениях; вместо них можно говорить о реакциях столкновения и рассеяния частиц и т. п., происходящих без участия наблюдателя. Однако фундаментальное свойство физической неделимости и неразложимости квантовых систем и в этом случае точно таким же образом будет "управлять" перераспределением потенциальных возможностей от одного события к другому. Поэтому нет никакого сомнения, что квантовая механика управляла событиями в природе еще в эпоху динозавров, когда не была изобретена пси-функция и не было самого наблюдателя. Мы видим, что объективный эквивалент явления, известного как редукция волновой функции, должен был тогда иметь место, как и теперь, как и всегда.

 

 

 

3. НЕСИЛОВАЯ КОРРЕЛЯЦИЯ В ПОВЕДЕНИИ КВАНТОВЫХ СИСТЕМ

 

Самое интересное и нетривиальное явление в квантовой механике – эффекты так называемой несиловой связи частиц. Впервые с предельной ясностью их специфический характер был вскрыт в знаменитой статье Эйнштейна, Подольского, Розена, с которой берет свое начало история ЭПР-парадокса [170, т. 3, с. 604-611].

Развитие техники экспериментальной проверки этих предсказываний квантовой теории, начавшееся с известного эксперимента By Цзин Сян [249], в последнее время достигло неоспоримых результатов, подтверждающих наличие особой корреляции в поведении квантовых систем, описываемых единой пси-функцией. В последнее время поставлен новый эксперимент, четко 39 подтвердивший обсуждаемую здесь корреляцию квантовых систем для макроскопических расстояний (порядка 13 м) [176].

Настало время признать наличие указанной корреляции и объективно рассмотреть возможность ее объяснения. Впервые, на наш взгляд, правильное объяснение особой природы данной корреляции было дано А. Д. Александровым [7; 8], В. А. Фоком [147]. Мы покажем, что в свете принятого здесь подхода к основаниям квантовой механики эта удивительная связь оказывается тривиальным следствием конечной неделимости и неразложимости физических систем на множества элементов. Отказавшись от взгляда на квантовую систему как на некоторое актуальное множество элементов и признав, что ее в конечном счете нужно понимать как неделимую и неразложимую на какие-либо множества элементов, мы тем самым получаем доступ к квантовому свойству системы как неделимой целостности, являющемуся естественным основанием не физически-причинной (связанной с переносом энергии), а несиловой и импликативно-логической по существу, но тем не менее вполне объективной в силу реальности указанного свойства квантовых систем корреляции или так называемой особой квантовой связи их подсистем.

Поясним сказанное. Пусть имеется квантовая система, состоящая из двух подсистем (например, молекула из двух атомов), в состоянии, для которого полный спин равен нулю, и пусть спин каждого атома равен h/2. Очевидно, это означает, что спин каждой частицы направлен (если вообще можно говорить о направлении спина) точно противоположно спину другой частицы. Предположим далее, что молекула распалась на атомы (причем в результате такого процесса, который не меняет полного момента количества движения) и атомы разошлись на столь большое расстояние, что между ними исключается всякое физическое взаимодействие. Теория предсказывает, а опыт подтверждает, что если мы будем теперь производить измерительные операции над одним из атомов (измерять одну из компонент х, у, z его спина), то будем автоматически получать совершенно точные сведения для соответствующей компоненты спина второй частицы. Если бы спин являлся классической переменной, то сохранение такого скоррелированного начальным состоянием соотношения каждой пары компонент спиновых переменных не представляло бы ничего удивительного, поскольку корреляция, очевидно, поддерживалась бы динамическими уравнениями движений для отдельных векторов спина в предположении протекания процесса в пустоте, в изоляции от какого-либо внешнего воздействия и в силу существования законов сохранения. При этом естественной была бы точка зрения, согласно которой в любой момент оба вектора спина обладают совершенно точными и одновременными значениями всех трех своих компонент. 40

Очевидно, такая картина зиждется на представлении об имевшем место абсолютном и полном расщеплении первоначального состояния молекулы на четко определенные и совершенно однозначные элементы последующего состояния двух атомов, также обособившихся друг от друга абсолютным образом и существующих реально в каждый момент времени. Это и есть картина, соответствующая классическому идеалу описания, в котором абсолютизируется множественность в природе.

Несмотря на то что такое представление покоится на чрезвычайно сильной и фактически лишенной реального смысла идеализации, оно тем не менее кажется совершенно естественным в силу привычного характера используемых здесь классических представлений о всеобщей и полной разложимости природы на составляющие ее множества элементов с произвольной степенью точности.

Однако если перейдем теперь к квантово-механическому описанию, то картина будет другой. Во-первых, в силу соотношения неопределенностей нельзя допустить одновременного существования всех трех компонент спина второго атома как вполне определенных, хотя переориентируя измерительную аппаратуру над первым атомом, мы можем предсказать по желанию совершенно точное значение любой из них, как если бы они существовали совместно и были строго определенными.

Во-вторых, мы не можем также допустить одновременного существования хотя бы одной пары вполне определенных компонент спинов обеих частиц до измерения, поскольку первоначальное состояние с определенным значением полного спинового момента всей системы несовместимо с одновременными ему и также точными значениями спинов атомов, составляющих эту полную систему.

Тем не менее, произведя измерение над первой частицей, мы в состоянии дать точные предсказания для соответствующей компоненты спина второй частицы, как если бы последняя определялась в процессе измерительной операции над первой частицей. Следовательно, в квантовой механике, произведя измерение над одной из частиц после того, когда они уже разлетелись и между ними нет никакого физического взаимодействия, мы тем не менее определенным образом влияем на вторую частицу. Причем, если мы по-прежнему будем придерживаться классических представлений об абсолютной разложимости реальности на множества составляющих ее элементов и считать эти элементы абсолютно индивидуализировавшимися объектами, эта взаимозависимость, по выражению Эйнштейна, неизбежно приобретает оттенок чего-то мистического, телепатического да еще совершающегося с бесконечной скоростью. 41

Однако решающий фактор здесь заключается в том, что ранее между двумя атомами состоялся обмен хотя бы одним квантом энергии, без чего они не составляли бы исходную молекулу. Такое квантовое взаимодействие, имевшее место в прошлом, связало оба атома в неразложимую в конечном счете систему, а фундаментальное свойство физической неделимости квантовых систем обеспечивает теперь сохранение квантовой целостности возникшей системы всегда, что бы ни случилось в дальнейшем с ее подсистемами. Достигнутое в квантовом взаимодействии объединение частиц в неразложимую систему довлеет над последующей историей каждой отдельно взятой подсистемы и обеспечивает известную взаимосогласованность их даже после распада системы. Это объясняется тем, что ни последующий распад, ни какое-либо иное взаимодействие не распространяется глубже квантового уровня и не может привести к дальнейшему расщеплению исходной системы в субквантовом уровне, где не только данная система, но и весь мир вместе с ней есть одно – неделимая и неразложимая целостность, чуждая по своей природе всякой множественности.

