рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пространство и время. Механическое движение. Система отсчёта

Пространство и время. Механическое движение. Система отсчёта - раздел Механика, 1. Пространство И Время. Механическое Движение. Система Отсчёта. ...

1. Пространство и время. Механическое движение. Система отсчёта.

Пространство и время, философские категории. Пространство — форма сосуществования материальных объектов и процессов (характеризует структурность и протяженность материальных систем); время — форма и последовательные смены состояний объектов и процессов (характеризует длительность их бытия). Пространство и время имеют объективный характер, неразрывно связаны друг с другом, бесконечны. Универсальные свойства времени — длительность, неповторяемость, необратимость; всеобщие свойства пространства — протяженность, единство прерывности и непрерывности.

Механическое движение – это изменение с течением времени взаимного расположения тел и их частей.

Система отсчета– совокупность системы координат и часов, связанных с телом отсчёта. В декартовой системе координат положение данной точки в данный момент времени по отношению к этой системе характеризуется тремя координатами x,y,z или радиус-вектором r, проведённым из начала системы координат в данную точку. При движении материальной точки её координаты с течением времени изменяются. В общем случае её движение определяется скалярными уравнениями,

x=x(t);

y=y(t); (1.1.)

z=z(t).

эквивалентными векторному уравнению r=r(t).(1.2.)

 

2. Кинематические уравнения движения материальной точки. Перемещение, скорость, ускорение.

Уравнения (1.1.) (соответственно (1.2.)) называются кинематическими уравнениями движения материальной точки. Число независимых координат, полностью определяющих положение точки в пространстве, называется числом степеней свободы.

Вектор перемещения – вектор проведённый из начального положения движущейся точки в положение её в данный момент времени (приращение радиус-вектора точки за рассматриваемый промежуток времени).

Скорость – векторная величина, которая определяет как быстроту движения, так и его направление в данный момент времени. Первая производная перемещения по времени.

Вектором средней скорости называется отношение приращения радиус-вектора точки к промежутку времени. <υ>=Δr/Δt.

Мгновенная скорость – это векторная величина, определяемая производной радиус-вектора движущейся точки по времени. υ=limΔt→0Δr/Δt.

Мгновенная скорость – векторная величина, определяемая производной радиус-вектора движущейся точки по времени. υ=dr/dt.

Ускорение – это характеристика неравномерного движения; определяет быстроту изменения скорости по модулю и направлению. Вторая производная перемещения по времени.

Среднее ускорение неравномерного движения за промежуток времени – это векторная величина, равная отношению изменения скорости к промежутку времени, за которое это изменение произошло. <a>=Δυ/Δt.

Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения. a=dυ/dt.

Тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории.) aτ=dυ/dt.

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению (направлена к центру кривизны траектории). an2/r.

 

3. Угловая скорость. Угловое ускорение.

Угловая скорость– векторная величина, характеризующая быстроту вращения тела; отношение угла поворота ко времени, за которое этот поворот произошёл; вектор, определяемый первой производной угла поворота тела по времени. Вектор угловой скорости направлен вдоль оси вращения по правилу правого винта. ω=φ/t=2π/T=2πn, где T – период вращения, n – частота вращения. ω=limΔt→0Δφ/Δt=dφ/dt.

Угловое ускорение – вектор, определяемый первой производной угловой скорости по времени. При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. Вторая производная угла поворота по времени. При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор ε сонаправлен вектору φ, при замедленном – противонаправлен ему. ε=dω/dt.


4. Принцип инерции (Первый закон Ньютона). Инерциальные системы отсчёта. Принцип относительности.

Первый закон Ньютона (закон инерции): всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют законом инерции.

Первый закон Ньютона утверждает существование инерциальных систем отсчёта.

Инерциальная система отсчёта – это система отсчёта, относительно которой свободная материальная точка неподверженная воздействию других тел, движется равномерно прямолинейно; это такая система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы.

Принцип относительности - фундаментальный физический закон, согласно которому любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе в состоянии равномерного прямолинейного движения. Состояния движения или покоя определяются по отношению к произвольно выбранной инерциальной системе отсчета. Принцип относительности лежит в основе специальной теории относительности Эйнштейна.

Принцип относительности (Галилея): никакие опыты (механические, электрические, оптические), проведённые внутри данной инерциальной системы отсчёта, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчёта к другой.

 

5. Преобразования Галилея.

Рассмотрим две системы отсчета: инерциальную систему К (с координатами x,y,z), которую условно будем считать неподвижной и систему К’ (с координатами x’,y’,z’), движущуюся относительно К равномерно и прямолинейно со скоростью U (U = const). Найдем связь между координатами произвольной точки А в обеих системах. r = r’+r0=r’+Ut. (5.1.)

Уравнение (5.1.) можно записать в проекциях на оси координат:

x=x’+Uxt;

y=y’+Uyt; (5.2.)

z=z’+Uzt;

Уравнение (5.1.) и (5.2.) носят название преобразований координат Галилея.

 

6. Масса. Импульс. Сила. Второй закон Ньютона.

Массатела – физическая величина, являющаяся мерой его инерционных (инертная масса) и гравитационных (гравитационная масса) свойств. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу.

Сила – векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Импульс материальной точки – векторная величина, численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости; количество движения. p=mυ.

Второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела). a=F/m или F=ma=mdυ/dt.

Более общая формулировка закона Ньютона – скорость изменения импульса материальной точки равна действующей на неё силе. F=dp/dt.

 

7. Понятие состояния в классической механике. Уравнение движения материальной точки.

Основной закон динамики материальной точки (второй закон Ньютона) выражает принцип причинности в классической механике, так как устанавливает однозначную связь между изменением с течением времени состояния движения и положения в пространстве материальной точки и действующей на нее силой. Этот закон позволяет, зная начальное состояние материальной точки (ее координаты и скорость в какой – либо начальный момент времени) и действующую на нее силу, рассчитать состояние материальной точки в любой последующий момент времени.

Уравнение движения материальной точки.

Более общая формулировка второго закона Ньютона:скорость изменения импульса материальной точки равна действующей на нее силе. Это выражение…   8. Взаимодействия и силы.

Уравнение движения материальной точки.

Более общая формулировка второго закона Ньютона:скорость изменения импульса материальной точки равна действующей на нее силе. Это выражение… Уравнение движения системы частиц Fcис=∑ni=1dpi/dt, где n – число частиц…  

Уравнение движения абсолютно твёрдого тела

Где первые три уравнения – уравнения поступательного движения (движения центра масс), остальные – уравнения вращательного движения вокруг оси,… 25. Вращение твёрдого тела относительно неподвижной оси. Уравнения движения. … Вращением твёрдого тела вокруг неподвижной оси называется движение твёрдого тела, при котором все точки прямой, жёстко…

Ангармонический осциллятор – это нелинейная и негармоническая колебательная система, совершающая колебания, не описываемые ни какими законами (синуса, косинуса и др.). Невозможно предсказать движение ангармонического осциллятора. Причинами возникновения ангармонических колебаний являются нелинейности колебательной системы (осциллятора). Например: нелинейность возвращающей силы, нелинейность силы трения.

Колебания ангармонического осциллятора не синусоидальны.

Примером ангармонического осциллятора может служить математический маятник при больших амплитудах или физический маятник с деформированной пружиной (сильно сжатой или сильно растянутой).

Ангармонические осцилляторы имеют не одно, а несколько состояний равновесия, относительно которых могут происходить различные колебания непредсказуемого поведения.

 

40. Понятия о параметрических колебаниях и автоколебаниях.

Параметрические колебания – это колебания, происходящие за счёт изменения параметров колебательной системы (воздействие на какие-либо параметры системы). Например: изменение длины нити математического маятника, изменение массы груза; изменение упругих свойств (коэффициента жесткости) пружины физического маятника, также изменение массы груза.

Автоколебания – незатухающие колебания, поддерживаемые в диссипативной системе за счёт постоянного внешнего (не колебательного) источника энергии, причём свойства этих колебаний определяются самой системой. Автоколебания принципиально отличаются от свободных незатухающих колебаний, происходящих без действия сил, а также от вынужденных колебаний, происходящих под действием внешней периодической силы. Автоколебательная система сама управляет внешними воздействиями, обеспечивая согласованность поступления энергии определёнными порциями в нужный момент времени (в такт с её колебаниями). Примерами автоколебательных систем могут служить часы, двигатели внутреннего сгорания, паровые турбины, ламповый генератор и т.д.

Параметрические колебания и автоколебания являются родственными по характеру поддержания колебаний.

 

41. Колебания в системах с большим числом степеней свободы. Нормальные моды и частоты.

Для упрощения решения задач разбиваем колебательную систему на систему отдельных независимых друг от друга колебательных квазисистем. Затем рассматриваем каждую систему как отдельный независимый осциллятор.

Нормальные моды - это типы колебаний (нормальные колебания) в распределенных колебательных системах.

Нормальные частоты – это типы частот в распределённых колебательных системах.

 

42. Волновое движение. Виды волн.