В связи с этим оказывается возможной другая, более естественная точка зрения, учитывающая проявление свойств мира как неделимого целого. Мы отказываемся от представления об абсолютной и полной разложимости реальности на составляющие ее элементы и в области квантово-механического опыта должны постоянно иметь в виду теоретически обнаруженный и экспериментально подтверждающийся факт физической неделимости мира в конечном счете. Хотя в рассматриваемом примере исходная система распалась на две подсистемы, однако подобное разложение не абсолютное. Благодаря фактически существующей конечной неразложимости исходной системы, потенциальные возможности двух возникших из нее подсистем всегда оказываются замечательным образом согласованными между собой таким образом, что определение спиновой компоненты первого атома мгновенно "вырезает" из спектра возможных состояний спина второй частицы только такую компоненту ее спина, которая обеспечивает сохранение их взаимного соответствия.

В данном случае физическая неделимость исходной квантовой системы обеспечивает сохранение ее полного спина уже после того, как исходная система распалась, и независимо от того, что конкретно происходит с ее подсистемами в отдельности. В результате состояния ее подсистем оказываются взаимно скоррелированными, и полный спин сохраняется. Приведенный пример и в особенности характер прослеживаемой в нем корреляции в поведении подсистем, сохраняющейся и после распада исходной системы, нельзя понять, если придерживаться классического взгляда на природу как на безграничную множественность: совокупность 42 самодовлеющих элементов-индивидуумов, некоторых самостоятельных сущностей-индивидуумов и только. Наоборот, в квантовой области всюду необходим последовательный отказ от классических образов элементов-индивидуумов и соответствующей им картины мира как мира-многообразия (множества) и учет физической целостности и неразложимости микропроцессов, вплоть до осознания квантовых свойств мира как неделимого целого там, где черты реальности, которые могут быть схвачены с помощью элементов-индивидуумов, становятся все менее определенными и превращаются в конце концов лишь в тени, эпизодически наполняемые реальным содержанием (например, в момент измерения). На первое же место выдвигается свойство неразложимости мира, чуждое всякой множественности и даже противоположное ей по своей сути.

Обойти эти обстоятельства или игнорировать их с тем, чтобы сохранить верность классическому образу мышления, совершенно невозможно. Дело здесь не только в том, что рассмотренная корреляция в поведении микросистем вытекает из математического аппарата квантовой теории и кажется совершенно естественной в рамках ее последовательной интерпретации. Как уже указывалось, существует надежное подтверждение реальности данной корреляции в экспериментах. Первый из них поставила By Цзин Сян, которая изучала взаимное соответствие поляризационных свойств двух фотонов, возникающих при распаде пи-ноль-мезона [249]. Этот опыт по своему содержанию полностью аналогичен рассмотренному примеру взаимной корреляции спинов двух частиц, разлетавшихся на большое расстояние после распада исходной системы. Требование же исключения возможности какого-либо силового взаимодействия между разлетающимися частицами было соблюдено в опыте с абсолютной строгостью, поскольку фотоны взаимно удалялись с предельно возможными в природе скоростями. Опыт полностью подтвердил наличие взаимной корреляции в ориентированности спинов каждой пары фотонов, рождающихся при распаде пи-ноль-мезонов. Вместе с тем допустить наличие какой-либо силовой связи между фотонами не представляется возможным. Любая субстанциональная трактовка субквантово-механического уровня материи, так или иначе допускающая возможность распространения на него понятий протяжения и многообразия (множества), неизбежно столкнется здесь с непреодолимыми трудностями, ибо для объяснения результатов данного опыта потребуется ввести представление о физических процессах, протекающих на этом уровне не только со скоростями, большими скорости света, но и бесконечными скоростями, что бессмысленно. Примечательно мнение В. А. Фока о природе этой корреляции. 43

"С нашей теперешней точки зрения, – пишет В. А. Фок, – разъяснение парадокса Эйнштейна состоит в том, что всякое новое измерение (и связанное с ним воздействие) меняет потенциальные возможности и отображающие их прогнозы, причем таксе изменение прогноза не есть физический процесс. Рассматриваемые Эйнштейном две подсистемы, конечно, не связаны механически, но относящиеся к ним потенциальные возможности и прогнозы связаны логически, и новый факт (например, измерение p2 или q2) меняющий прогноз для второй подсистемы, автоматически меняет прогноз и для первой подсистемы. Такого рода логическую связь между потенциальными возможностями для двух подсистем можно было бы назвать "несиловым взаимодействием" между ними" (курсив наш. – Авт.) [147]. Основанием логической связи подсистем, равно как и их несилового "взаимодействия", в свете изложенного выше может быть только свойство конечной неразложимости систем на множества элементов.