Колебания, возбуждённые в какой-либо точке среды, распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой.

Чем дальше расположены частицы среды от источника колебаний, тем позднее она начнёт колебаться.

При изучении распространения колебаний не учитывается дискретное (молекулярное) строение среды и среда рассматривается как сплошная, т.е. непрерывно распределённая в пространстве и обладающая упругими свойствами.

Волновой процесс (или волна) – это процесс распространения колебаний в сплошной среде, т.е. непрерывно распределённой в пространстве и обладающей упругими свойствами. Основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

Среди разнообразных волн встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны.

Упругие (или механические волны) – это механические возмущения, распространяющиеся в упругой среде. Упругие волны бывают продольные и поперечные. В продольных волнах частицы среды колеблются в направлении распространении волны, а в поперечных – в плоскостях, перпендикулярных направлению распространению волны. Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими.

Электромагнитные волны – это переменное электромагнитное поле, распространяющееся в пространстве с конечной скоростью.


43. Уравнение плоской бегущей волны. Волновые уравнения.

Бегущими волнами называются волны, которые переносят в пространстве энергию. Рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось x совпадает с направлением распростронения волны. В данном случае волновые поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково то смещение ξ будет зависеть только от х и t, т.е. ξ=ξ(x,t). Если колебания точек, лежащих в плоскости х=0, описываются функцией ξ(0,t)=Acosωt, то частицы среды колеблются по тому же закону, но её колебания будут отставать по времени от колебаний источника на τ, так как для прохождения волной расстояния х требуется время τ=х/υ, где υ – скорость распростронения волны. Тогда уравнение колебания частиц примет вид: ξ(x,t)=Acosω(t-x/υ) (43.1).

Уравнение (43.1) есть уравнение бегущей волны. В общем случае уравнение плоской волны, не поглощающей энергию имеет вид ξ(x,t)=Acos[ω(t-x/υ)+φ0]

Уравнение сферической волны – волны, волновые поверхности которой имеют вид концентрических сфер, имеет вид ξ(r,t)=[A0cos(ωt-kr+ φ0)]/r, где r – расстояние от центра волны до рассматриваемой точки среды и k – волновое число k=2π/λ=2π/υT=ω/υ.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением– дифференциальным уравнением в частных производных

2ξ/∂x2+∂2ξ/∂y2+∂2ξ/∂z2=∂2ξ /υ2∂t2. или Δξ=∂2ξ /υ2∂t2, где υ – фазовая скорость, Δ=∂2/∂x2+∂2/∂y2+∂2/∂z2 – оператор Лапласа.

 

44. Синусоидальные волны. Фазовая скорость. Длина волны.

Синусоидальная волна – бесконечная, не затухающая упругая волна.

Если волна синусоидальная то ∂2s/∂t2=-ω2s и Δ2s+k2s=0. Скорость распростронения синусоидальной волны называется фазовой скоростью. Она равна скорости перемещения в пространстве точек поверхности, соответствующей любому фиксированному значению фазы синусоидальной волны. В случае плоской синусоидальной волны dx/dt=ω/k=υ. В случае сферической синусоидальной волны dr/dt=ω/k=υ. В случае продольной волны в однородной газообразной среде υ=(K/ρ)1/2, где ρ – плотность газа, K – коэффициент упругости среды. В случае поперечных упругих волн не ограниченной изотропной твёрдой среде υ=(G/ρ)1/2, где G – модуль сдвига среды, ρ - её плотность. В случае продольных волн в тонком стержне υ=(E/ρ)1/2, где E – модуль Юнга для материала стержня, ρ - его плотность. В случае поперечных волн в струне υ=(F/ρS)1/2, где F – сила натяжения струны, ρ и S – плотность материала струны и площадь её поперечного сечения.

Длина волны (λ) – расстояние между ближайшими частицами, колеблющимися в одинаковой фазе. Длина волны равна тому расстоянию, на которое распространяется определённая фаза колебания за период.

 

45. Принцип суперпозиции волн. Групповая скорость.

Принцип суперпозиции (наложения) волн – при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов. Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства. За скорость распростронения не гармонической волны принимают скорость перемещения максимума амплитуды волны, рассматривая тем самым максимум в качестве центра волнового пакета. При условии что tdω-xdk=const, получим dx/dt=dω/dk=U. Скорость U и есть групповая скорость. Её можно определить как скорость движения группы волн, образующих в каждый момент времени, локализованный в пространстве волновой пакет. В теории относительности доказывается, что групповая скорость U≤с, в то время как для фазовой скорости ограничения не существует.

 

46. Механика жидкости и газов. Состояние сплошной среды и способы его описания.

Гидроаэромеханика– это раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимодействие между собой и обтекаемыми ими твёрдыми телами, - используют единый подход к изучению жидкостей и газов. В механике с большой степенью точности рассматриваются жидкости и газы как сплошные, непрерывно распределённые в занятой ими части пространства.

Сплошная среда – это среда, непрерывно распределённая в пространстве и обладающая упругими свойствами.

Плотность жидкости мало зависит от давления. Плотность же газов от давления зависит существенно. Из опыта известно, что сжимаемостью жидкости и газа во многих задачах можно пренебречь и пользоваться единым понятием несжимаемой жидкости – жидкость,

плотность которой всюду одинакова и не изменяется со временем. Физическая величина, определяемая нормальной силой, действующей со стороны жидкости на единицу площади, называется давлением жидкости. Давление при равновесии жидкостей (газов) подчиняется закону Паскаля – давление в любом месте покоящееся жидкости одинаково по всем направлениям, при чём давление одинаково передаётся по всему объёму, занятому покоящейся жидкостью. На тело, погружённое в жидкость, действует выталкивающая сила, определяемая законом Архимеда – на тело, погружённое в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости (газа).


47. Механика жидкости и газов. Уравнение непрерывности.

Гидроаэромеханика – это раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимодействие между собой и обтекаемыми ими твёрдыми телами, - используют единый подход к изучению жидкостей и газов. В механике с большой степенью точности рассматриваются жидкости и газы как сплошные, непрерывно распределённые в занятой ими части пространства.

Движение жидкости называется течением, а совокупность частиц движущейся жидкости – потоком. Графически движения жидкости изображаются с помощью линий тока. Часть жидкости, ограниченную линиями тока, называют трубкой тока.

Рассмотрим какую-либо трубку тока. Выберем два её сечения S1 и S2, перпендикулярно направлению скорости. За время Δt через сечение S проходит объём жидкости SυΔt; следовательно, за время 1с. через S1 пройдёт объм жидкости S1υ1, где υ1 – скорость течения жидкости в месте сечения S1, соответственно через S2, за 1с пройдёт объём S2υ2. Предполагается, что скорость жидкости в сечении постоянна. Если жидкость несжимаема, то через сечение S2 пройдёт такой же объём жидкости как и через сечение S1, т.е. S1υ1=S2υ2=const. Следовательно, произведение скорости течения несжимаемой жидкости на поперечное сечение трубки тока есть величина постоянная для данной трубки тока. Это соотношение называется уравнением неразрывности для несжимаемой жидкости.

Согласно уравнению неразрывности для несжимаемой жидкости объем, занимаемый жидкостью, остается постоянным, т.е.

Уравнение Бернулли , где ρ – плотность жидкости.

Уравнение Бернулли – это выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости.

 

48. Движение идеальной жидкости. Стационарное течение.

В реальной жидкости течение усложняется тем, что между отдельными слоями потока происходит внутреннее трение. Однако в ряде случаев влияние внутреннего трения невелико и им можно пренебречь. Жидкость, в которой отсутствует внутреннее трение, называется идеальной жидкостью.

Для кинематического описания течения жидкости обычно используется метод Эйлера, который заключается в задании поля скоростей жидкости υ, то есть в зависимости υ от радиус-вектора r рассматриваемой точки в потоке и от времени t: υ=υ(r,t).

В случае установившегося (стационарного) течения скорость течения не зависит явно от времени, то есть ∂υ/∂t=0.

 

49. Ламинарное течение вязкой жидкости. Турбулентность.

Вязкость (внутреннее трение) – это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой.

Существуют два течения жидкостей. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблюдается при небольших скоростях ее движения.

При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой.

 

50. Методы описания макроскопических систем.

Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют следующие методы:

Статистический (молекулярно – кинетический) и термодинамический.

Также выделяют следующие методы исследования макроскопических систем: феноменологический метод, терминологический метод, модельный метод, который делится на динамический и статистический методы.

 

51. Понятие о тепловом равновесии.

Тепловое равновесие – это состояние максимального хаоса в системе, состояние порядка в системе неустойчиво. Состояние хаоса – максимально устойчивое и система постоянно стремится к этому состоянию без внешнего воздействия, т.е. система приходит в тепловое равновесие из любого состояния.

Динамическое описание макроскопической системы в состоянии теплового равновесия невозможно.