Возникает вопрос о правомерности употребления термина "логический" для характеристики данного вида связи. Поскольку речь идет именно об объективной связи и взаимозависимости микросистем, любые позитивистские и субъективистские трактовки данного явления заведомо неверны. В то же время в рассматриваемом случае нет какого-либо физического взаимодействия между микросистемами, на что и обращает внимание В. А. Фок. Квантовое свойство системы как неделимой единицы обусловливает взаимную согласованность потенциальных возможностей ее подсистем не только при жизни системы, но и после ее распада, поскольку этот распад не может затронуть субквантовый уровень, и субквантовая целостность исходного состояния всегда сохраняется. Одновременно объективное физическое изменение потенциальных возможностей одной из выделившихся подсистем (например, в результате измерения) с необходимостью (что диктуется сохранением субквантовой целостности исходного состояния) отражается на потенциальных возможностях, описывающих состояние второй подсистемы. Это происходит в силу конечной физической неделимости их исходного состояния и нормированного к такому состоянию (и тем самым как бы связанного воедино) набора потенциальных возможностей, присущих обеим подсистемам и как бы уносимых ими после распада исходной системы. Именно данные обстоятельства обусловливают не физически-причинный (связанный с переносом энергии), а импликативный, объективно-логический характер рассматриваемой связи. Описанная специфика взаимозависимости состояний подсистем и взаимной согласованности их потенциальных возможностей побуждает В. А. Фока к использованию термина "логический" в характеристике этого вида связи. 44

Очевидно, термин "логический" понимается В. А. Фоком как обозначение определенного типа объективно присущей материальному миру закономерности: той взаимосогласованной связи потенциальных возможностей квантовых систем, источником которой является фундаментальное свойство конечной неразложимости их на множества каких-либо элементов. Такая связь коренным образом отличается от привычной, обусловленной переносом энергии причинно-следственной связи элементов в системах и, будучи не силовой и не энергетической, а вытекающей из материального факта неразложимости квантовой системы на множества элементов, является импликативной по своему существу (implico, лат. – тесно, неделимым образом связываю) и потому может быть охарактеризована как "логическая" (хотя она и имеет, как было указано, объективную материальную основу).

Разумеется, такое использование В. А. Фоком термина "логический" не связано с субъективной логикой и субъективным миром сознания. "Логика материального мира", "логика вещей", "объективная логика" – эти термины имеют важное значение в диалектическом материализме. Больше того, без известного признания первичного характера объективной логики нет возможности научного объяснения субъективной логики. Именно поэтому термин "логический", понимаемый в диалектическом материализме в широком смысле, есть форма выражения объективной материальной закономерности. Как указывает В. И. Ленин, "логика есть учение не о внешних формах мышления, а о законах развития "всех материальных, природных и духовных вещей", т. е. развития всего конкретного содержания мира и познания его..." [2, т. 29, с. 84] –

Однако было бы ошибкой ограничивать объективную закономерность в природе различными типами причинно-следственных связей и зависимостей. Согласно В. И. Ленину, "каузальность, обычно нами понимаемая, есть лишь малая частичка всемирной связи, но (материалистическое добавление) частичка не субъективной, а объективно реальной связи" [2, т. 29, с. 144]. Следовательно, наряду с причинностью в природе имеет место и другого типа зависимость и связь состояний – непричинная. Квантовая механика, как видим, позволяет развить вполне конкретные представления в подтверждение справедливости общего замечания В.И.Ленина.

В рассмотренных примерах перевод первой подсистемы в состояние с определенным импульсом (или определенной координатой – в зависимости от выбранного типа измерения) объективно имплицирует (разумеется, мгновенным к несиловым образом, как в случае любой импликативной связи) соответствующее определенное состояние второй подсистемы, что теперь подтверждено 45 экспериментально. Разумеется, это вообще возможно потому, что квантовое состояние существует в форме потенциально возможного. Оно объективно является не вполне определенным, и потенциально возможное составляет его существеннейшую органическую часть. Однако в целом для всей системы набор потенциальных возможностей ее подсистем строго нормирован и взаимно скоррелирован свойством квантовой целостности и неразложимости системы в субквантовом уровне. Тем самым снимается всякая проблема поисков сигналов или физических агентов, якобы передающих такое "взаимодействие".

Разъясняя природу несиловой корреляции в поведении квантовых подсистем, А. Д. Александров в 1952 г. вполне оправдано использовал своеобразный метод доказательства путем обращения к противоположному допущению (выяснив непригодность исходного допущения). Так, по поводу парадокса Эйнштейна-Подольского-Розена он писал: "Если же мы отбросим допущение о разделенности частиц, то остается допущение, что частицы связаны, а тогда... парадокс разрешается без всякого позитивизма простой ссылкой на связь частиц" [7, с. 255] (курсив наш. – И. Ц.).

Действительно, главным является понимание следующего. Если абсолютная и полная разделенность квантовых подсистем в принципе недостижима (что очевидно исходя из принятия постоянной Планка), необходимо учитывать то, что неизбежно выступает ей на смену как отрицание возможности их абсолютного разделения и обособления – их неделимую и нерасчленимую связь в конечном счете, которая и оказывается материальной (но не энергетической и не физически-причинной!) основой несиловой корреляции в поведении квантовых подсистем.

Такая "связь частиц, – писал А. Д. Александров, – отражаемая в наличии в них общей пси-функции, не есть, конечно, механическая связь посредством веревок или сил: это есть особая форма связи в зависимости от условий. Но именно взаимная связь, выражаемая наличием общей Y, есть главная основа всех успехов квантовой теории систем многих частиц. Одна из важнейших особенностей квантовой механики состоит в том, что она открыла новую форму взаимной связи явлений в атомной области. Понимание этой особенности в свете учения диалектического материализма о всеобщей связи явлений имеет решающее значение для понимания квантовой механики" [7, с. 256].

В более поздней работе А. Д. Александров развивает ту же идею: "Объяснение свойств атомов, молекул и других систем, содержащих много электронов, основано на такой их связи, что они сливаются в некое единство, в котором нет отдельных электронов. 46

Обычно говорят о "тождественности" электронов, о том, что они "неразличимы". Но это не точно. Электроны, находящиеся в разных состояниях, различимы: электрон, фигурирующий в данном опыте, – это электрон в этом опыте, а не в любом другом. Суть "неразличимости" в том, что в многоэлектронной системе электроны не имеют отдельных состояний, а входят в общее состояние системы, и при этом совершенно симметрично. Они просто не существуют как индивидуальные, хотя и тесно взаимодействующие объекты. Поэтому и нельзя различать в системе "тот" или "этот" электрон. Если же попытаться проследить за отдельным электроном, потребуется вмешательство, нарушающее систему.

В целом вся совокупность фактов, касающихся квантовых систем, навязывает вывод о наличии особых связей между их компонентами, в частности, столь существенных, когда компоненты теряют всякую самостоятельность" [8, с. 337-338].