Основными чертами теплового равновесия являются: непредсказуемость движения частиц (т.е. невозможно определить положение частицы в следующий момент времени) и необратимость движение частицы (т.е. невозможно узнать предыдущее положение частицы)

Термодинамические параметры (параметры состояния) – совокупность физических величин, характеризующих свойства термодинамической системы.

Такие параметры как температура, давления, плотность, могут изменяться с течением времени или при переходе от одной точки к другой.

Система находится в равновесном состоянии, если все её параметры остаются неизменными без каких-либо внешних воздействий. В частности, если газ находится в равновесном состоянии под действием только поверхностных сил (это силы, действующие на поверхность элементы тела; в случае равновесия жидкости или газа - это сила давления), его температура, давление, плотность и т.д. одинаковы ко всему объёму и не измены.


52. Макроскопические параметры. Уравнения состояния.

Термодинамические параметры (параметры состояния) – совокупность физических величин, характеризующих свойства термодинамической системы.

Газ – это совокупность слабо связанных молекул. Для описания определённого состояния массы газа надо знать некоторые определяющие величины, называемые параметрами:

1. V – объём газа. Газ занимает весь предоставленный ему объём. В отсутствии массовых сил статистически наиболее вероятно равномерное распределение молекул газа по объёму.

2. T – температура газа. Температура – это физическая величина, характеризующая состояния термодинамического равновесия макроскопической системы.

3. P – давление газа. Давление газа – средняя сила удара молекул о тело, отнесённое к единицы её поверхности.

К параметрам газа можно отнести и его плотность ρ.

Состояние некоторой массы газа определяется тремя термодинамическими параметрами. Эти параметры связаны друг с другом уравнением состояния, которое в общем виде дается выражением: F(P,V,T)=0, где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клайперон вывел уравнение состояния идеального газа, объединив законы Бойля-Мариотта и Гей-Люссака. В соответствии с законами Бойля-Мариотта и Гей-Люссака величина PV/T остаётся постоянной, т.е. PV/T=B=const.

 

53. Уравнение состояния идеального газа.

Идеальным называется газ, молекулы которого имеют пренебрежимо малый объём и не взаимодействуют друг с другом на расстоянии; это идеализированная модель, согласно которой:

1. Собственный объём молекул газа пренебрежимо мал по сравнению с объёмом сосуда;

2. Между молекулами газа отсутствуют силы взаимодействия;

3. Столкновение молекул газа между собой и со стенками сосуда абсолютно упругие.

Русский учёный Д.И. Менделеев объединил уравнение Клайперона с законом Авагадро, отнеся уравнение Клайперона к одному молю, использовав молярный объём Vm. Согласно закону Авагадро, при одинаковых давлении и температуре моли всех газов занимают одинаковый молярный объём, поэтому постоянная В будет одинакова для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению

PVm=RT – удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клайперона-Менделеева.

 

54. Функции состояния. Внутренняя энергия.

1.Закон Бойля-Мариотта: произведение объёма данной массы газа на его давление есть величина постоянная при неизменной температуре.

2.Закон Гей-Люссака: коэффициенты объёмного расширения всех газов одинаковы и равны (отношение объёма данной массы газа к его температуре есть величина постоянная при неизменном давлении).

3.Закон Шарля: температурные коэффициенты давления всех газов одинаковы и равны (отношение давления данной массы газа к его температуре есть величина при неизменном объёме).

Важной характеристикой термодинамической системы является её внутренняя энергия U – энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер, ионов и т.д.) и энергия взаимодействия этих частиц; энергия всевозможных видов движения и взаимодействия всех частиц, образующих систему.

Внутренняя энергия – это однозначная функция термодинамического состояния системы, т.е. в каждом состоянии система обладает вполне определённой внутренней энергией (она не зависит от того, как система пришла в данное состояние).

 

55. Распределение Больцмана.

В классической статистической физики выводятся закон Больцмана о равномерном распределении энергии по степеням свободы молекул – для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходятся в среднем кинетической энергии, равная kT/2, а на каждую колебательную степень свободы – в среднем энергия, равная kT.

Колебательная степень обладает вдвое большей энергией, так как на неё приходятся не только кинетическая энергия (как в случае поступательного и вращательного движения), но и потенциальная, причем среднее значения кинетической и потенциальной энергий одинаково. Таким образом средняя энергия молекулы <ε>=ikT/2, где i – сумма числа вращательных, числа поступательных и удвоенного числа колебательных степеней свободы молекулы: i=iпост+iвращ+2iколеб. Так как в идеальном газе взаимная потенциальная энергия равна нулю (молекулы между собой не взаимодействуют), то внутренняя энергия, отнесённая к одному молю газа, будет равна сумме кинетических энергий NA молекул: Um=ikTNA/2=iRT/2. Внутренняя энергия для произвольной массы газа U=miRT/2M=νiRT/2, где М – молярная масса, ν – количество вещества.


56. Распределение Максвелла.

Закон распределения по скоростям теплового движения молекул газа, находящегося в состоянии термодинамического равновесия, впервые был найден Д.К. Максвеллом, называется распределением Максвелла. Скорости молекул удобно изображать в виде полярных векторов в трёхмерном пространстве скоростей. Пусть dn – число молекул в единице объёма газа, модули скоростей которых заключены в пределах от U до U+dU. Концы векторов этих молекул должны лежать в пространстве скоростей внутри шарового слоя. Объём этого слоя dω=4πU2dU. При тепловом движении из-за его беспорядочности все направления скоростей молекул равновероятны. Поэтому число dn должно быть пропорционально как числу n0 молекул в еденице объёма газа, так и объёму dω шарового слоя. Кроме того, dn должно зависить от модуля скорости U. Таким образом dn=n0f(U)×4πU2dU=n0F(U)dU, где F(U)=4πU2f(U). Функция распределения F(U)=dn/n0dU представляет собой долю молекул, модули скоростей которых находятся в шаровом слое единичной толщины. Функция F(U) называется функцией распределения молекул газа по модулям их скоростей.

Закон распределения молекул по скоростям (закон Максвелла): dn=(m0/2πkT)3/2×e-(m0U×U)/2kT.

Uв – наиболее вероятная скорость молекул газа.

График

 
 

 


57. Явления переноса. Диффузия.

Если в газе существует пространственная неоднородность плотности, температуры при скорости упорядоченного перемещения отдельных слоев газа, то происходит самопроизвольное выравнивание этих неоднородностей. В газе возникают потоки энергии, вещества, а также импульса упорядоченного движения частиц. Эти потоки, характерные для неравновесных состояний газа ,являются физической основой особых процессов, объединенных под названием явления переноса.

Диффузией в простейшем случае называется явлением самопроизвольного взаимного проникновения и перемешивания частиц двух соприкасающихся газов (диффузия может происходить также в жидкостях и твёрдых телах). В химически чистых газах при постоянной температуре диффузия возникает вследствие неодинаковой плотности в различных частях объёма газа. Для смеси газов диффузия вызывается различием в концентрациях отдельных газов в разных частях объёма смеси. При постоянной температуре явление диффузии заключается в переносе массы газа из мест с большей концентрацией данного газа в места с меньшей его концентрацией.

Явление диффузии для химически однородного газа подчиняется закону Фика:

, где jm – плотность потока массы – величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси Ox, D – диффузия (коэффициент диффузии), dρ/dx – градиент плотности.

Коэффициент диффузии численно равен плотности потока массы при градиенте плотности, равном единице. D=1/3<υ><l>, где <υ> - средняя скорость теплового движения молекул, <l> - средняя длина свободного пробега.

 

58. Явление переноса. Теплопроводность.

Если в газе существует пространственная неоднородность плотности, температуры при скорости упорядоченного перемещения отдельных слоев газа, то происходит самопроизвольное выравнивание этих неоднородностей. В газе возникают потоки энергии, вещества, а также импульса упорядоченного движения частиц. Эти потоки, характерные для неравновесных состояний газа ,являются физической основой особых процессов, объединенных под названием явления переноса.

Теплопроводность возникает при наличии разности температур, вызванной какими-либо внешними причинами. При этом молекулы газа в разных местах его объёма имеют разные средние кинетические энергии и хаотическое тепловое движение молекул приводят к направленному переносу внутренней энергии газа. Молекула, попавшая из нагретых частей объёма газа в более холодные, отдают часть своей энергии окружающим частицам. Наоборот, медленнее движущиеся молекулы, попадая из холодных частей объёма газа в более нагретые, увеличивают свою энергию за счёт соударений с молекулами, имеющими большие скорости и энергии.

Перенос энергии в форме теплоты подчиняется закону Фурье:

, где jE – плотность теплового потока – величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку перпендикулярную оси Ox, λ – теплопроводность, dT/dx – градиент температуры.

λ=1/3СVρ<υ><l>, где CV – удельная теплоёмкость газа при постоянном объёме, ρ – плотность газа, <υ> - средняя скорость теплового движения молекул, <l> - средняя длина свободного пробега.


59. Явление переноса. Вязкость.