Природа этой связи становится вполне понятной и очевидной, если окончательно отказаться от универсальности и абсолютности образов отдельного элемента и их множеств в интерпретации квантовых состояний и принять неизбежную дополнительность многого единым (как неразложимым на многое) в свойствах квантовых систем.

Итак, суть дела состоит в следующем. Исчерпывающая и полная, проводимая с абсолютной (неограниченной) точностью детализация-разложение физических состояний на множества каких-либо образующих их элементов так, что в природе данных состояний ничего не должно оставаться помимо этих точно определимых элементов и их множеств, соответствует классическому идеалу описания природы.

Принципиально неполная (не могущая быть полной и исчерпывающей в силу существования кванта действия) разложимость физических состояний на множества каких-либо элементов, их "образующих", соответствует квантовому языку. Произвольную квантовую систему нельзя подвергнуть исчерпывающему разложению на множества каких-либо элементов, "составляющих" ее. Поэтому описание квантовой системы в терминах элементов и их множеств имеет неизбежно вероятностный смысл. Не вполне точно выделяемые элементы структуры квантовой системы в общем случае могут быть представлены лишь в форме потенциальных возможностей, (их выделения или получения). Какие из этих элементов будут реально получены в эксперименте – определяется конкретным характером выбранного типа опыта или измерения (это и есть знаменитая "зависимость от условий измерения").

Имеющее несомненно объективный смысл квантовое свойство системы как неделимой в конечном счете обусловливает взаимную согласованность потенциальных возможностей ее подсистем 47 не только при жизни исходной системы, но и после ее распада, поскольку никакой распад и никакое физическое деление не может затронуть субквантовый уровень и субквантовая целостность исходного состояния всегда сохраняется.

Эта импликативная объективно-логическая корреляция квантовых подсистем, принадлежащих единой квантовой системе, имеет совершенно неотвратимый характер и необходимо довлеет над их поведением. Обусловливаемые ею эффекты наряду с упоминавшимися экспериментами подтверждены также результатами опытов Пфлегора и Менделя по интерференции единичного фотона с другим, еще не "родившимся" фотоном, если только в испускании фотонов участвуют два идентичных лазера, описываемых одной волновой функцией. Данная связь носит настолько своеобразный характер, что одна из статей, посвященных результатам опытов Пфлегора и Менделя, была озаглавлена с помощью психологического термина: "The Introspective Photon" [230]. Тем не менее в рамках изложенного подхода она оказывается совершенно неизбежной и тривиальной.

Нетривиальным, однако, является отказ от абсолютности и универсальности понятия множества в описании физической реальности и признание специфических свойств конечной неделимости и неразложимости физических систем на множество каких-либо элементов. Но это – необходимая плата за понимание вероятностной природы пси-функции, редукции волновой функции, несиловой корреляции и прочего. Да и почему понятие множества должно рассматриваться в качестве абсолютного при описании природы и последнего? То, что обыкновенно мы не задумываемся над таким вопросом, не может быть основанием для отказа от его рассмотрения.

Подчеркнем, что предлагаемое устранение ЭПР-парадокса отнюдь не явлется "вербальным" (т. е. словесным), как может показаться читателю. По своему методологическому статусу ЭПР-парадокс находится в одном ряду с другими знаменитыми парадоксами современной физики: парадоксом лоренцового сокращения длин в теории относительности, парадоксом близнецов, парадоксом электрона, проходящего через две щели и т. п., которые на первый взгляд тоже разрешаются чисто вербальным путем. Преодоление ЭПР-парадокса нуждается не в выделении какого-то физического агента, якобы ответственного за него, а в коренном пересмотре представлений, ведущих к нему.

Вместе с тем в ряду парадоксов новой физики ЭПР-парадокс является наиболее глубоким, поскольку он требует явного осознания относительности предельно общих понятий естествознания: понятий "элемент" и "множество элементов" и явного введения представления о свойствах реальности как неразложимой на 48 какие-либо множества целостности со всеми вытекающими отсюда последствиями. Разъяснение рассмотренных физических оснований этого подхода к ЭПР-парадоксу, восходящее к Н. Бору, В. А. Фоку и А. Д. Александрову, получило новое подтверждение в факте несепарабельности состояний подсистем единой квантовой системы в недавних экспериментах, выполненных группой А. Аспека [176].

Резюмируем кратко физическую основу данного подхода.

1. Для любой физической системы в фазовом пространстве существует далее неразложимая и неделимая в любом эксперименте ячейка hN (где N – число измерений системы). Это такой же фундаментальный физический факт, как и, скажем, недостижимость нуля абсолютной температуры, невозможность построения вечного двигателя I и II рода или невозможность переноса физического воздействия со скоростью, превышающей скорость света в вакууме.

2. В силу указанного физического факта – существования ячейки hN описание реальности в пространствах любого возможного реального физического опыта (каждое из которых всегда оказывается только частным сечением фазового пространства) приобретает неизбежно вероятностный смысл: факт существования ячейки hN ведет к неполной (и всегда неточной) лишь относительной разложимости состояний физической реальности на множества каких-либо элементов. Отсюда – неизбежное обращение к вероятностному языку в описании состояний физической реальности, представленному аппаратом пси-функции.

3. Вместе с тем вводимые с необходимостью в силу п. 2 потенциальные возможности, присущие физической системе и описывающие (теперь уже не реальную, а лишь виртуальную!) множественную структуру ее, для предельно детализированного состояния, представленного пси-функцией, оказываются всегда взаимно скоррелированными и взаимосогласованными из-за физического факта конечной неделимости и неразложимости системы на множества каких-либо элементов. Этот второй основополагающий факт можно выразить иначе: свойством конечной физической неделимости системы весь набор присущих ей потенциальных возможностей увязан в одно целое, что в математическом формализме отражено условием нормировки волновой функции.

4. В силу пп. 2, 3 весь набор потенциальных возможностей квантовой системы образует импликативную (а не физически-причинную) структуру, что проявляется в рассмотренных эффектах редукции волновой функции или несиловой корреляции подсистем единой квантовой системы. Всегда остающаяся целой и неразложимой ячейка hN единой квантовой системы управляет (именно по типу импликативных связей и зависимостей) 49 перераспределением потенциальных возможностей ее подсистем в зависимости от реального изменения состояния одной из них. Понятие расстояния, а вместе с ним и понятия локальности, сепарабельности, близкодействия и дальнодействия, как равно и в целом сама идея скрытых параметров, не имеют никакого смысла по отношению к "внутренней области" ячейки hN, сам факт существования которой объективен и проявляется во всех перечисленных обстоятельствах.

Таковы физические факты, лежащие в основе рассмотренного подхода. Надежда найти какое-либо не "вербальное" (в рассмотренном смысле), а "сущностное" преодоление ЭПР-парадокса (например, путем выделения какого-то физического агента, ответственного за него) несостоятельна, потому что она противоречит твердо установленным фактам. Предположение о реальности такого физического агента ("сущности"), переносящего воздействие от одной подсистемы к другой в "досветовой области", эквивалентно допущению Аспека о сепарабельности состояний подсистем. Но поставленный им эксперимент ясно указывает, что ЭПР-корреляции явно выходят за пределы такого допущения и, наоборот, требуют противоположного вывода о несепарабельности состояний подсистем, что не только соответствует концепции целостности, но обусловлено ею.

Наконец, связанное с выделением некоторого "сверхсветового" физического агента (который мог бы быть ответственным за перенос информации от одной подсистемы к другой) объяснение ЭПР-парадокса было бы эквивалентно возможности "сверхсветового телеграфа". Неприемлемость и этого представления убедительно показана Б. И. Спасским и А. В. Московским и А. А. Грибом [43; 120].

 

 

 

ГЛАВА 3

КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ И ЭКСПЕРИМЕНТ:
причинность и нелокальность в квантовой физике

(Л.Э.Паргаманик)

1. ПРИРОДА СТАТИСТИЧНОСТИ В КВАНТОВОЙ МЕХАНИКЕ

 

Экспериментальное изучение квантовых систем позволило обнаружить наличие у них статистических свойств: повторение эксперимента с квантовой системой в фиксированных 50 экспериментальных условиях способно приводить к неповторяющимся результатам. Примером может служить последовательное прохождение фотонов с одинаковой поляризацией через анализатор: одни фотоны проходят сквозь него, а другие — отражаются. Квантовая механика правильно описывает статистику подобных экспериментов, но не объясняет природу этой статистичности; последняя постулируется квантовой теорией.

Существующие гипотезы о природе статистичности квантовых систем четко разделяются на два класса. К первому относятся гипотезы, связывающие статистические свойства квантовых систем с корпускулярно-волновым дуализмом свойств микрочастиц, с влиянием на частицы вакуума физических полей и т. п. Общим для них является признание объективного существования в микромире случайных явлений. Диалектический материализм рассматривает статистическую связь между начальным состоянием системы и результатом эксперимента как новый характер причинных связей, не сводящийся к классической причинности. Об упрощенном, приблизительном отображении классической причинностью объективной связи явлений писал В. И. Ленин [2, т. 18, с. 139] задолго до создания квантовой механики.

(Логическое завершение первой гипотезы в рамках концепции целостности — вывод о том, что естественным основанием статистичности квантовых объектов является объективное свойство конечной недетализируемости их состояний в терминах элементов и множеств):

Ко второму классу относятся гипотезы, предполагающие наличие в комплексе квантовая система — измерительный прибор так называемых скрытых параметров, которые пока не удалось наблюдать. Предполагается, что каждое значение скрытого параметра однозначно определяет результат отдельного эксперимента, а наблюдаемая и описываемая квантовой механикой статистичность есть результат усреднения по всем значениям скрытых параметров. Таким образом, эти гипотезы предполагают одно-однозначную связь между значением скрытого параметра и результатом отдельного эксперимента, т. е. существование в квантовой физике классических причинных связей.

Выяснение того, какая из указанных двух возможностей реализуется в природе, имеет принципиальное значение для физики и философии, так как связано с вопросом о существовании или не существовании неклассических причинных связей.

2. ВОЗМОЖНА ЛИ ТЕОРИЯ СКРЫТЫХ ПАРАМЕТРОВ?

Вопрос «Возможна ли теория скрытых параметров (ТСП), усреднение по которым приводит к статистическим результатам квантовой механики (КМ)?» был впервые поставлен 51 Нейманом в 1932 г. [93]. Нейман дал отрицательный ответ на этот вопрос, доказав теорему о невозможности ТСП. Он предполагал, что среднее от суммы двух физических величин равно сумме средних. Это верно для линейной теории, но не верно для нелинейной, какой может быть гипотетическая ТСП. Таким образом, теорема Неймана имеет ограниченную применимость, что было обнаружено в 1963 году.

Рассматриваемый вопрос исследовался на чисто логическом уровне. Предполагается, что ТСП, приводящая к классической причинности, основана на классической (булевской) логике. С другой стороны, Нейман и Биркгоф показали [181], что КМ основана на неклассической (квантовой) логике, в которой операция логического сложения формулируется иначе, чем в логике Буля. В КМ неклассическое логическое сложение реализовано в принципе суперпозиции. С логической точки зрения вопрос о возможности ТСП сводится к вопросу об установлении определенного соответствия между классической и квантовой логиками. Такое соответствие (отображение) может быть установлено различными способам, и от свойств этого отображения зависит положительный или отрицательный ответ на поставленный вопрос. Как показал Гаддер [200], если отображение сохраняет отношение следования (выполняется постулат изотонности), то ТСП невозможна. Однако необходимость этого постулата также требует обоснования. Следовательно, логический анализ пока не дол определенного ответа на вопрос о логической возможности ТСП.

Из доказательства логической возможности ТСП еще не следует существование скрытых параметров в природе; оно должно быть доказано экспериментально.