Если в газе существует пространственная неоднородность плотности, температуры при скорости упорядоченного перемещения отдельных слоев газа, то происходит самопроизвольное выравнивание этих неоднородностей. В газе возникают потоки энергии, вещества, а также импульса упорядоченного движения частиц. Эти потоки, характерные для неравновесных состояний газа, являются физической основой особых процессов, объединенных под названием явления переноса.

Внутренне трение (вязкость)связанно с возникновением сил трения между слоями газов, перемещающимися параллельно друг другу с различными по модулю скоростями (в жидкости вязкость возникает таким же образом). Со стороны слоя, движущегося быстрее, на более медленно движущийся слой действует ускоряющая сила. Наоборот, медленно перемещающиеся слои тормозят более быстро движущиеся слои газа. Силы трения, которые при этом возникают, направлены по касательной к поверхности соприкосновения слоёв. С молекулярно-кинетической точки зрения причиной вязкости является наложение упорядоченного движения слоёв газа с различными скоростями хаотического теплового движения молекулы.

Сила внутреннего трения между двумя слоями газа (жидкости) подчиняются закону Ньютона:

, где η – динамическая вязкость, dυ/dx – градиент скорости, S – площадь, на которую действует сила F.

Выражение закона Ньютона можно представить также в виде: , где jp – плотность потока импульса – величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси Ox через единичную площадку, перпендикулярную оси Ox.

η=1/3ρ<υ><l>, где ρ – плотность газа, <υ> - средняя скорость теплового движения молекул, <l> - средняя длина свободного пробега.

 

60. Тепловые процессы.

Под термодинамическим процессом понимают всякое изменение состояния рассматриваемой термодинамической системы, характеризующееся изменением её термодинамических параметров. Термодинамический процесс называют равновесным, если в этом процессе система проходит непрерывный ряд бесконечно близких термодинамически равновесных состояний. Реальные процессы изменения состояния системы всегда происходит с конечной скоростью, и поэтому не могут быть равновесными. Очевидно, однако, что реальный процесс изменения состояния системы будет тем ближе к равновесным, чем медленнее он совершается, поэтому равновесные процессы называют квазистатическими.

Примерами простейших термодинамических процессов могут служить следующие процессы:

а) изотермический процесс, при котором температура системы не изменяется;

б) изохорный процесс, происходящий при постоянном объёме системы;

в) изобарный процесс, происходящий при постоянном давлении в системе.

Большую роль играет адиабатный процесс, который происходит без теплообмена между системой и внешней средой.

 

61. Работа газа при изменении объёма. Теплота.

Обмен энергией между закрытой термодинамической системой и внешними телами может осуществляться двумя качественно различными способами: путём совершения работы и путём теплообмена. Энергия, передаваемая при этом рассматриваемой термодинамической системе внешними телами, называется работой, совершаемой над системой.

Энергия, передаваемая системе внешними телами путём теплообмена, называется теплотой получаемой системой от внешней среды.

В отсутствии внешних силовых полей обмен энергией между неподвижной системой и внешней средой может осуществляться путём совершения работы лишь в процессе изменения объёма и формы системы. При этом работа, совершаемая внешними телами над системой, численно равна и противоположна по знаку работе совершаемой самой системой над внешней средой.

Полная работа при изменении объёма газа А=v1v2PdV.

Понятие теплоты и работы имеют смысл только в связи с процессом изменения системы.

 

62. Первое начало термодинамики.

Существование двух способов передачи энергии в термодинамической системе позволяет проанализировать с энергетической точки зрения равновесные процессы перехода системы из какого-либо начального состояния 1 в другое состояние 2. Изменение внутренней энергии системы ΔU1-2=U2-U1 в таком процессе равно сумме работы A’1-2, совершаемой над системой внешними силами, и теплоты Q1-2 сообщённой системе. Работа, совершаемая над системой внешними силами численно равна и противоположна по знаку работе, совершаемой самой системой против внешних сил в том же процессе перехода.

Таким образом Q1-2=ΔU1-2+A1-2. (62.1).

Уравнение (62.1) является математической записью первого закона (первого начала) термодинамики: теплота, сообщаемая системе, расходуется на изменение внутренней энергии системы и на совершение системой работы против внешних сил.


63. Теплоёмкость идеального газа.

Теплоёмкость – это физическая величина, численно равная отношению количества теплоты, сообщаемого телу, к изменению температуры тела в термодинамическом процессе.

Классический статистический метод изучения тепловых свойств веществ позволил теоретически вычислить теплоёмкости газов и твёрдых тел.

Классическая теория теплоемкости газов приводит к серьезным расхождениям с опытными данными.