3. ПАРАДОКС ЭЙНШТЕЙНА-ПОДОЛЬСКОГО-РОЗЕНА И ЛОКАЛЬНОСТЬ

В 1935 г. Эйнштейн, Подольский и Розен рассмотрели мысленный эксперимент (в дальнейшем — эксперимент ЭПР), в котором квантовая система распадается на две части, причем над одной из них производится измерение ее координаты или импульса [170, т. 3, с. 604—611; 192]. Анализ результатов этого мысленного эксперимента привел ученых к выводу, что при заданном начальном состоянии квантовой системы измерение координаты первой части системы приводит к определению координаты второй части (без ее измерения), а измерение импульса первой части приводит к определению импульса второй в том же состоянии, что и при первом измерении. Данный вывод, противоречащий КМ, составляет содержание парадокса ЭПР.

При анализе эксперимента Эйнштейн, Подольский, Розен полагали, что два различных измерения над первой частью 52 квантовой системы не могут привести к различным состояниям второй в силу отсутствия взаимодействия между ними. Это гипотетическое свойство квантовых систем получило впоследствии название локальности (т. е. разделимости на независимые части). Альтернативную точку зрения, согласно которой «в результате двух различных измерений, произведенных над первой системой, вторая система может оказаться в двух различных состояниях...», исследователи отвергли [170, т. 3, с. 608].

Критика выводов эксперимента была дана Бором, который показал, что возникший парадокс есть результат предположения о локальности квантовых систем [28, с. 187—188, 425—428]. Отказ от этого предположения, т. е. признание существования корреляции между разделившимися частями квантовой системы (характеризуемого термином «целостность»), устраняет парадокс ЭПР.

Именно анализ парадокса ЭПР привел Бора к формулированию принципа дополнительности для квантовых систем, который выражает одно из основных отличий последних от систем классических. Принцип дополнительности требует рассмотрения квантовой системы и измерительного прибора как единой, целостной системы. Результаты измерения квантовой системы зависят от ее состояния, а также от устройства и состояния измерительного прибора. Это свойство квантовых систем Фок назвал относительностью к средствам измерения [148].

4. ТЕОРЕМА БЕЛЛА И ВОЗМОЖНОСТЬ ВЫБОРА
МЕЖДУ ТЕОРИЕЙ СКРЫТЫХ ПАРАМЕТРОВ
И КВАНТОВОЙ МЕХАНИКОЙ
НА ОСНОВАНИИ ЭКСПЕРИМЕНТА

Установление принципа дополнительности, связанного со свойством целостности квантовых систем, и устранение парадокса ЭПР было достигнуто путем анализа мысленных экспериментов. Для науки необходимо было подтвердить эти результаты на экспериментальном уровне. Кроме того, оставалась логическая возможность получить аналогичные результаты с помощью ТСП, «подставленной» под КМ, как указывалось ранее.

Для выбора между КМ и ТСП необходимо найти эксперимент, при котором данные теории приводили бы к существенно различным результатам, и осуществить его.

В 1951 г. Бом предложил для этой цели модификацию эксперимента ЭПР — распад системы с нулевым спином на две части со спинами 1/2 и последующим измерением проекции спина каждой части на некоторое направление отдельным прибором [27]. В 1964 г. Белл дал теорию такого эксперимента, основанную на ТСП, в которой реализована не только классическая причинность, но и локальность [179]. Последняя была выражена в виде утверждения, что показания каждого прибора зависят только от его 53 установки и величины скрытого параметра, но не от установки другого прибора (роль установки прибора играло направление магнитного поля в системе типа Штерна—Герлаха, проекцию спина на которое определял прибор).

С помощью такой локальной причинной ТСП Белл вычислил функцию корреляции показаний приборов в зависимости от их установок и показал, что линейная комбинация трех функций корреляции, вычисленных для трех различных установок приборов, удовлетворяет некоторому неравенству (теореме Белла), которому не удовлетворяют аналогичные функции корреляции, вычисленные с помощью КМ. Таким образом, возникла принципиальная возможность выбора между ТСП и КМ.

В 1969 г. Клаузер и его сотрудники предложили новый вариант опыта ЭПР — каскадное излучение атомом двух фотонов, поляризации которых измеряются после их разделения в пространстве с помощью анализаторов и детекторов, включенных через счетчик совпадений [188]. Роль установки прибора играет здесь направление оси анализатора. В рамках локальной причинной ТСП авторы показали, что для корреляционных функций поляризаций фотонов может быть выведено неравенство, аналогичное теореме Белла. Этот опыт возможен со светом в видимой области и простыми оптическими приборами, что облегчает его выполнение.

Между локальной причинной ТСП и КМ имеются существенные отличия: 1) классическая причинность ТСП и статистичность КМ; 2) локальность ТСП и целостность КМ. Естественно возник вопрос о том, какое из этих различий приводит к различию в функциях корреляции. Ответ на него был дан Беллом в 1971 г. [178] и Клаузером и Горном в 1974 г. [190]. Они построили ТСП, в которой сохранена локальность, а классическая причинная связь между значением скрытого параметра и показанием прибора заменена статистической. Оказалось, что и в такой локальной статистической ТСП теорема Белла остается в силе. Таким образом, именно постулат локальности приводит к теореме Белла. Хотя ТСП была построена для восстановления причинных связей в квантовой физике, решающее различие между существующими ТСП и КМ состоит не в характере причинных связей, а в альтернативе: локальность или целостность.

5. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ТЕОРЕМЫ БЕЛЛА

Для экспериментальной проверки теоремы Белла измеряют функции корреляции в опыте ЭПР и сравнивают результаты с теоремой и предсказаниями КМ. За прошедшее после вывода теоремы Белла время до 1977 г. было выполнено девять экспериментов, непосредственно предназначенных для ее проверки. 54

Изложение постановки и экспериментальных результатов большей части этих работ содержится в обзоре Пати [227], обсуждение их результатов — в обзоре Пауля [228].

В трех экспериментах изучалась корреляция поляризаций фотонов, излученных при аннигиляции позитрония. В работах Касдей, Ульмана и By [208; 209] получены результаты, согласующиеся с КМ. Гутковски, Нотарриго и Пенниси [195] пришли к выводу, что результаты согласуются с ТСП. Однако поскольку начальное состояние позитрония не известно, а результаты работы соответствуют верхней границе неравенства Белла и лежат между квантово-механическими результатами, соответствующими различным предположениям о начальном состоянии позитрония, надежного вывода из этой работы сделать нельзя. В работе Ламехи-Рахти и Миттига [211] изучалась корреляция между поляризациями двух протонов при протон-протонном рассеянии; экспериментальные результаты согласуются с КМ.

В следующей группе экспериментов изучается корреляция между поляризациями двух фотонов, излучаемых атомом при каскадном радиационном переходе. В работе Фридмана и Клаузера [198] используются атомы кальция; результаты согласуются с КМ.

В исследованиях Холта и Пипкина использовались атомы ртути; результаты согласуются с ТСП, но получены они недостаточно чисто и поэтому ненадежны. Это видно из работы Клаузера, который повторил опыт на основе другого метода возбуждения атомов [189; 227; 228]. Полученные им результаты вполне достоверны и согласуются с КМ. Фрей и Томсон используют излучение другого изотопа ртути и другой радиационный каскад; полученные результаты согласуются с КМ [228].

Особого внимания заслуживает эксперимент Аспека, Гренжье и Роже [176], исследующих излучение кальция. Авторы значительно увеличили число измерений по сравнению с предыдущими работами и получили большую статистическую точность. Результаты хорошо согласуются с КМ и нарушают неравенство Белла на девять стандартных отклонений, что делает выводы весьма надежными. Увеличение расстояния от источника до каждого анализатора до 6,5 м не меняло результатов опыта, что указывает на независимость дальних корреляций от расстояния.

Накопленный теоретический и экспериментальный материал еще не позволяет сделать окончательный выбор между ТСП и КМ. Формулировка постулата локальности и структура ТСП могут совершенствоваться. Уже имеется работа, обобщающая теорему Белла [197]. Новые эксперименты могут быть выполнены с другими объектами; имеется предложение использовать для 55 эксперимента частицы, распадающиеся в результате слабого взаимодействия и т. п. [198; 243].

Тем не менее на основании имеющихся теоретических и экспериментальных работ можно сделать следующие выводы.

1. Экспериментальные данные, по-видимому, противоречат локальной ТСП и основанной на ней теореме Белла. Два эксперимента, согласующиеся с теоремой Белла, относятся к числу наиболее ранних, выполнены недостаточно чисто и не подтверждаются более поздними работами.

Таким образом, существующие ТСП противоречат наблюдаемым свойствам квантовых систем. Пока не удалось «подставить» ТСП под КМ и восстановить классическую причинность в квантовой физике. Нерелятивистская КМ в своей области пока остается единственной теорией, правильно описывающей экспериментальные факты.

2. Существование в квантовых системах дальних корреляций установлено экспериментально: непосредственно — путем подтверждения КМ — и косвенно — путем фальсификации теоремы Белла и постулата локальности, на котором она основана.

Наличие дальних корреляций не является спецификой опытов типа ЭПР, они хорошо известны и в других квантовых явлениях: интерференции света в опыте Майкельсона, существование сверхтекучей компоненты в жидком гелии и куперовских электронных пар в сверхпроводниках [80].

3. Альтернатива — локальность или целостность — решается в пользу целостности квантовых систем, которая заложена в КМ в виде принципа неразличимости одинаковых частиц [130] и принципа дополнительности.

Наблюдаемое экспериментально и описываемое аппаратом КМ свойство квантовых систем — сохранение корреляций между частями системы при стремлении к нулю взаимодействия между ними — не является тривиальным [228]. Для его интерпретации необходим диалектический подход.

4. Особенно остро проблема целостности, вопрос о соотношении части и целого, поставлен физикой элементарных частиц. Достигнутое объединение электромагнитного и слабого взаимодействия и стоящая перед современной физикой задача «великого объединения» всех взаимодействий по сути представляет собой различные этапы отображения в физике целостности окружающего мира, всеобщая связь и взаимозависимость явлений которого составляет один из законов материалистической диалектики. 56

 

 

 

ГЛАВА 6

КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ
В ПРОБЛЕМЕ МЫШЛЕНИЯ И СОЗНАНИЯ

1. КРИТИКА МЕТАФИЗИЧЕСКОГО ИСТОЛКОВАНИЯ
ТЕОРЕТИКО-ИНФОРМАЦИОННОГО ПОДХОДА
В ИССЛЕДОВАНИИ МЫШЛЕНИЯ

(В.И.Штанько)

А. Сущность теоретико-информационного подхода

Обратимся прежде всего к анализу тех научно-теоретических идей и представлений, которые, будучи вырванными из сложной системы объективной… Как известно, на формирование кибернетики огромное воздействие оказало… Первые успехи логико-математического и технического моделирования некоторых принципов функционирования нейрона и…

B. Является ли мышление частным случаем информационного процесса?

Процесс восприятия, хранения, переработки и передачи информации составляет существенную сторону мыслительной деятельности, но не дает оснований… Одним из фундаментальных положений диалектико-материалистического понимания… При всем различии взглядов на проблему соотношения информации и отражения, большинство советских исследователей все же…

C. Неадекватность исходной методологической установки теоретико-информационного процесса феномену целостности мышления

С переходом современной науки к изучению многофакторных, органически целостных систем, к изучению сознания выявился ряд методологических трудностей,… Известный советский физиолог Ц. К. Анохин в связи с этим отмечал, что поиски… Такой подход не позволяет объяснить качественное своеобразие психического мышления, поскольку здесь остается в стороне…

D. О методологической роли концепции целостности в исследовании мышления

Осознание того, что наряду с очевидной стороной мира как множественного существует и такая его сторона, которая по природе своей отрицает всякую… Такой подход к пониманию мира — множественного и единого одновременно —… Этот аспект интерпретации единого имеет не чувственно-конкретную, а диалектико-логическую природу и является…

A. Сознание как реальный, но несводимый к физико-химическим событиям процесс в мозгу

Вслед за Уокером [245] под сознанием будем понимать известную способность, отличающую бодрствующее состояние организма человека. Может показаться,… Трудно определить, что отсутствует у первого и присуще второму, но ясно, что… Несмотря на то, что в мозг непрерывно поступают многочисленные и разнообразные афферентные импульсы, которые…

B. ЭПР-корреляции в синаптических переходах в мозгу как возможная основа порождения сознания

Сенсорная информация, поступающая в мозг от периферического нерва, бесспорно должна описываться квантово-механически (хотя бы в силу чрезвычайной… В терминах частиц мы могли бы говорить, например, о двух электронах с взаимно… В итоге мы действительно приходим к возможности не силовой и не физически-причинной связи событий на двух 169…

– Конец работы –

Используемые теги: Концепция, целостности0.041

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: КОНЦЕПЦИЯ ЦЕЛОСТНОСТИ

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

"Исторический анализ систем "карандаш", "общество", "договор" в свете четырех основных концепций: концепции системного подхода, концепции самоорганизации объекта, концепции неопределенности (дуализма), концепции ноосферн
Так как грифель находится внутри основы, то для дальнейшего выполнения функции письма происходит воздействие на основу - процесс подтачивания, т.е.… В объекте «карандаш» существует одна связь между элементами системы… При этом каждое положительное действие со стороны основы сопровождается вредным действием со стороны грифеля, т.е.…

Концепция целостности духовно-материальной природы человека
Прилагательное «универсальная» — подчёркивает способ представления природы и образа человека в данном учении с позиции творящего Универсального… Даже телесность человека в действительности является видимым выражением… Этот причинный ментальный фактор в свою очередь обусловливает ускорение, либо замедление гармоничного развития…

Социальные аспекты художественно-религиозной целостности
Вместе с тем искусство немыслимо без отражения в нем неповторимой индивидуальности художника, богатства его субъективности.История искусства в… Именно поэтому перед искусством всегда стоит великая альтернатива: 1)… Такое искусство возникает тогда, когда возникает гармония объекта и субъекта. И такое искусство мы называем классикой,…

Христианская концепция человека и гуманизм искусства
Особенно ярко это проявилось в христианстве. «В христианстве, — пишет Ф. Энгельс, — впервые было выражено отрицательное равенство перед богом всех… Как ни парадоксально, но это равенство служило не объединению людей, но еще… Это связано с тем, что в условиях разложения первобытнообщинного строя, когда человек, выделяясь из массы, мысляший в…

Античный символизм. Концепция античности.
Подобной же концепции придерживался и Гегель в своем выражении « классической художественной формы » античности и ее символов. В греческой мифологии… Красота - печать космоса. В христианской символике стремление человека… Об этом мы будем говорить в следующем книге «Десять лекций по христианству» из общего курса «100 лекций по…

Проблема соответствия концепции рекламной кампании в сети Интернет
Но, к его великому сожалению, конечный экономический эффект оказывается далек от ожидаемого… Описанный случай не единичен. Проблема низкой эффективности рекламы в сети и окупаемости вложенных средств,… Начнем с начала, а именно, с создания стратегии. Профессиональный подход к интернет-рекламе, равно как и решение…

Концепция творческого развития Большого театра России на 2004-2010 годы
Для этого требуются и новые идеи, и новые подходы к творчеству, и новый уровень технологии создания спектаклей.За три предыдущих года Большой театр… За последние годы Большой театр познакомил публику с операми "Игрок" и… К 100-летию со дня рождения Дмитрия Шостаковича, впервые в истории мирового театра, на сцене Большого будут идти все…

Синергизм - новая концепция культуры
Под сводами новостройных романских замков раздавались звуки рок’н’ролла, в стенах невиданных доселе сооружений, рожденных безудержной фантазией… Эклектика не просто вошла в моду – она по-настоящему поднялась в цене.… И ешьте меня с кашей! И едим Культура вкушает культуру. Самоё себя с хвоста. Долго ли может так продолжаться? Нет –…

Современные концепции социально-проектной деятельности
Концепции социального проектирования развиваются в тесной связи с рядом социологических теорий и подходов, из которых выделим социальную инженерию… Первая из них представляет собой прагматическую концепцию самого конкретного… Они, можно сказать, составляют полюса социологического понимания социально-проектной деятельности. Социальная…

Социологические концепции культурно-исторического процесса
С учетом огромного многообразия социально-философских учений о человеческой истории и культуре (на Западе прочно утвердилась научная традиция… В 20-е гг. текущего столетия в Германии была опубликована очень скоро… Шпенглер рассматривает каждую культуру как целостный организм, развивающийся из уникального «прафеномена» — способа…

0.029
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам
  • Лингвистическая концепция Ф. де Соссюра В работах по литовской акцентуации (1894-1896) он сформулировал закон о взаимосвязи в литовском и славянских ударения и интонации (открытый им… Он не оставил даже набросков лекций; и установлены заметные различия между… Важнейшим событием стало издание под именем Ф. де Соссюра курса лекций, текст которого был подготовлен к печати и…
  • Россия на Дальнем Востоке: новая градостроительная концепция и православные храмы в русском стиле (вторая половина XIX - первая треть XX вв) Рассматривая процесс градостроительного освоения Дальнего Востока в контексте такого целостного явления как градостроительство России середины XIX -… Согласно Е. И. Кириченко первостепенная градообразующая роль в рассматриваемый… Это вполне соотносится с комплексом идей, ориентированных не на служение государству, как это было в XVIII - нач. XIX…
  • Концепция ограничений современного руководителя Эти обобщения позволяют выделить те способности и умения, которые требуются от умелого, грамотного, эффективного менеджера в настоящее время и в… Поэтому от умелых менеджеров требуется способность эффективно управлять собой… Поэтому каждый менеджер должен сам поддерживать постоянный собственный рост и развитие. Проблем становится все больше,…
  • Концепция японской зависимости (Амаэ) Но может описывать и отношения между двумя взрослыми» (там же, с. 145). Поэтому амаэру характеризует «ласковое поведение ребенка любого пола,… Чьи-либо родные, с которыми нет необходимости соблюдать энрё, находятся в… Иногда, правда, отношения гири, распространяемые на знакомых, самими японцами оцениваются как «внутренние», в отличие…
  • Концепция современного естествознания Как зависит точка кипения от внешнего давления? Какое значение в природе имеют процессы сублимации и десублимации? Приведите примеры. 7. Поясните… Почему разные популяции одного вида отличаются по частоте генов? 23 9. Как… Но есть такие признаки, которые, особенно характерны для живых систем и тем не менее нечасто фигурируют в их самых…