Молярные теплоёмкости CV и CP: CV=iR/2; CP=(i+2)R/2.

Уравнение Майера показывает, что CP всегда больше CV на величину молярной газовой постоянной. Это объясняется тем, что при нагревании газа при постоянном давлении требуется ещё дополнительное количество теплоты на совершение работы расширения газа, так как постоянство давления обеспечивается увеличением объёма газа.

Удельная теплоёмкость вещества – величина, определяемая количеством теплоты, необходимым для нагревания 1кг вещества на 1К.

Формула, связывающая удельную теплоёмкость с молярной: Cm=cM, где M – молярная масса вещества.

 

64. Энтропия.

Помимо внутренней энергии, в термодинамике широко пользуются и другими функциями состояния термодинамической системы.

Для выяснения физического содержания этого понятия рассматривают приведённое количество теплоты – физическая величина, равная отношению количества теплоты, полученного телом в изотермическом процессе, к температуре теплоотдающего тела. Приведённое количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно δQ/T.

Приведённое количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю.

Подынтегральное выражение δQ/T – полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние.

Энтропия– это функция состояния, полным дифференциалом которой является δQ/T.

Для обратимых процессов изменение энтропии ΔS=0, для необратимых процессов ΔS>0. Так как реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению её энтропии – принцип возрастания энтропии.

Формула БольцманаS=klnW, где k – постоянная

 

65. Второе и третье начало термодинамики.

Появление второго начала термодинамики – необходимость дать ответ на вопрос, какие процессы в природе возможны, а какие нет – определяет направления развития процессов.

Используя понятия энтропии и неравенства Клазиуса, второе начало термодинамики можно сформулировать как закон возрастания энтропии в замкнутой системе при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает.

Второе начало термодинамики (формулировки).

2. По Клазиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более… Первые два начала термодинамики дают недостаточно сведений о поведении…  

– Конец работы –

Используемые теги: пространство, время, механическое, движение, система, отсчёта0.085

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пространство и время. Механическое движение. Система отсчёта

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Лекция 1. Тема: Операционная система. Определение. Уровни операционной системы. Функции операционных систем. 1. Понятие операционной системы
Понятие операционной системы... Причиной появления операционных систем была необходимость создания удобных в... Операционная система ОС это программное обеспечение которое реализует связь между прикладными программами и...

Механическое движение. Система отсчета
Математическое введение... Глава Кинематика...

ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ. СИГНАЛЫ И КАНАЛЫ ЭЛЕКТРИЧЕСКОЙ СВЯЗИ. СИСТЕМЫ СВЯЗИ С ЧАСТОТНЫМ РАЗДЕЛЕНИЕМ КАНАЛОВ. ЦИФРОВЫЕ СИСТЕМЫ ПЕРЕДАЧИ
Лабораторные работы часа... Практические занятия часа... Всего аудиторных занятий часов...

Механическое движение. Система отсчета. Материальная точка. Абсолютно твердое тело. Границы применимости классической механики
Механическое движение Система отсчета Материальная точка Абсолютно твердое...

В теоретической механике изучается движение тел относительно других тел, представляющие собой физические системы отсчёта
Механика позволяет не только описывать но и предсказывать движение тел устанавливая причинные связи в определ нном весьма широком круге... Основные абстрактные модели реальных тел материальная точка имеет массу... Из них системы...

Система координат действия и общая теория систем действия: культура, личнсть и место социальных систем
В центре данного исследования стоит разработка теоретической схемы. Систематическое рассмотрение ее эмпирического использования будет предпринято… Основные положения системы координат действия подробно излагались ранее, и… При помощи ее анализируются структура и процессы систем, состоящих из отношений таких элементов к их ситуациям,…

Системы отсчета. Кинематические характеристики. Виды механического движения
Содержание и структура курса общей физики Предмет механики... Физика наука о простейших и вместе с тем наиболее общих формах движения и... Курс общей физики содержит разделов механика молекулярная физика и термодинамика электродинамика оптика...

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы
При аксиоматическом построении теории по существу все утверж дения выводятся путем доказательства из аксиом Поэтому к системе аксиом предъявляются... Система аксиом называется непротиворечивой если из нее нельзя логически... Если система аксиом не обладает этим свойством она не может быть пригодной для обоснования научной теории...

В теоретической механике изучается движение тел относительно других тел, представляющие собой физические системы отсчёта
В теоретической механике изучается движение тел относительно других тел представляющие собой физические системы отсч та... Механика позволяет не только описывать но и предсказывать движение тел... Основные абстрактные модели реальных тел...

0.034
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам