рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

КУРС ЛЕКЦИЙ ПО БИОХИМИИ

КУРС ЛЕКЦИЙ ПО БИОХИМИИ - раздел Химия, Министерство Здравоохранения Республики Беларусь   Учр...

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

 

уЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

 

 

Кафедра биологической химии

 

КУРС ЛЕКЦИЙ ПО БИОХИМИИ

Пособие для студентов лечебного и педиатрического факультетов   Гродно

УДК

ББК

ISBN

© УО «ГрГМУ», 2009


СПИСОК СОКРАЩЕНИЙ

 


АДГ – антидиуретический гормон (вазопрессин)

АДФ – аденозиндифосфорная кислота, аденозиндифосфаты

АКТГ – адренокортикотропный гормон

АлАТ – аланинаминотрансфераза

АМФ – аденозинмонофосфат

цАМФ – циклический аденозин-3',5'-монофосфат

АсАТ – аспартатаминотрансфераза

АТФ – аденозинтрифосфорная кислота

АТФ-аза – аденозинтрифосфатаза

АХАТ – КоА-холестеролацилтрансфераза

ГАМК – γ-аминомасляная кислота

ГДФ – гуанозиндифосфат

ГТФ – гуанозинтрифосфат

ДНК – дезоксирибонуклеиновая кислота

ДОФА – диоксифенилаланин

ДФФ – диизопропилфторфосфат

ИМФ – инозинмонофосфат

КоА – кофермент (коэнзим) А

КоQ – кофермент (коэнзим) Q

ЛДГ – лактатдегидрогеназа

ЛП – липопротеины

ЛПВП – липопротеины высокой плотности

ЛПЛ – липопротеинлипаза

ЛПНП – липопротеины низкой плотности

ЛПОНП – липопротеины очень низкой плотности

ЛППП – липопротеины промежуточной плотности

ЛХАТ – лецитинхолестеролацилтрансфераза

МАО – моноаминооксидаза

ПОЛ – перекисное окисление липидов

ПЦР – полимеразная цепная реакция

РНК – рибонуклеиновая кислота

мРНК – матричная РНК

рРНК – рибосомальная РНК

тРНК – транспортная РНК

СТГ – соматотропный гормон

ТАГ – триацилглицеролы

ТДФ – тиаминдифосфат

ТТГ – тиреотропный гормон

УДФ – уридиндифосфат

УТФ – уридинтрифосфат

ФАФС – 3-фосфоаденозин-5-фосфосульфат

ХМ – хиломикроны

ЦНС – центральная нервная система

ЦТД – цепь тканевого дыхания

ЦТК – цикл трикарбоновых кислот, цикл Кребса


глава 1
ВВЕДЕНИЕ В БИОХИМИЮ

Биологическая химия – наука, изучающая химическую природу веществ, входящих в состав живых организмов, превращения этих веществ (метаболизм), а также связь этих превращений с деятельностью отдельных тканей и всего организма в целом.

Биохимия –это наука о молекулярных основах жизни. Существует несколько причин тому, что в наши дни биохимия привлекает большое внимание и быстро развивается.

Во-первых, биохимикам удалось выяснить химические основы ряда важнейших биохимических процессов.

Во-вторых, обнаружены общие пути превращения молекул и общие принципы, лежащие в основе разнообразных проявлений жизни.

В-третьих, биохимия оказывает все более глубокое воздействие на медицину.

В-четвертых, быстрое развитие биохимии в последние годы позволило исследователям приступить к изучению самых острых, коренных проблем биологии и медицины.

 

История развития биохимии

В истории развития биохимических знаний и биохимии как науки можно выделить 4 периода.

I период – с древних времен до эпохи Возрождения (XV век). Это период практического использования биохимических процессов без знаний их теоретических основ и первых, порой очень примитивных, биохимических исследований. В самые отдаленные времена люди уже знали технологию таких производств, основанных на биохимических процессах, как хлебопечение, сыроварение, виноделие, дубление кож. Использование растений в пищевых целях, для приготовления красок, тканей наталкивало на попытки понять свойства отдельных веществ растительного происхождения.

II период – от начала эпохи Возрождения до второй половины 19 века, когда биохимия становится самостоятельной наукой. Великий исследователь того времени, автор многих шедевров искусства, архитектор, инженер, анатом Леонардо да Винчи провел опыты и на основании их результатов сделал важный для тех лет вывод, что живой организм способен существовать только в такой атмосфере, в которой может гореть пламя.

В этот период следует выделить работы таких ученых, как Парацельс, М. В. Ломоносов, Ю. Либих, А. М. Бутлеров, Лавуазье.

III период – со второй половины 19 века до 50-х годов 20 века. Ознаменован резким увеличением интенсивности и глубины биохимических исследований, объема получаемой информации, возросшим прикладным значением – использованием достижений биохимии в промышленности, медицине, сельском хозяйстве. К этому времени относятся работы одного из основоположников отечественной биохимии А. Я. Данилевского (1838-1923), М. В. Ненцкого (1847-1901). На рубеже 19 и 20 веков работал крупнейший немецкий химик-органик и биохимик Э. Фишер (1862-1919). Им были сформулированы основные положения полипептидной теории белков, начало которой дали исследования А. Я. Данилевского. К этому времени относятся работы великого русского ученого К. А. Тимирязева (1843-1920), основателя советской биохимической школы А. Н. Баха, немецкого биохимика О. Варбурга. В 1933 г. Г. Кребс подробно изучил орнитиновый цикл образования мочевины, а 1937 г. датируется открытие им же цикла трикарбоновых кислот. В 1933 г. Д. Кейлин (Англия) выделил цитохром С и воспроизвел процесс переноса электронов по дыхательной цепи в препаратах из сердечной мышцы. В 1938 г. А. Е. Браунштейн и М. Г. Крицман впервые описали реакции трансаминирования, являющиеся ключевыми в азотистом обмене.

IV период – с начала 50-х годов 20 века по настоящее время. Характеризуется широким использованием в биохимических исследованиях физических, физико-химических, математических методов, активным и успешным изучением основных биологических процессов (биосинтез белков и нуклеиновых кислот) на молекулярном и надмолекулярном уровнях.

Вот краткая хронология основных открытий в биохимии этого периода:

1953 г. – Дж. Уотсон и Ф. Крик предложили модель двойной спирали строения ДНК.

1953 г. – Ф. Сенгер впервые расшифровал аминокислотную последовательность белка инсулина.

1961 г. – М. Ниренберг расшифровал первую «букву» кода белкового синтеза – триплет ДНК, соответствующий фенилаланину.

1966 г. – П. Митчелл сформулировал хемиосмотическую теорию сопряжения дыхания и окислительного-фосфорилирования.

1969 г. – Р. Мерифильд химическим путем синтезировал фермент рибонуклеазу.

1971 г. – в совместной работе двух лабораторий, руководимых Ю. А. Овчинниковым и А. Е. Браунштейном, установлена первичная структура аспартатаминотрансферазы – белка из 412 аминокислот.

1977 г. – Ф. Сенгер впервые полностью расшифровал первичную структуру молекулы ДНК (фаг φ Х 174).

 

Развитие медицинской биохимии в Беларуси

 

С момента создания в 1923 г. в Белорусском государственном университете кафедры биохимии началась профессиональная подготовка национальных биохимических кадров. В 1934 г. организована кафедра биохимии в Витебском медицинском институте, в 1959 г. – в Гродненском медицинском институте, в 1992 г. – в Гомельском медицинском институте. На заведование кафедрами приглашались и избирались известные ученые, крупные специалисты в области биохимии: А. П. Бестужев, Г. В. Дервиз, Л. Е. Таранович, Н. Е. Глушакова, В. К. Кухта, В. С. Шапот, Л. Г. Орлова, А. А. Чиркин, Ю. М. Островский, Н. К. Лукашик. На формирование научных школ в области медицинской биохимии огромное влияние оказала деятельность таких выдающихся ученых, как М. Ф. Мережинский (1906-1970), В. А. Бондарин (1909-1985), Л. С. Черкасова (1909-1998), В. С. Шапот (1909-1989), Ю. М. Островский (1925-1991), А. Т. Пикулев (1931-1993).

В 1970 г. в г. Гродно создан Отдел регуляции обмена веществ АН БССР, преобразованный в 1985 г. в Институт биохимии Национальной академии наук Беларуси. Первым заведующим отделом и директором института был академик АН БССР Ю. М. Островский. Под его руководством было начато всестороннее изучение витаминов, в частности, тиамина. Работы
Ю. М. Островского дополнены и продолжены в исследованиях его учеников: Н. К. Лукашика, А. И. Балаклеевского, А. Н. Разумовича, Р. В. Требухиной, Ф. С. Ларина, А. Г. Мойсеенка.

Наиболее важными практическими результатами деятельности научных биохимических школ явилась организация государственной лабораторной службы республики (профессор
В.Г. Колб), открытие в Витебском медицинском институте Республиканского липидного лечебно-диагностического центра метаболической терапии (профессор А. А. Чиркин), создание в Гродненском медицинском институте лаборатории медико-биологических проблем наркологии (профессор В. В. Лелевич).

 

Содержание предмета биохимии

 

- Состав и строение химических веществ живого организма – статическая биохимия.

- Вся совокупность превращения веществ в организме (метаболизм) – динамическая биохимия.

- Биохимические процессы, лежащие в основе различных проявлений жизнедеятельности – функциональная биохимия.

- Структура и механизм действия ферментов – энзимология.

- Биоэнергетика.

- Молекулярные основы наследственности – передача генетической информации.

- Регуляторные механизмы метаболизма.

- Молекулярные механизмы специфических функциональных процессов.

- Особенности метаболизма в органах и тканях.

 

Разделы и направления биохимии

 

1. Биохимия человека и животных.

2. Биохимия растений.

3. Биохимия микроорганизмов.

4. Медицинская биохимия.

5. Техническая биохимия.

6. Эволюционная биохимия.

7. Квантовая биохимия.

Объекты биохимических исследований

 

1. Организмы.

2. Отдельные органы и ткани.

3. Срезы органов и тканей.

4. Гомогенаты органов и тканей.

5. Биологические жидкости.

6. Клетки.

7. Дрожжи, бактерии.

8. Субклеточные компоненты и органоиды.

9. Ферменты.

10.Химические вещества (метаболиты).

 

Методы биохимии

 

1. Гомогенизация тканей.

2. Центрифугирование:

а) простое

б) ультрацентрифугирование

в) центрифугирование в градиенте плотности.

3. Диализ.

4. Электрофорез.

5. Хроматография.

6. Изотопный метод.

7. Колориметрия.

8. Спектрофотометрия.

9. Определение ферментативной активности.

 

Биоорганическая химия
Физколлоидная химия
Биофизическая химия
Молекулярная биология
Генетика
Нормальная физиология
Патологическая физиология
Клинические дисциплины
Фармакология
Клиническая биохимия
БИОХИМИЯ

 

Рис. 1.1. Связь биохимии с другими дисциплинами

ГЛАВА 2
СТРОЕНИЕ И ФУНКЦИИ БЕЛКОВ

Белки – высокомолекулярные азотсодержащие органические соединения, состоящие из аминокислот, соединенных в полипептидные цепи с помощью пептидных связей, и имеющие сложную структурную организацию.

 

История изучения белков

 

В 1728 г. Беккари выделил первое вещество из пшеничной муки, названное «клейковиной». Он же показал его сходство с белком куриного яйца.

В 1820 г. Браконно открыл в продуктах гидролиза белков аминокислоту глицин.

В 1838 г. после систематического изучения элементного состава разных белков Мульдер предложил теорию протеина (универсальный принцип построения белковых веществ).

В 1888 г. А. Я. Данилевский выдвинул гипотезу строения белков, получившую название «теории элементарных рядов». Он первым предложил существование в белках связей (-NH-CO-), как в биурете.

В 1890 г. Гофмейстер впервые получил кристаллический белок – яичный альбумин.

В 1902 г. Фишер и Гофмейстер предложили пептидную теорию строения белка. В то же время Фишер с сотрудниками синтезировал в лаборатории первые пептиды.

В 1925-1930 гг. Сведберг сконструировал ультрацентрифугу и использовал ее для определения молекулярной массы белков.

В 1951 г. Полинг и Кори разработали модель вторичной структуры белка, названной α-спиралью.

В 1952 г. Линдерстрём-Ланг предположил существование трех уровней организации белковой молекулы: первичной, вторичной и третичной.

В 1953 г. Сенгер впервые расшифровал аминокислотную последовательность белка – инсулина.

В 1958 г. Кендрью и в 1959 г. Перутц расшифровали третичную структуру белков – миоглобина и гемоглобина.

Аминокислоты и их роль в организме

Аминокислоты – органические карбоновые кислоты, у которых как минимум один из атомов водорода углеводородной цепи замещен на аминогруппу.

В природе встречается примерно 300 аминокислот. Многие из них найдены только в определенных организмах, а некоторые – только в одном каком-либо организме. В организме человека содержится около 60 различных аминокислот и их производных.

Аминокислоты делятся на две группы: протеиногенные (входящие в состав белков – их 20) и непротеиногенные (не участвующие в образовании белков).

Приняты три классификации аминокислот:

1. Структурная – по строению бокового радикала;

2. Электрохимическая – по кислотно-основным свойствам;

3. Биологическая – по степени незаменимости аминокислот для организма.

Незаменимые аминокислоты не могут синтезироваться организмом из других соединений, поэтому они обязательно должны поступать с пищей. Абсолютно незаменимых аминокислот для человека восемь: валин, лейцин, изолейцин, треонин, лизин, метионин, фенилаланин, триптофан.

Частично заменимыми аминокислотами являются – аргинин и гистидин.

 

Модифицированные аминокислоты, присутствующие в белках

В молекуле коллагена присутствуют: 4-гидроксипролин 5-гидроксилизин

Пептиды

Пептид состоит из двух и более аминокислотных остатков, связанных пептидными связями. Пептиды, содержащие до 10 аминокислот, называются… Имеется несколько классификаций пептидов. В частности их можно подразделять на… 1. Регуляторные пептиды: глутатион, ангиотензин, брадикинин.

Методы разделения пептидов

 

1. Хроматография – ее разновидности:

· жидкостная хроматография при высоком давлении на колонках с обращенной фазой;

· гельфильтрация.

2. Электрофорез – его разновидности:

· высоковольтный электрофорез на молекулярных ситах;

· изоэлектрическое фокусирование.

 

Автоматический синтез пептидов

Процесс состоит из следующих этапов:

1. С-концевая аминокислота присоединяется к нерастворимой частичке смолы.

2. Вводится вторая аминокислота с блокированной аминогруппой и в присутствии дегидратирующего агента образуется пептидная связь.

3. Блокирующая группа отщепляется кислотой, образуются газообразные продукты, которые удаляются.

4. Стадии 2 и 3 повторяются со следующими аминокислотами до окончания синтеза пептида.

5. Полипептид отщепляется от частички смолы.

6. На образование каждой пептидной связи необходимо около 3 часов.

 

Биологические функции белков

 

1. Структурная.

2. Резервная (трофическая, субстратно-энергетическая).

3. Ферментативная (каталитическая).

4. Гормональная (регуляторная).

5. Рецепторная.

6. Транспортная.

7. Сократительная.

8. Электроосмотическая (Na+, К+-АТФаза).

9. Энерготрансформирующая.

10. Иммунологическая.

11. Гемостатическая.

12. Обезвреживающая.

13. Токсигенная.

 

Физико-химические свойства белков

 

- форма и размеры белковой молекулы;

- высокая молекулярная масса;

- высокая вязкость растворов;

- способность к набуханию;

- оптическая активность;

- низкое осмотическое и высокое онкотическое давление;

- заряд молекулы (изоэлектрическая точка);

- амфотерность;

- растворимость;

- неспособность проникать через полунепроницаемые мембраны;

- способность к денатурации.

 

Уровни структурной организации белков

Первичная структура – строго определенная линейная последовательность аминокислот в полипептидной цепочке. Стратегические принципы изучения первичной структуры белка претерпевали… Первичная структура белка определяется:

Методы определения С-концевых аминокислот

1. Метод Акабори. 2. Метод с применением карбоксипептидазы. 3. Метод с применением боргидрида натрия.

Классификация шаперонов (Ш)

 

В соответствии с молекулярной массой все шапероны можно разделить на 6 основных групп:

- высокомолекулярные, с молекулярной массой от 100 до 110 кДа;

- Ш-90 – с молекулярной массой от 83 до 90 кДа;

- Ш-70 – с молекулярной массой от 66 до 78 кДа;

- Ш-60;

- Ш-40;

- Низкомолекулярные шапероны с молекулярной массой от 15 до 30 кДа.

Среди шаперонов различают:конститутивныебелки (высокий базальный синтез которых не зависит от стрессовых воздействий на клетки организма), и индуцибельные, синтез которых в нормальных условиях идёт слабо, но при стрессовых воздействиях на клетку резко увеличивается. Индуцибельные шапероны относятся к «белкам теплового шока», быстрый синтез которых отмечают практически во всех клетках, которые подвергаются любым стрессовым воздействиям. Название «белки теплового шока» возникло в результате того, что впервые эти белки были обнаружены в клетках, которые подвергались воздействию высокой температуры.

 

Роль шаперонов в фолдинге белков

 

При синтезе белков N-концевая область полипептида синтезируется раньше, чем С-концевая область. Для формирования конформации белка нужна его полная аминокислотная последовательность. Поэтому в период синтеза белка на рибосоме защиту реакционно-способных радикалов (особенно гидрофобных) осуществляют Ш-70.

Ш-70 – высококонсервативный класс белков, который присутствует во всех отделах клетки: цитоплазме, ядре, митохондриях.

Фолдинг многих высокомолекулярных белков, имеющих сложную конформацию (например, доменное строение), осуществляется в специальном пространстве, сформированном Ш-60. Ш-60 функционируют в виде олигомерного комплекса, состоящего из 14 субъединиц.

Шапероновый комплекс имеет высокое сродство к белкам, на поверхности которых есть элементы, характерные для несвёрнутых молекул (прежде всего участки, обогащённые гидрофобными радикалами). Попадая в полость шаперонового комплекса, белок связывается с гидрофобными радикалами апикальных участков Ш-60. В специфической среде этой полости, в изоляции от других молекул клетки происходит выбор возможных конформаций белка, пока не будет найдена единственная, энергетически наиболее выгодная конформация.

Высвобождение белка со сформированной нативной конформацией сопровождается гидролизом АТФ в экваториальном домене. Если белок не приобрёл нативной конформации, то он вступает в повторную связь с шапероновым комплексом. Такой шаперонзависимый фолдинг белков требует затрат большего количества энергии.

Таким образом, синтез и фолдинг белков протекает при участии разных групп шаперонов, препятствующих нежелательным взаимодействиям белков с другими молекулами клетки и сопровождающих их до окончательного формирования нативной структуры.

 

Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий

Шапероны, участвующие в защите клеточных белков от денатурирующих воздействий, как уже говорилось выше, относят к белкам теплового шока (БТШ) и в… При действии различных стрессовых факторов (высокая температура, гипоксия,… Установлено, что кратковременные стрессовые воздействия увеличивают выработку БТШ и повышают устойчивость организма к…

Болезни, связанные с нарушением фолдинга белков

Расчёты показали, что лишь небольшая часть теоретически возможных вариантов полипептидных цепей может принимать одну стабильную пространственную… Однако некоторые растворимые в воде белки при изменении условий могут… - при гиперпродукции некоторых белков, в результате чего увеличивается их концентрация в клетке;

Активный центр белков и избирательность связывания его с лигандом

Активный центр белков – определённый участок белковой молекулы, как правило, находящийся в её углублении, сформированный радикалами аминокислот,… Высокая специфичность связывания белка с лигандом обеспечивается… Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен…

Роль металлов в ферментативном катализе

Не менее важную роль отводят ионам металлов в осуществлении ферментативного катализа.   Участие металлов в электрофильном катализе. Наиболее часто эту функцию выполняют ионы металлов с переменной…

Механизм действия ферментов

В любой ферментативной реакции выделяют следующую стадийность:

 

E + S [ES] E + P

 

где Е – фермент, S – субстрат, [ES] – фермент-субстратный комплекс, Р – продукт.

Механизм действия ферментов может быть рассмотрен с двух позиций: с точки зрения изменения энергетики химических реакций и с точки зрения событий в активном центре.

 

Энергетические изменения при химических реакциях

Чем больше молекул обладает энергией, превышающей уровень Еа (энергия активации) тем выше скорость химической реакции. Повысить скорость химической…  

Роль активного центра в ферментативном катализе

В результате исследований было показано, что молекула фермента, как правило, во много раз больше молекулы субстрата, подвергающегося химическому… Активный центр на всех этапах ферментативного катализа нельзя рассматривать… В активном центре фермента субстраты располагаются таким образом, чтобы участвующие в реакции функциональные группы…

Молекулярные механизмы ферментативного катализа

 

Механизмы ферментативного катализа определяются ролью функциональных групп активного центра фермента в химической реакции превращения субстрата в продукт. Выделяют 2 основных механизма ферментативного катализа: кислотно-основной катализ и ковалентный катализ.

 

Кислотно-основной катализ

 

Концепция кислотно-основного катализа объясняет ферментативную активность участием в химической реакции кислотных групп (доноры протонов) и/или основных групп (акцепторы протонов). Кислотно-основной катализ – часто встречающееся явление. Аминокислотные остатки, входящие в состав активного центра, имеют функциональные группы, проявляющие свойства как кислот, так и оснований.

К аминокислотам, участвующим в кислотно-основном катализе, в первую очередь относят Цис, Тир, Сер, Лиз, Глу, Асп и Гис. Радикалы этих аминокислот в протонированной форме – кислоты (доноры протона), в депротонированной – основания (акцепторы протона). Благодаря этому свойству функциональных групп активного центра ферменты становятся уникальными биологическими катализаторами, в отличие от небиологических катализаторов, способных проявлять либо кислотные, либо основные свойства.

Ковалентный катализ

Действие сериновых протеаз, таких как трипсин, химотрипсин и тромбин, - пример механизма ковалентного катализа, когда ковалентная связь образуется…   Специфичность действия ферментов

Индуцируемыми, как правило, являются ферменты с катаболической функцией. Их образование может быть вызвано или ускорено субстратом данного фермента. Репрессируемыми обычно бывают ферменты анаболической направленности. Ингибитором (репрессором) синтеза этих ферментов может быть конечный продукт данной ферментативной реакции.

 

Изменение каталитической эффективности ферментов

 

Этот тип регуляции может осуществляться по нескольким механизмам.

 

Влияние активаторов и ингибиторов на активность ферментов

 

Активаторы разными путями могут повышать ферментативную активность:

- формируют активный центр фермента;

- облегчают образование фермент-субстратного комплекса;

- стабилизируют нативную структуру фермента;

- защищают функциональные группы активного центра.

Классификация ингибиторов ферментов:

1. Неспецифические.

2. Специфические:

а) необратимые

б) обратимые:

- конкурентные

- неконкурентные.

Неспецифические ингибиторы вызывают денатурацию молекулы фермента – это кислоты, щелочи, соли тяжелых металлов. Их действие не связано с механизмом ферментативного катализа.

 

Необратимое ингибирование

К необратимым ингибиторам относят ионы тяжёлых металлов, например ртути (Hg2+), серебра (Ag+) и мышьяка (As3+), которые в малых концентрациях… Диизопропилфторфосфат (ДФФ) специфически реагирует лишь с одним из многих… ДФФ относят к специфическим необратимым ингибитором «сериновых» ферментов, так как он образует ковалентную связь с…

Обратимое ингибирование

Обратимые ингибиторы связываются с ферментом слабыми нековалентными связями и при определённых условиях легко отделяются от фермента. Обратимые…   Конкурентное ингибирование

Лекарственные препараты как конкурентные ингибиторы

Многие лекарственные препараты оказывают своё терапевтическое действие по механизму конкурентного ингибирования. Например, четвертичные аммониевые основания ингибируют ацетилхолинэстеразу, катализирующую реакцию гидролиза ацетилхолина на холин и уксусную кислоту.

При добавлении ингибиторов активность ацетилхолинэстеразы уменьшается, концентрация ацетилхолина (субстрата) увеличивается, что сопровождается усилением проведения нервного импульса. Ингибиторы холинэстеразы используют при лечении мышечных дистрофий. Эффективные антихолинэстеразные препараты – прозерин, эндрофоний и др.

 

Антиметаболиты как лекарственные препараты

В качестве лекарственных препаратов используют следующие антиметаболиты: сульфаниламидные препараты (аналоги пара-аминобензойной кислоты),…   Неконкурентное ингибирование

Регуляция каталитической активности ферментов белок-белковыми взаимодействиями.

· активация ферментов в результате присоединения регуляторных белков; · изменение каталитической активности ферментов вследствие ассоциации или… Регуляция каталитической активности ферментов путём фосфорилирования/дефосфорилирования.

Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом.

  Ферменты плазмы крови  

ЭНЗИМОПАТИИ

При первичных энзимопатиях дефектные ферменты наследуются, в основном, по аутосомно-рецессивному типу. Гетерозиготы, чаще всего, не имеют…   Е1 Е2 Е3 Е4

ПРИМЕНЕНИЕ ФЕРМЕНТОВ В МЕДИЦИНЕ

Ферментные препараты широко используют в медицине. Ферменты в медицинской практике находят применение в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) средств.

Кроме того, ферменты используют в качестве специфических реактивов для определения ряда веществ. Так, глюкозооксидазу применяют для количественного определения глюкозы в моче и крови. Фермент уреазу используют для определения содержания количества мочевины в крови и моче. С помощью различных дегидрогеназ обнаруживают соответствующие субстраты, например пируват, лактат, этиловый спирт и др.

Энзимодиагностика

Энзимодиагностика заключается в постановке диагноза заболевания (или синдрома) на основе определения активности ферментов в биологических жидкостях человека. Принципы энзимодиагностики основаны на следующих позициях:

· при повреждении клеток в крови или других биологических жидкостях (например, в моче) увеличивается концентрация внутриклеточных ферментов повреждённых клеток;

· количество высвобождаемого фермента достаточно для его обнаружения;

· активность ферментов в биологических жидкостях, обнаруживаемых при повреждении клеток, стабильна в течение достаточно длительного времени и отличается от нормальных значений;

· ряд ферментов имеет преимущественную или абсолютную локализацию в определённых органах (органоспецифичность);

· существуют различия во внутриклеточной локализации ряда ферментов.

 

Применение ферментов в качестве лекарственных средств

Использование ферментов в качестве терапевтических средств имеет много ограничений вследствие их высокой иммуногенности. Тем не менее энзимотерапию… · заместительная терапия – использование ферментов в случае их… · элементы комплексной терапии – применение ферментов в сочетании с другой терапией.

Структура и функции ДНК

Вторичная структура ДНК представляет собой спираль, состоящую из двух антипараллельных полинуклеотидных цепей, закрученных относительно друг друга и… Третичная структураДНК различается у прокариотических и эукариотических… Третичная структура ДНК эукариотических клеток также выражена в многократной суперспирализации молекулы, однако, в…

Рис. 5.1. Уровни организации хроматина

Негистоновые белки хроматина представлены сотнями самых разнообразных ДНК-связывающих протеинов. К этой группе относят семейство белков типа «цинковые пальцы», белки высокой подвижности (HGM-белки), ферменты репликации, транскрипции и репарации. Таким образом, при участии структурных, регуляторных белков, а также ферментов, участвующих в синтезе ДНК и РНК, нить нуклеосом преобразуется в высококонденсированный комплекс белков и нуклеиновых кислот.

Организация генома человека

В геноме человека примерно 60% приходится на участки ДНК, представленные в виде одной или нескольких копий. Это так называемые уникальные… До 30% генома представлено умеренно повторяющимися последовательностями (от 10… Часто повторяющиеся последовательности могут присутствовать в одном геноме сотни тысяч и миллионы раз. В основном это…

Виды и особенности структурной организации РНК

Содержащиеся в клетке РНК различаются размером, составом, функциями и локализацией. В цитоплазме содержится стабильная РНК нескольких видов:… Первичная структура всех мРНК, независимо от уникальности их кодирующей… Пространственную структуру любых тРНКописывают универсальной моделью «клеверного листа». В состав тРНК входят минорные…

Гибридизация нуклеиновых кислот

Если же раствор, содержащий денатурированную ДНК, медленно охладить, могут вновь сформироваться двухспиральные структуры, идентичные исходным. Такой…

Методы изучения структуры нуклеиновых кислот

ГЛАВА 6 БИОСИНТЕЗ НУКЛЕИНОВЫХ КИСЛОТ   Способность к передаче наследственных свойств путем переноса генетической информации является уникальным свойством…

Биосинтез ДНК

Синтез новых цепей ДНК может произойти только при расхождении родительских цепей. В точке начала репликаци (сайты инициации или ориджины) происходит… В образовании репликативной вилки принимает участие ряд белков и ферментов… · семейство ДНК-топоизомераз обеспечивает устранение суперспирализации.

Рис. 6.1. Репликация ДНК

 

Олигонуклеотид, синтезированный ДНК-полимеразой a и образующий небольшой двухцепочечный фрагмент с матрицей, позволяет присоединиться ДНК-полимеразе d и продолжить синтез новой цепи в направлении 5¢®3¢ по ходу раскручивания репликативной вилки. Выбор ДНК-полимеразой очередного нуклеотида определяется матрицей: включение нуклеотида в синтезируемую цепь ДНК невозможно без предварительного связывания азотистого основания водородными связями с комплементарным нуклеотидом матричной цепи.

В каждой репликативной вилке идет одновременно синтез двух дочерних цепей. Направление синтеза цепи ДНК совпадает с направлением движения репликативной вилки лишь для одной из вновь синтезируемых цепей (лидирующая цепь). На второй матричной цепи синтез новой цепи осуществляется двумя ферментами: ДНК-полимеразой a и ДНК-полимеразой eв направлении 5¢®3¢, но противдвижения репликативной вилки. Поэтому вторая цепь синтезируется прерывисто, короткими фрагментами, которые по имени открывшего их исследователя называют «фрагменты Оказаки».Дочернюю цепь, синтез которой происходит фрагментами, а потому отстает, называют отстающей цепью.

Каждый фрагмент Оказаки содержит праймер. Праймеры удаляет ДНК-полимераза b,после чего присоединяет к ОН-группе на 3¢-конце предыдущего фрагмента дезоксирибонуклеотиды в количестве, равном вырезанному фрагменту и таким образом заполняет брешь, возникающую при удалении рибонуклеотидов.

ФерментДНК-лигазакатализирует образование фосфодиэфирной связи между 3¢-ОН-группой дезоксирибозы одного фрагмента и 5¢-фосфатом следующего. Реакция протекает с затратой энергии АТФ. Таким образом из множества фрагментов Оказаки образуется непрерывная цепь ДНК.

Терминация синтеза ДНК наступает вследствие исчерпания матрицы при встрече двух репликативных вилок.

После окончания репликации происходит метилирование вновь образованных цепей ДНК. Наличие СН3-групп необходимо для формирования структуры хромосом, а также для регуляции транскрипции генов.

На каждом конце хромосомы имеются неинформативные повторяющиеся последовательности нуклеотидов – теломеры.В соматических клетках с каждым актом репликации теломеры укорачиваются из-за невозможности достроить ДНК на месте 5¢-праймера. Это укорочение является важным фактором, определяющим продолжительность жизни клетки. Однако в эмбриональных и других быстро делящихся клетках потери концов хромосом недопустимы, так как укорочение хромосом будет происходить очень быстро. У эукариотических клетках имеется фермент теломераза, обеспечивающий восстановление недореплицированных 5¢-концов. В большинстве клеток теломераза неактивна, так как соматическая клетка имеет длину теломерной ДНК, достаточную для времени жизни клетки и её потомства. Небольшая активность теломеразы обнаруживается в клетках с высокой скоростью обновления, таких как лимфоциты, стволовые клетки костного мозга, клетки эпителия и т.д.

Репарация ДНК

Действие различных химических веществ, ионизирующей радиации а также ультрафиолетового излучения может вызвать следующие нарушения структуры ДНК: … · повреждения одиночных оснований (дезаминирование, ведущее к превращению… · повреждение пары оснований (образование тиминовых димеров);

Рис. 6.2 Схема эксцизионной репарации

 

Репарация начинается с присоединения ДНК-N-гликозилазы к поврежденному основанию. Существует множество ДНК-N-гликозилаз, специфичных к разным модифицированным основаниям. Ферменты гидролитически расщепляют N-гликозидную связь между измененным основанием и дезоксирибозой, это приводит к образованию АП (апуринового-апиримидинового) сайта в цепи ДНК (первый этап). Репарация АП-сайта может происходить при участии только ДНК-инсертазы, которая присоединяет к дезоксирибозе основание в соответствии с правилом комплементарности. В этом случае нет необходимости разрезать цепь ДНК, вырезать неправильный нуклеотид и репарировать разрыв. При более сложных нарушениях структуры ДНК необходимо участие всего комплекса ферментов, участвующих в репарации (Рис. 6.2.): АП-эндонуклеаза распознает АП-сайт и разрезает возле него цепь ДНК (II этап). Как только в цепи возникает разрыв, в работу вступает АП-экзонуклеаза, которая удаляет фрагмент ДНК, содержащий ошибку (III этап). ДНК-полимераза b застраивает возникшую брешь по принципу комплементарности (IV этап). ДНК-лигаза соединяет 3¢-конец вновь синтезированного фрагмента с основной цепью и завершает репарацию повреждения (V этап).

Пострепликативнаярепарация включается в тех случаях, когда эксцизионная не справляется с устранением всех повреждений ДНК до её репликации. В этом случае воспроизведение поврежденных молекул приводит к появлению ДНК с однонитевыми пробелами, а нативная структура восстанавливается при рекомбинации.

Врожденные дефекты системы репарации являются причиной таких наследственных заболеваний, как пигментная ксеродерма, атаксия-телеангиэктазия, трихотиодистрофия, прогерия.

 

Биосинтез РНК

Транскрипция – первая стадия реализации генетической информации в клетке. В ходе этого процесса происходит синтез цепи РНК, нуклеотидная… Субстратами и одновременно источниками энергии для транскрипции являются… В процессе транскрипции различают 3 стадии: инициацию, элонгацию и терминацию (Рис. 6.3). Инициация начинается с…

Регуляция транскрипции

Транскрипция не связана с фазами клеточного цикла; она может ускоряться и замедляться в зависимости от потребности клетки или организма в… Среди нескольких уровней регуляции экспрессии генов наиболее существенной и… Наилучшим образом регуляция транскрипции генов изучена у прокариот. Их особенностью является организация генов,…

Процессинг РНК

Все виды РНК синтезируются в виде предшественников и нуждаются в процессинге (созревании). Процессинг мРНК начинается с кэпирования. Фермент гуанилилтрансфераза… 3¢-конец пре-мРНК также подвергается модификации, при которой специальным ферментом полиА-полимеразой формируется…

Обратная транскрипция

Некоторые РНК-содержащие вирусы (вирус саркомы Рауса, ВИЧ) обладают уникальным ферментом – РНК-зависимой ДНК-полимеразой, часто называемой обратной… В результате образуется ДНК которая содержит гены, обуславливающие развитие…  

Активация аминокислот

На стадии подготовки к синтезу каждая из 20 протеиногенных аминокислот присоединяется α-карбоксильной группой к 2¢- или… Высокая специфичность аа-тРНК-синтетаз в связывании аминокислоты с… Аминокислота, присоединяясь к тРНК, в дальнейшем не определяет специфических свойств аа-тРНК, её структуру не узнает…

Синтез белка у эукариот

В ходе синтеза белка считывание информации с мРНК идет в направлении от 5¢- к 3¢-концу, обеспечивая синтез пептида от N- к C-концу.… Инициация трансляции представляет собой процесс, в ходе которого происходит… Достигнув начала кодирующей последовательности мРНК, 40S субъединица останавливается и связывается с другими факторами…

Посттрансляционные изменения белков

При частичном протеолизе, например, неактивные предшественники секретируемых ферментов – зимогены – образуют активный фермент после расщепления по… В ходе ковалентных модификацийструктурные белки и ферменты могут… У некоторых белков на N-конце имеются короткие последовательности гидрофобных аминокислотных остатков, которые…

Регуляция синтеза белка

Соматические клетки всех тканей и органов многоклеточного организма содержат одинаковую генетическую информацию, но отличаются друг от друга по… Регуляция на самых ранних этапах (на уровне экспрессии генов) является… Организация хроматина и доступность генов: в ядрах дифференцированных клеток хроматин имеет такую укладку, что только…

Ингибиторы матричных биосинтезов

Действие ингибиторов матричных биосинтезов как лекарственных препаратов основано на: · модификации матриц (ДНК или РНК); · белоксинтезирующего аппарата (рибосом);

Использование ДНК-технологий в медицине

Для выявления дефектов в структуре ДНК она должна быть выделена из биологического материала и “скопирована” (наработана) в количествах, достаточных… Выделение ДНК включает быстрый лизис клеток, удаление фрагментов клеточных… Идентификация характерных последовательностейпроводится методом блот-гибридизации по Саузерну. Фрагменты ДНК…

Специфические и общие пути катаболизма

В катаболизме различают три стадии: 1). Полимеры превращаются в мономеры (белки – в аминокислоты, углеводы в… 2). Мономеры превращаются в общие продукты, в подавляющем большинстве в ацетил-КоА. Химическая энергия частично…

Метаболиты в норме и при патологии

В живой клетке ежесекундно образуются сотни метаболитов. Однако их концентрации поддерживаются на определенном уровне, который является… Патологическими метаболитами являются миеломные белки (белки Бенс-Джонса),…  

УРОВНИ ИЗУЧЕНИЯ ОБМЕНА ВЕЩЕСТВ

Уровни изучения обмена веществ: 1. Целый организм. 2. Изолированные органы (перфузируемые).

Химический состав мембран.

Мембраны состоят из липидных и белковых молекул, относительное количество которых у разных мембран широко колеблется. Углеводы содержатся в форме гликопротеинов, гликолипидов и составляют 0,5%-10% веществ мембраны. Согласно жидкостно-мозаичной модели строения мембраны (Сенджер и Николсон, 1972г.) основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы растворены в липидном бислое и относительно свободно «плавают в липидном море в виде айсбергов на которых растут деревья гликокаликса».

Липиды мембран.

Фосфолипиды можно разделить на глицерофосфолипиды и сфингофосфолипиды. Наиболее распространенные глицерофосфолипиды мембран – фосфатидилхолины и… На долю глицерофосфолипидов приходится 2-8% всех фосфолипидов мембран.… Специфические фосфолипиды внутренней мембраны митохондрий – кардиолипины (дифосфатидглицеролы), построенные на основе…

Функции мембранных липидов.

Фосфо- и гликолипиды мембран, помимо участия в формировании липидного бислоя, выполняют ряд других функций. Липиды мембран формируют среду для функционирования мембранных белков, принимающих в ней нативную конформацию.

Некоторые мембранные липиды – предшественники вторичных посредников при передаче гормональных сигналов. Так фосфатидилинозитолдифосфат под действием фосфолипазы С гидролизируется до диацилглицерола и инозитолтрифосфата, являющихся вторичными посредниками гормонов.

Ряд липидов участвует в фиксации заякоренных белков. Примером заякоренного белка является ацетилхолинэстераза, которая фиксируется на постсинаптической мембране к фосфатитилинозитолу.

Белки мембран.

Мембранные белки отвечают за функциональную активность мембран и на их долю приходится от 30 до 70%. Белки мембран отличаются по своему положению в мембране. Они могут глубоко проникать в липидный бислой или даже пронизывать его – интегральные белки, разными способами прикрепляться к мембране – поверхностные белки, либо, ковалентно контактировать с ней – заякоренные белки. Поверхностные белки почти всегда гликозилированы. Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов и адгезии.

Белки, локализованные в мембране, выполняют структурную и специфические функции:

· транспортную;

· ферментативную;

· рецепторную;

· антигенную.

 

Механизмы мембранного транспорта веществ

Простая диффузия – это перенос небольших нейтральных молекул по градиенту концентрации без затрат энергии и переносчиков. Легче всего проходят… Облегченная диффузия – перенос вещества по градиенту концентрации без затрат… а) транспорт по специальным каналам, образованным в трансмебранных белках (например, катионселективные каналы);

Рис. 10.1. Схема ЦТД

 

Компоненты ЦТД:

НАД-зависимые дегидрогеназы дегидрируют пиридинзависимые субстраты и акцептируют 2ē и один Н+.

ФАД (ФМН) - зависимые дегидрогеназы акцептируют 2 атома водорода (2Н+ и 2ē). ФМН – зависимая дегидрогеназа дегидрирует только НАДН, в то время как ФАД- дегидрогеназы окисляют флавинзависимые субстраты.

Жирорастворимый переносчик убихинон (кофермент Q, КоQ) – свободно перемещается по мембране митохондрий и акцептирует два атома водорода и превращается в КоQH2 (восстановленная форма – убихинол).

Система цитохромов – переносит только электроны. Цитохромы железосодержащие белки, простетическая группа которых по структуре напоминает гем. В отличие от гема атом железа в цитохроме может обратимо переходить из двух – в трехвалентное состояние (Fe3+ + ē « Fe2+). Это и обеспечивает участие цитохрома в транспорте электронов. Цитохромы действуют в порядке возрастания их редокс-потенциала и в дыхательной цепи располагаются следующим образом: b - с1 – с – а - а3. Два последних работают в ассоциации как один фермент цитохромоксидаза аа3. Цитохромоксидаза состоит из 6 субъединиц (2 - цитохрома а и 4 - цитохрома а3). В цитохроме а3 кроме железа имеются атомы меди и он передает электроны непосредственно на кислород. Атом кислорода при этом заряжается отрицательно и приобретает способность взаимодействовать с протонами с образованием метаболической воды.

Железосерные белки (FeS) – содержат негемовое железо и участвуют в окислительно-восстановительных процессах, протекающих по одноэлектронному механизму и ассоциированы с флавопротеинами и цитохромом b.

Структурная организация цепи тканевого дыхания

I комплекс (НАДН-КоQН2-редуктаза) – принимает электороны от митохондриального НАДН и транспортирует их на КоQ. Протоны транспортируются в… II комплекс – сукцинат – КоQ - редуктаза – включает ФАД- зависимые… Убихинон легко перемещается по мембране и передает электроны на III комплекс.

Окислительное фосфорилирование АТФ

Окислительное фосфорилирование – процесс образования АТФ, сопряженный с транспортом электронов по цепи тканевого дыхания от окисляемого субстрата на… Для объяснения механизмов сопряжения дыхания и фосфорилирования выдвинут ряд… Механохимическая или конформационная (Грин-Бойера). В процессе переноса протонов и электронов изменяется конформация…

Хемиоосмотическая гипотеза Питера Митчелла (1961г.)

Основные постулаты этой теории: внутренняя мембрана митохондрий непроницаема для ионов Н+ и ОН−; за счет энергии транспорта электронов через I, III и IV комплексы дыхательной цепи из матрикса выкачиваются протоны; …

Строение АТФ-синтазы

Суть хемиоосмотической теории: за счет энергии переноса электронов по ЦТД происходит движение протонов через внутреннюю митохондриальную мембрану в… Коэффициент фосфорилирования (Р/О) – число атомов неорганического фосфата,… Пункты фосфорилирования – участки в дыхательной цепи, где энергия транспорта электоронов используется на генерацию…

Нарушения энергетического обмена

Алиментарные – голодание и гиповитаминозы В2 и РР – возникает нарушение поставки окисляемых субстратов в ЦТД или синтез коферментов. Гипоксические – возникают при нарушении доставки или утилизации кислорода в… Регуляция ЦТД.Осуществляется с помощью дыхательного контроля.

Оксидазный тип окисления

 

Этот путь окисления осуществляется в процессе функционирования ЦТД. Терминальный фермент ЦТД, переносящий электроны непосредственно на кислород – цитохромоксидаза. Это основной путь потребления кислорода в организме. Он выполняет энергетическую функцию.

Пероксидазный тип окисления

  ФАД-зависимая оксидаза SН2 + О2 S + Н2О2  

Диоксигеназный тип окисления

В процессе диоксигеназного окисления в молекулу субстрата включаются оба атома кислорода:

 

диоксигеназа
S + O2 SO2

 

 

Диоксигеназы катализируют разрыв двойной связи в ароматическом кольце. Например: гомогентизатоксидаза катализирует расщепление ароматического кольца гомогентизиновой кислоты с образованием малеилацетоацетата.

 

Монооксигеназный тип окисления

Монооксигеназы (гидроксилазы) катализируют включение в субстрат одного атома молекулы кислорода. Другой атом кислорода восстанавливается до воды.…   гидроксилаза SH + НАДФН+Н+ + О2 SОН + НАДФ+ + Н2О

Активные формы кислорода (свободные радикалы)

Источники АФК: 1) цепь тканевого дыхания (утечка электронов с восстановленного убихинона… 2) реакции, катализируемые оксидазами, гемопротеинами, цитохромом Р450;

Перекисное окисление липидов (ПОЛ)

Реакции ПОЛ являются свободнорадикальными и постоянно протекают в организме, также как и реакции образования АФК. В норме они поддерживаются на… · индуцируют апоптоз (запрограммированную гибель клеток); · регулируют структуру клеточных мембран и тем самым обеспечивают функционирование ионных каналов, рецепторов,…

Антиоксидантные системы организма

Ферменты антиоксидантной системы: супероксиддисмутаза, каталаза, пероксидаза (глутатионпероксидаза),… Супероксиддисмутаза превращает супероксидные анионы в пероксид водорода:

Классификация гормонов

 

Гормоны классифицируются по химическому строению, биологическим функциям, месту образования и механизму действия.

Классификация по химическому строению. По химическому строению гормоны делят на 3 группы (табл. 12.1):

- пептидные или белковые;

- производные аминокислот;

- стероидные

- производные арахидоновой кислоты – эйкозаноиды (оказывают местное действие)

 

Таблица 12.1

Классификация гормонов по химическому строению

Пептидные (белковые) Производные аминокислот Стероиды
Кортикотропин Соматотропин Тиреотропин Пролактин Лютропин Лютеинеизирующий гормон Фолликулостимули-рующий гормон Мелоноцитстимули-рующий гормон Вазопрессин Окситоцин Паратгормон Кальцитонин Инсулин Глюкагон Адреналин   Норадреналин   Трийодтиронин (Т3) Тироксин (Т4) Глюкокортикоиды   Минералокорти-коиды Андрогены Эстрогены Прогестины Кальцитриол

Клетки некоторых органов, не относящихся к железам внутренней секреции (клетки ЖКТ, клетки почек, эндотелия и др.), также выделяют гормоноподобные вещества (эйкозаноиды), которые действуют в местах их образования.

 

Классификация гормонов по биологическим функциям

По биологическим функциям гормоны можно разделить на несколько групп (табл. 12.2.)

 

Таблица 12.2.

Классификация гормонов по биологическим функциям.

Регулируемые процессы Гормоны
Обмен углеводов, липидов, аминокислот. Водно-солевой обмен. Обмен кальция и фосфатов.   Репродуктивная функция.   Синтез и секреция гормонов эндокринных желез. Инсулин, глюкагон, адреналин, кортизол,тироксин,соматотропин. Альдостерон, вазопрессин. Паратгормон, кальцитонин, кальцитриол. Эстрогены, андрогены, гонадотропные гормоны. Тропные гормоны гипофиза, либерины и статины гипоталамуса.

 

Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции. Например, адреналин участвует в регуляции обмена липидов и углеводов и, кроме этого, регулирует артериальное давление, частоту сердечных сокращений, сокращение гладких мышц. Эстрогены регулируют не только репродуктивную функцию, но и оказывают влияние на обмен липидов, индуцируют синтез факторов свертывания крови.

Классификация по месту образования

 

По месту образования гормоны делятся на гормоны гипоталамуса, гипофиза, щитовидной железы, паращитовидных желез, поджелудочной железы, надпочечников, половых желез.

Классификация по механизму действия

 

По механизму действия гормоны можно разделить на 3 группы:

1) Гормоны, не проникающие в клетку и взаимодействующие с мембранными рецепторами (пептидные, белковые гормоны, адреналин). Сигнал передается внутрь клетки с помощью внутриклеточных посредников (вторичные мессенджеры). Основной конечный эффект – изменение активности ферментов;

2) гормоны, проникающие в клетку (стероидные гормоны, тиреоидные гормоны). Их рецепторы находятся внутри клеток. Основной конечный эффект – изменение количества белков-ферментов через экспрессию генов;

3) гормоны мембранного действия (инсулин, тиреоидные гормоны). Гормон является аллостерическим эффектором транспортных систем мембран. Связывание гормона с мембранным рецептором приводит к изменению проводимости ионных каналов мембраны.

 

Основные свойства и особенности действия гормонов

 

1. Высокая биологическая активность. Гормоны регулируют метаболизм в очень малых концентрациях – 10-8 – 10-11М.

2. Дистантность действия. Гормоны синтезируются в эндокринных железах, а биологические эффекты оказывают в других тканях-мишенях.

3. Обратимость действия. Обеспечивается адекватным ситуации дозированным освобождением и последующими механизмами инактивации гормонов. Время действия гормонов различно:

· пептидные гормоны: сек – мин;

· белковые гормоны: мин – часы;

· стероидные гормоны: часы;

· йодтиронины: сутки.

3. Специфичность биологического действия.

4. Плейотропность (многообразие) действия. Например, катехоламины рассматривались как краткосрочные гормоны стресса. Затем было выявлено, что они участвуют в регуляции матричных синтезов и процессов, определяемых геномом: памяти, обучения, роста, деления, дифференциации клеток.

5. Дуализм регуляций (двойственность). Так, адреналин как суживает, так и расширяет сосуды. Йодтиронины в больших дозах увеличивают катаболизм белков, в малых – стимулируют анаболизм.

 

Рецепторы гормонов

Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Клетки, наиболее чувствительные к влиянию… Рецепторы – это специфические структуры клетки, обладающие высоким сродством… Рецепторы по химической природе являются, сложными белками (гликопротеинами). Рецепторы пептидных гормонов и…

Гуанилатциклазная система.

Эта система, генерирующая цГМФ как вторичный посредник, сопряжена с гуанилатциклазой. Этот фермент катализирует реакцию образования цГМФ из ГТФ… Циклические нуклеотиды запускают каскады реакций аденилатциклазного или… Снятие гормонального сигнала достигается уменьшением концентрации вторичного посредника. Реакции превращения цАМФ или…

Оксид азота.

Оксид азота образуется из аминокислоты аргинина при участии сложной Са2+-зависимой ферментной системы, названной NO-синтазой, которая присутствует в… 4. Са2+ - мессенджерная система.  

Инозитолтрифосфатная система.

 

Функционирование инозитолтрифосфатной системы передачи гормонального сигнала обеспечивают: рецептор, фосфолипаза С, белки и ферменты мембран и цитозоля:

связывание гормона с рецептором приводит к активации фосфолипазы С;

фосфолипаза С катализирует расщепление мембранного фосфатидилинозитол-4,5-бифосфата на два вторичных посредника – диацилглицерол и инозитолтрифосфат (ИФ3);

ИФ3 усиливает поступление Са2+ в цитозоль и обеспечивает его регуляторные эффекты (см. раздел 4);

диацилглицерол активирует протеинкиназу С;

конечный эффект обоих посредников – фосфорилирование внутриклеточных белков и ферментов и изменение их активности.

Механизм передачи гормонального сигнала через внутриклеточные рецепторы

Последовательностьсобытий, приводящих к активации транскрипции: · проникновение гормона через билипидный слой мембраны в клетку; · образуется комплекс гормон-рецептор, который перемещается в ядро клетки и взаимодействует с регуляторным участком:…

Передача сигналов через рецепторы, сопряженные с ионными каналами

Рецепторы, сопряженные с ионными каналами, являются интегральными мембранными белками, состоящими из нескольких субъединиц. Они действуют одновременно как ионные каналы и как рецепторы, которые способны специфически связывать с внешней стороны эффектор, изменяющий их ионную проводимость. Эффекторами такого типа могут быть гормоны (например, инсулин) и нейромедиаторы (ацетилхолин и др.).


Глава 13
особенности действия гормонов

Гормоны гипоталамуса и гипофиза

 

ЦНС оказывает регулирующее действие на эндокринную систему через гипоталамус. В клетках нейронов гипоталамуса синтезируются пептидные гормоны двух типов. Одни через систему гипоталамо-гипофизарных сосудов поступают в переднюю долю гипофиза, где стимулируют (либерины) или ингибируют (статины) синтез тропных гормонов гипофиза. Другие (окситоцин, вазопрессин) поступают через аксоны нервных клеток в заднюю долю гипофиза, где они хранятся и секретируются в кровь в ответ на соответствующие сигналы. В настоящее время известно 7 либеринов и 3 статина.

 

Таблица 13.1

Гормоны гипоталамуса и гипофиза

  По химическому строению гормоны гипоталамуса являются низкомолекулярными…

Гормоны щитовидной железы

Основные гормоны щитовидной железы – тироксин (тетрайодтиронин, Т4) и трийодтиронин (Т3), которые являются йодированными производными тирозина. Биологическое действие. Клетки-мишени йодтиронинов имеют 2 типа рецепторов:

Гормоны поджелудочной железы

Поджелудочная железа является железой смешанной секреции. Эндокринная часть поджелудочной железы – совокупность островков Лангерганса (1-2 % от всего объема железы). В островках различают несколько типов эндокринных клеток, синтезирующих и секретирующих в просвет капилляров инсулин (β-клетки), глюкагон (α-клетки), соматостатин и панкреатический полипептид.

И Н С У Л И Н

 

Биологическое действие

1) инсулинзависимые – соединительная, жировая, мышцы; в меньшей степени чувствительна к инсулину ткань печени; 2) инсулиннезависимые – нервная ткань, эритроциты, эпителий кишечника,… Метаболические эффекты инсулина разнообразны – регуляция обмена углеводов, липидов и белков. В норме инсулин…

Гипофункция поджелудочной железы

Инсулинзависимыйсахарный диабет (у 10% больных) – заболевание, вызываемое разрушением β-клеток островков Лангерганса. Характеризуется… Инсулиннезависимыйсахарный диабет (у 90% больных) развивается чаще всего у… Симптомы сахарного диабета: гипергликемия – повышение концентрации глюкозы в крови; глюкозурия–выведение глюкозы с…

Гиперфункция поджелудочной железы

Инсулинома – опухоль β-клеток островков Лангерганса, сопровождается повышенной выработкой инсулина, выраженной гипогликемией, судорогами, потерей сознания. При крайней степени гипогликемии может наступить смертельный исход. Устранить гиперинсулинизм можно введением глюкозы и гормонами, повышающими уровень глюкозы (глюкагон, адреналин).

 

ГЛЮКАГОН

Основные клетки-мишени глюкагона – печень, жировая ткань, корковое вещество почек. В печени гормон ускоряет мобилизацию гликогена, вызывает торможение гликолиза,… В жировой ткани глюкагон ускоряет мобилизацию триацилглицеролов, что приводит к повышению уровня жирных кислот и…

Гиперфункция паращитовидной железы (гиперпаратиреоз)

 

Причины повышенного образования паратгормона – опухоли паращитовидных желез (80 %), диффузная гиперплазия желез, в некоторых случаях – рак паращитовидной железы (2 %).

Избыточная секреция паратгормона приводит к повышению мобилизации Са2+ и Р из костной ткани, усилению реабсорбции Са2+ и выведению Р в почках. Возникает гиперкальцемия, результатом которой являются:

– снижение нервно-мышечной возбудимости и мышечная гипотония (общая и мышечная слабость, быстрая утомляемость, боли в отдельных группах мышц);

– остеопороз, увеличение риска переломов позвоночника, бедренных костей и костей предплечья;

– кальциноз сосудов и нефрокальциноз (образование в почках камней).

 

Гипофункция паращитовидных желез (гипопаратиреоз)

Кальцитонин – полипептид, состоящий из 32 аминокислотных остатка. Синтезируется в парафолликулярных клетках щитовидной железы или в клетках… Кальцитонин – антагонист паратгормона. Органы-мишени: кости, почки, кишечник.… - ингибирует высвобождение Са2+ из кости, снижая активность остеокластов;

Гормоны мозгового вещества надпочечников

В мозговом веществе надпочечников в хромаффинных клетках синтезируются катехоламины – дофамин, адреналин и норадреналин. Непосредственным… Адреналин является преимущественно гормоном, норадреналин и дофамин –…  

Гиперфункция мозгового вещества надпочечников

Основная патология – феохромоцитома, опухоль, образованная хромаффинными клетками и продуцирующая катехоламины. Клинически феохромоцитома проявляется повторяющимися приступами головной боли, сердцебиения, повышенного артериального давления. Характерные изменения метаболизма:

- содержание адреналина в крови может превышать норму в 500 раз;

- возрастает концентрация глюкозы и жирных кислот в крови;

- в моче определяется глюкоза, адреналин.

 

Гормоны коры надпочечников (кортикостероиды)

 

В коре надпочечников синтезируются более 40 различных стероидов, различающихся по структуре и биологической активности. Биологически активные кортикостероиды объединяются в 3 основные класса:

· глюкокортикоиды, оказывающие влияние на обмен углеводов, жиров, белков и нуклеиновых кислот;

· минералокортикоиды, оказывающие влияние на водно-минеральный обмен;

· половые гормоны (андрогены и эстрогены).

Глюкокортикоиды

 

Надпочечники человека скретируют глюкокортикоиды: кортизол (гидрокортизон), кортизон и кортикостерон.

Ткани-мишени: печень, почки, лимфоидная, соединительная и жировая ткани, мышцы.

Секреция глюкокортикоидов находится под контролем АКТГ. Скорость синтеза и секреции гормонов стимулируются в ответ на стресс, травму, инфекцию, понижение уровня глюкозы в крови.

 

Биологическое действие

Влияние глюкокортикоидов на метаболизм связано с их способностью координированно воздействовать на разные ткани и разные процессы как анаболические… Влияние на углеводный обмен: - в печени стимулируют синтез гликогена и глюконеогенез (синтез глюкозы из аминокислот);

Минералокортикоиды

Альдостерон – наиболее активный минералокортикоид. Синтез и секреция альдостерона клетками клубочковой зоны надпочечников стимулируются низкой… Ткани-мишени: клетки эпителия дистальных канальцев почек, потовые и слюнные…  

Мужские половые гормоны

Мужские половые гормоны – андрогены (от греч. «andros» – мужской) – тестостерон, дигидротестостерон, андростерон. Синтезируются в клетках Лейдига… Мишени андрогенов – половые органы (предстательная железа, семенные пузырьки)…  

Анаболические стероиды

Основными показаниями к применению анаболических стероидов являются: нарушения синтеза белков при кахексии, астении, после тяжелых травм, операций,…

Нарушение андрогенной функции

 

При снижении синтеза тестостерона развивается гипогонадизм. Характерные признаки: недоразвитие половых органов и вторичных половых признаков, отсутствие полового влечения, позднее окостенение эпифизарных зон роста костей (длинные конечности, высокий рост), атрофия скелетной мускулатуры, чрезмерное отложение жира в подкожной клетчатке и внутренних органах.

Повышенный синтез андрогенов в период полового созревания может привести к раннему заращиванию эпифизарных зон роста, что приводит к остановке роста.

 

Женские половые гомоны

Наиболее активный прогестин – прогестерон – синтезируется в яичниках, семенниках и надпочечниках. У женщин в лютеиновую фазу менструального цикла… Эстрадиол в небольших количествах синтезируется в организме мужчин в… Мишени женских половых гормонов: половые органы (тело матки, маточные трубы, яичники, влагалище, молочные железы) и…

Биологическое действие на половые органы

 

Женские половые гормоны ответственны за формирование вторичных половых признаков во время полового созревания и поддерживают функции женской репродуктивной системы. Эстрогены стимулируют развитие тканей, участвующих в размножении:

- в матке увеличивают рост миометрия и пролиферацию эндометрия, повышают ее тонус;

- во влагалище увеличивают число слоев клеток и ороговение эпителия;

- вызывают рост эпителия и мышечной ткани маточных труб;

- в молочных железах вызывают пролиферацию молочных протоков.

 

Действие на неполовые органы

Эстрогены оказывают анаболическое действие (стимулируют синтез белка в тканях-мишенях) и обеспечивают положительный азотистый баланс. В эпифизах костей эстрогены обеспечивают синтез коллагена и отложение кальция… В печени индуцируют синтез специфических белков:

Нарушения гормональных функций яичников

Дефицит эстрогенов до периода полового созревания приводит к задержке развития первичных и вторичных половых признаков, задержке окостенения эпифизов (высокий рост), к нарушению половых циклов, к отрицательному азотистому балансу.

Дефицит прогестерона нарушает течение половых циклов, приводит к выкидышам.

 

Эйкозаноиды

Эйкозаноиды, включающие в себя простагландины, тромбоксаны, простациклины, лейкотриены – высокоактивные регуляторы клеточных функций. Эйкозаноиды – гормоны местного действия по ряду признаков: - образуются во всех клетках и тканях человека за исключением эритроцитов;

Синтез эйкозаноидов

Главный субстрат для синтеза эйкозаноидов – арахидоновая кислота. Под действием фосфолипазы А2 или С арахидоновая кислота освобождается из биомембран и может превращаться по двум путям – циклооксигеназному и липоксигеназному.

 

Номенклатура эйкозаноидов

Простациклин PGI2 синтезируется в эндотелии сосудов, сердечной мышце, ткани матки и слизистой желудка. Он расширяет сосуды, снижая артериальное… Тромбоксаны – А2, А3; В2 – продукт катаболизма А2 (активностью не обладает).… Лейкотриены – А, В, С, D.

Применение гормонов в медицине

· инсулин – при сахарном диабете; · тироксин – при гипофункции щитовидной железы; · соматотропин – при гипофизарной карликовости;

Белки

Пищевая ценность белка обеспечивается наличием незаменимых аминокислот, углеводородные скелеты которых не могут синтезироваться в организме человека, и они соответственно должны поступать с пищей. Они также являются основными источниками азота. Суточная потребность в белках 80-100г, половина из которых, должна быть животного происхождения. Потребность в белке – это количество белка, которое обеспечивает все метаболические потребности организма. При этом обязательно учитывается физиологическое состояние организма с одной стороны, а с другой стороны, свойства самих пищевых белков и пищевого рациона в целом. От свойств компонентов пищевого рациона зависит переваривание, всасывание и метаболическая утилизация аминокислот.

Потребность в белке состоит из двух компонентов. Первый должен удовлетворить потребность в общем азоте, обеспечивающем биосинтез заменимых аминокислот и других азотсодержащих эндогенных биологически активных веществ. Собственно потребность в общем азоте и есть потребность в белке. Второй компонент определяется потребностью организма человека в незаменимых аминокислотах, которые не синтезируются в организме. Это специфическая часть потребности в белке, которая количественно входит в первый компонент, но предполагает потребление белка определенного качества, т.е. носителем общего азота должны быть белки, содержащие незаменимые аминокислоты в определенном количестве.

Белки животного происхождения содержат полный набор незаменимых аминокислот. Однако, наряду с целым рядом преимуществ белки имеют и недостатки, главными из которых являются достаточно токсичные продукты катаболизма (аммиак, продукты гниения белков в толстом кишечнике) и довольно сложные пути метаболизма.

 

Углеводы

Основными углеводами пищи являются моносахариды, олигосахариды и полисахариды, которые должны поступать в количестве 400-500 г в сутки. Углеводы пищи являются основным энергетическим материалом клетки, обеспечивают 60-70% суточного энергопотребления. Для обмена углеводов характерны простые метаболические пути и для их окисления необходимо незначительное количество кислорода. Конечные продукты их катаболизма являются индифферентными веществами. Однако имеется ряд недостатков углеводов: они содержат незначительное количество незаменимых компонентов и довольно часто встречаются нарушения их метаболизма с развитием болезни.

Клетчатка, поступающая с пищей в ЖКТ не переваривается, однако она стимулирует перистальтку кишечника и удаляет из него токсические продукты распада. Поэтому, она должна также присутствовать в пищевом рационе.

Липиды

Основные липиды пищи – триацилглицеролы (нейтральные жиры), фосфолипиды, холестерол и высшие жирные кислоты. Суточная потребность 100 г. Они являются источниками энергии (при их разрушении образуется 9,3 ккал/г, в то время как при сгорании белков и углеводов – 4,1 ккал/г). Высшие жирные кислоты являются компонентами фосфолипидов мембран и триацилглицеролов жировой ткани, предшественниками гормонов. Среди высших жирных кислот присутствуют так называемые незаменимые высшие жирные кислоты, к которым относят линолевую, линоленовую и арахидоновую жирные кислоты. Их в совокупности называют «витамином F».

Фософолипиды пищи являются источниками холина, инозитола, используемых для синтеза нейромедиаторов, сложных липидов клеточной мембраны. Холестерол (1,5 г/сутки) также входит в состав мембран, является предшественником стероидных гормонов, желчных кислот и витамина D.

Основным недостатком липидов пищи является то, что для их окисления необходимо большое количество кислорода. А также при переедании часто развивается ожирение и жировая инфильтрация внутренних органов (жировая дистрофия).

Глава 15
Основы витаминологии

Витамины – это незаменимые компоненты пищи, которые присутствуя в небольших количествах в пище, обеспечивают нормальное протекание биохимические и физиологических процессов путем участия в регуляции обмена веществ в организме.

Витамины обладают высокой биологической активностью и требуются организму в очень небольших количествах – от нескольких микрограммов до нескольких десятков миллиграммов в день. В отличие от других незаменимых факторов питания (аминокислоты, жирные кислоты и др.), витамины не являются пластическим материалом или источником энергии.

 

Биологические функции витаминов

Большинство витаминов являются предшественниками коферментов и простетических групп ферментов, катализирующих биохимические реакции в организме. Некоторые витамины выполняют функцию индуктора синтеза белков (витамин А); проявляют гормональную активность (витамин D); оказывают антиоксидантное действие (витамины А, Е, С). Кроме того, каждому витамину присуща специфическая функция в организме.

 

Классификация витаминов

По физико-химическим свойствам (в частности, растворимости) витамины делятся на две группы: водорастворимые и жирорастворимые. Для обозначения каждого витамина существует буквенный символ, химическое название и название с учетом излечиваемого витамином заболевания с приставкой «анти».

Жирорастворимые витамины:

1. Витамин А; ретинол (антиксерофтальмический).

2. Витамин D; кальциферолы (антирахитический).

3. Витамин Е; токоферолы (антистерильный, витамин размножения).

4. Витамин К; нафтохиноны (антигеморрагический).

 

Водорастворимые витамины:

1. Витамин В1; тиамин (антиневритный).

2. Витамин В2; рибофлавин (витамин роста).

3. Витамин В3; пантотеновая кислота (антидерматитный).

4. Витамин В6; пиридоксин (антидерматитный).

5. Витамин В12; цианокобаламин (антианемический; В9).

6. Витамин РР; никотинамид, никотиновая кислота, ниацин (антипеллагрический).

7. Витамин Вс; фолиевая кислота (антианемический).

8. Витамин Н; биотин (антисеборейный).

9. Витамин С; аскорбиновая кислота (антискорбутный).

10. Витамин Р; рутин (капилляроукрепляющий).

 

Витаминоподобные вещества: группа химических веществ, некоторые из которых частично синтезируются в организме, но обладают витаминными свойствами.

1. В4; холин (липотропный фактор).

2. В8; инозит (липотропный фактор).

3. В13; оротовая кислота (фактор роста).

4. В15; пангамовая кислота (антианоксический).

5. Вт; карнитин.

6. N; липоевая кислота (липотропный фактор).

7. U; (противоязвенный).

8. ПАБК; парааминобензойная кислота (витамин для микроорганизмов).

9. F; линолевая, линоленовая и арахидоновая кислоты.

 

Таблица 15.1.

Основные характеристики водорастворимых витаминов

Таблица 15.2.

Основные характеристики жирорастворимых витаминов

  Раскрытие молекулярных механизмов действия водо- и жирорастворимых витаминов…  

Обеспеченность организма витаминами

Источником витаминов для человека служит пища. Важная роль в образовании витаминов принадлежит кишечным бактериям, которые синтезируют ряд… Недостаточное поступление витаминов с пищей вызывает заболевания, называемые…  

Гиповитаминозы

Потребность человека в витаминах зависит от пола, возраста, физиологического состояния и интенсивности труда. Существенное влияние на потребность… В медицинской практике чаще всего встречаются гиповитаминозы. Гиповитаминоз… Основные причины гиповитаминозов:

Гипервитаминозы

Болезни, возникающие вследствие избыточного приёма водорастворимых витаминов, не описаны. Физиологически необходимая часть витаминов, поступающих в… Причиной гипервитаминозов жирорастворимых витаминов (А и D) является…  

Применение витаминов в клинической практике

Применение витаминов в профилактических и лечебных целях можно систематизировать следующим образом. В профилактических целях: 1. Профилактика первичных гипо-авитаминозов, обусловленных:

Антивитамины

Антивитамины можно разделить на две основные группы: 1) антивитамины, которые инактивируют витамин путем его разрушения или… 2) антивитамины, замещающие коферменты (производные витаминов) в активных центрах ферментов.

Таблица 15.3

Антивитамины

Антивитамины нашли широкое применение в клинической практике в качестве антибактериальных и противоопухолевых средств, тормозящих синтез белков и… ГЛАВА 16 УГЛЕВОДЫ ТКАНЕЙ И ПИЩИ – ОБМЕН И ФУНКЦИИ  

Транспорт глюкозы из крови в клетки

Поглощение глюкозы клетками из кровотока происходит, также путем облегченной диффузии. Следовательно, скорость трансмембранного потока глюкозы… Глюкозные транспортеры (ГЛЮТ) обнаружены во всех тканях. Существуют несколько… Все типы ГЛЮТ могут находиться как в плазматической мембране, так и в цитозольных везикулах. ГЛЮТ-4 (в меньшей степени…

Нарушения переваривания и всасывания углеводов

 

В основе патологии переваривания и всасывания углеводов могут быть причины двух типов:

1. Дефекты ферментов, участвующих в гидролизе углеводов в кишечнике.

2. Нарушения всасывания продуктов переваривания углеводов в клетки слизистой оболочки кишечника.

В обоих случаях возникает осмотическая диарея, которую вызывают неращепленные дисахариды или не всосавшиеся моносахариды. Термином «мальабсорбция» называют недостаточное всасывание переваренных продуктов углеводов. Но поскольку клинические проявления при недостаточном переваривании и всасывании схожи, то термином «мальабсорбция» называют оба вида нарушений.

 

Метаболизм фруктозы

Возможны два пути превращения фруктозы, главным из которых является ее фосфорилирование по первому атому углерода ферментом фруктокиназой с… Второй путь превращения фруктозы – фосфорилирование гексокиназой шестого… Возможны наследственные нарушения обмена фруктозы вследствие дефектов двух ферментов.

Метаболизм галактозы

Галактоза образуется в кишечнике в результате гидролиза лактозы.

Нарушение метаболизма галактозы проявляется при наследственном заболевании – галактоземии. Оно является следствием врожденного дефекта фермента гексозо-1-фосфат-уридилилтрансферазы. Галактоземия проявляется вскоре после рождения, как только ребенок начинает получать молоко, в виде рвоты, диареи, дегидратации, уменьшении массы тела, желтухи. В крови, моче и тканях повышается концентрация галактозы и галактозо-1-фосфата. Вскоре после рождения развивается катаракта хрусталика, гепатомегалия, поражение почек и головного мозга, в тяжелых случаях возможен летальный исход.

В гораздо более редких случаях причиной развития галактоземии могут быть наследственные дефекты других ферментов метаболизма галактозы – галактокиназы и УДФ-глюкозо-4-эпимеразы. Клинические проявления этих дефектов менее выражены.

Метаболизм лактозы

Синтез лактозы идет на основе глюкозы и УДФ-галактозы. Благодаря обратимому действию фермента УДФ-глюкозо-4-эпимеразы имеет место…   УДФ-глюкоза УДФ-галактоза.

Гликолиз

Гликолиз – главный путь катаболизма глюкозы путем последовательных ферментативных превращений до лактата (без потребления кислорода – анаэробный гликолиз) или через окислительное декарбоксилирование пирувата до СО2 и Н2О (в присутствии кислорода – аэробный гликолиз).

Процесс аэробного гликолиза включает несколько стадий:

1. Аэробный гликолиз – процесс окисления глюкозы с образованием двух молекул пирувата;

2. Общий путь катаболизма, включающий окислительное декарбоксилирование пирувата до ацетил КоА и его дальнейшее окисление в цикле трикарбоновых кислот;

3. Цепь тканевого дыхания, сопряженная с реакциями дегидрирования, происходящими в процессе распада глюкозы.

Суммарный выход АТФ при окислении 1 моль глюкозы до СО2 и Н2О составляет 38 моль.

Гликоген

 


5 6

 

1, 2, 3 4

Глюкоза Г-6-Ф ПФП

71, 2, 3

Этанол3Пируват Лактат

1 7

Ацетил-КоА


ЦТК

 


СО2 Н2О

1 – аэробный гликолиз;2 – анаэробный гликолиз;3 – спиртовое брожение;
4 – пентозофосфатный путь;5 – синтез гликогена;6 – распад гликогена;
7 – глюконеогенез.

 

Рис. 17.-1. Общая схема путей метаболизма глюкозы.

 

Анаэробный гликолиз – процесс расщепления глюкозы с образованием в качестве конечного продукта лактата. Этот процесс протекает без использования кислорода и поэтому не зависит от работы митохондриательной сети. АТФ здесь образуется за счет реакций субстратного фосфорилирования. Баланс АТФ при анаэробном гликолизе составляет 2 моль в расчете на 1 моль глюкозы.

Аэробный гликолиз происходит во многих органах и тканях и служит основным, хотя и не единственным, источником энергии для жизнедеятельности.

Кроме энергетической функции гликолиз может выполнять и анаболические функции. Метаболиты гликолиза используются для синтеза новых соединений. Так, фруктозо-6-фосфат и глицеральдегид-3-фосфат участвуют в образовании рибозо-5-фосфата – структурного компонента нуклеотидов. 3-фосфоглицерат может включаться в синтез аминокислот, таких как серин, глицин, цистеин. В печени и жировой ткани ацетил-КоА, образующийся из пирувата, используется как субстрат при биосинтезе жирных кислот, холестерина.

Анаэробный гликолиз активизируется в мышцах при интенсивной мышечной работе, происходит в эритроцитах (в них отсутствуют митохондрии), а также в разных условиях ограниченного снабжения их кислородом (спазм и тромбоз сосудов, формирование атеросклеротических бляшек).

 

Пентозофосфатный путь (ПФП)

 

ПФП, называемый также гексозомонофосфатным шунтом, служит альтернативным путем окисления глюкозо-6-фосфата. По ПФП в печени метаболизируется до 33 % всей глюкозы, в жировой ткани – до 20 %, в эритроцитах – до 10 %, в мышечной ткани – менее 1 %. Наиболее активно ПФП протекает в жировой ткани, печени, коре надпочечников, эритроцитах, молочной железе в период лактации, семенниках. ПФП состоит из 2 фаз (частей) – окислительной и неокислительной.

В окислительной фазе глюкозо-6-фосфат необратимо окисляется в пентозу – рибулозо-5-фосфат, и образуется восстановленный НАДФН2. В неокислительной фазе рибулозо-5-фосфат обратимо превращается в рибозо-5-фосфат, метаболиты гликолиза и другие фосфорилированные сахара.

Биологическая роль ПФП:

1. Наработка восстановленного НАДФН2 для восстановительных биосинтезов (жирных кислот, холестерина и т. д.).

2. Синтез пентозофосфатов для образования нуклеиновых кислот и некоторых коферментов.

3. Синтез моносахаридов с числом углеродных атомов от 3 до 8.

4. Обезвреживание ксенобиотиков – необходим НАДФН2.

5. В растениях – участие в темновой фазе фотосинтеза как акцептор СО2.

ПФП не приводит к синтезу АТФ, т. е. не выполняет энергетическую функцию.

 

Глюконеогенез (ГНГ)

 

Глюконеогенез – это синтез глюкозы из неуглеводных предшественников. Основной функцией ГНГ является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Процесс протекает в основном в печени и менее интенсивно в корковом веществе почек, а также в слизистой оболочке кишечника. Эти ткани могут обеспечивать синтез 80-100 г глюкозы в сутки.

Первичными субстратами (предшественниками) в ГНГ являются лактат, глицерол, большинство аминокислот. Включение этих субстратов в ГНГ зависит от физиологического состояния организма.

Лактат – продукт анаэробного гликолиза, образуется в работающих мышцах и, непрерывно в эритроцитах. Таким образом, лактат используется в ГНГ постоянно. Глицерол высвобождается при гидролизе жиров в жировой ткани в период голодания или при длительной физической нагрузке. Аминокислоты образуются в результате распада мышечных белков и выполняются в ГНГ при длительном голодании или продолжительной мышечной работе. Аминокислоты, которые при катаболизме превращается в пируват или метаболиты цикла трикарбоновых кислот, могут рассматриваться как потенциальные предшественники глюкозы и носят название гликогенных.

Из всех аминокислот, поступающих в печень, примерно 30 % приходится на долю аланина. Это объясняется тем, что при расщеплении мышечных белков образуются аминокислоты, многие из которых превращаются сразу в пируват или сначала в оксалоацетат, а затем в пируват. Последний превращается в аланин, приобретая аминогруппу от других аминокислот. Аланин из мышц переносится кровью в печень, где снова преобразуется в пируват, который частично окисляется и частично включается в ГНГ. Такая последовательность превращений приводит к формированию глюкозо-аланинового цикла.

 

Мышцы Кровь Печень

Глюкоза Глюкоза Глюкоза

Гликолиз ГНГ

Пируват Пируват

 


Аланин Аланин Аланин

 

Рис. 17.2. Глюкозо-аланиновый цикл.

 

Путь глюкуроновой кислоты

 

Он относится к вторичным путям метаболизма глюкозы.

 


АТФ АДФ

Глюкоза Глюкозо-6-фосфат

гексокиназафосфоглюкомутаза

УТФ РР


Глюкозо-1-фосфат УДФ-глюкоза

УДФ-глюкозо-

Пирофосфорилаза

Н2О 2НАД 2НАДН+


УДФ-глюкуронат

УДФ-глюкозо-

Дегидрогеназа

Н2О

Протеогликаны


Детоксикация

УДФ

Глюкуронат


НАДФН2глюкуронад

редуктаза

 

НАДФ

ПФП ­­­­­ ксилулоза L-гулонат


Альдоно-

Н2О Н2О лактоназа

L-аскорбиновая L-гулонолактон

Кислота

Гулонолактон-

Оксидаза

УДФ-глюкуронат способствует обезвреживанию некоторых чужеродных веществ и лекарственных препаратов. Кроме того, он служит предшественником…   ГЛАВА18 ОБМЕН ГЛИКОГЕНА

Глюкагон

Адреналин

Å

 

 

Аденилатциклаза Аденилатциклаза

не активная активная

Å

 

Ц-АМФ АТФ

Å

Протеинкиназа Протеинкиназа

не активная активная

 


АТФ АДФ

 


Гликогенn Гликогенсинтаза Гликогенсинтаза

+УДФ-глюкоза a b

Гликоген(n+1)

Протеинфосфатаза

Рн

Å

Инсулин

  Распад гликогена может проходить двумя путями. 1. Гидролитический – при участии амилазы с образованием декстринов и даже свободной глюкозы.

Регуляция синтеза триацилглицеролов

В абсорбтивный период при увеличении соотношения инсулин/глюкагон активируется синтез ТАГ в печени. В жировой ткани индуцируется синтез… Мобилизация жиров, т.е. гидролиз до глицерола и жирных кислот, происходит в…  

Регуляция мобилизации триацилглицеролов

В результате мобилизации ТАГ концентрация жирных кислот в крови увеличивается приблизительно в 2 раза, но они достаточно быстро утилизируются. Для…  

Ожирение

Первичное ожирение развивается в результате алиментарного дисбаланса – избыточной калорийности питания по сравнению с расходами энергии. Причинами… Вторичное ожирение – ожирение, развивающееся в результате какого-либо…  

Обмен жирных кислот

После того, как жирные кислоты поступают в клетку, они активируются путем образования кофермент А-производных:   RCOOH + HSKoA + ATФ ® RCO ~КоА + АМФ +ФФН

Обмен кетоновых тел

Содержание кетоновых тел в крови увеличивается тогда, когда основным источником энергии для организма служат жирные кислоты – при длительной…    

Синтез жирных кислот

Синтез жирных кислот происходит в основном в печени, в меньшей степени – в жировой ткани и лактирующей молочной железе. Гликолиз и последующее… Первая реакция синтеза жирных кислот – превращение ацетил-КоА в малонил-КоА,… Далее синтез жирных кислот продолжается на мультиферментном комплексе – синтазе жирных кислот. Этот фермент состоит из…

Биохимия атеросклероза

Базовой метаболической «предпосылкой» развития атеросклероза является гиперхолестеролемия. (повышенное содержание холестерола в крови).… · вследствие избыточного поступления ХС, углеводов и жиров; · генетической предрасположенности, заключающейся в наследственных дефектах структуры рецепторов ЛПНП или апоВ-100, а…

Глава 23. Обмен аминокислот. Динамическое состояние белков организма

 

Значение аминокислот для организма в первую очередь заключается в том, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и внешней средой. Аминокислоты непосредственно участвуют в биосинтезе большого количества других биологически активных соединений, регулирующих процессы обмена веществ в организме, таких как нейромедиаторы и гормоны. Аминокислоты служат донорами азота при синтезе всех азотсодержащих небелковых соединений, в том числе нуклеотидов, гема, креатина, холина и др.

 

 

 

Рис. 23.1. Общая схема метаболизма аминокислот в организме

 

Катаболизм аминокислот является источником энергии для синтеза АТФ. Энергетическая функция аминокислот становится значимой при голодании, некоторых патологических состояниях (сахарный диабет). Именно обмен аминокислот осуществляет взаимосвязь многообразных химических превращений в живом организме.

Большая часть аминокислот входит в состав белков, количество которых в организме взрослого человека составляет примерно 15 кг.

Какой-либо специальной формы депонирования аминокислот и белков, подобно глюкозе или жирным кислотам не существует. Поэтому резервом аминокислот могут служить все функциональные и структурные белки тканей, но преимущественно белки мышц. В организме человека в сутки распадается на аминокислоты около 400 г белков, примерно такое же количество синтезируется. Поэтому тканевые белки не могут восполнять затраты аминокислот при их катаболизме и использовании на синтез других веществ. Период полураспада белков различен – от нескольких минут до нескольких суток. Первичными источниками аминокислот не могут служить и углеводы, так как из них синтезируется только углеродная часть молекулы, а аминогруппа поступает от других аминокислот. Следовательно, основным источником аминокислот организма служат белки пищи.

Показателем, отражающим интенсивность аминокислотного обмена, является азотистый баланс – разница между количеством азота, поступающего с пищей, и количеством выделяемого азота (преимущественно в виде мочевины и аммонийных солей).

Переваривание белков в желудочно-кишечном тракте

Переваривание белков начинается в желудке под действием ферментов желудочного сока. За сутки его выделяется до 2,5 литров и он отличается от других… Секреция соляной кислоты представляет активный транспорт, осуществляемый… Роль соляной кислоты:

Наследственные нарушения транспорта аминокислот

 

Болезнь Хартнупа – нарушение всасывания триптофана в кишечнике и его реабсорбции в почечных канальцах. Так как триптофан служит исходным продуктом для синтеза витамина РР, то основные проявления болезни Хартнупа – дерматиты, диарея и деменция, характерные для пеллагры.

Цистинурия – нарушение реабсорбции цистина в почках. Цистин плохо растворим в воде, поэтому выпадает в виде кристаллов, которые приводят к образованию цистиновых камней в почках и мочевыводящих путях.

Расщепление белков в тканях

Осуществляется с помощью протеолитических лизосомальных ферментов катепсинов. По строению активного центра выделяют цистеиновые, сериновые,… · создание биологически активных пептидов путем ограниченного протеолиза… · разрушение состарившихся и аномальных белков;

Превращение аминокислот микрофлорой кишечника

Микроорганизмы кишечника располагают набором ферментативных систем, отличных от соответствующих ферментов тканей организма человека и катализирующих… - токсические продукты: фенол, крезол, индол, скатол, сероводород, амины,…  

Пути обмена аминокислот в тканях

Аминокислоты – это бифункциональные соединения, содержащие аминную и карбоксильную группу. Реакции по этим группам являются общими для различных аминокислот. К ним относят:

· по аминной группе – реакции дезаминирования и трансаминирования;

· по карбоксильной группе – реакции декарбоксилирования.

 

Кроме этих общих путей возможны реакции по углеводородному радикалу аминокислот, которые являются специфическими для каждой аминокислоты.

Катаболизм большинства аминокислот начинается с отщепления a-аминогруппы, которое возможно в реакциях трансаминировани и дезаминирования.

Трансаминирование аминокислот

Трансаминирование – реакции переноса a-аминогруппы с аминокислоты на a-кетокислоту, в результате чего образуются новая кетокислота и новая… Реакции трансаминирования протекают в 2 стадии. На первой стадии к… На второй стадии пиридоксаминфосфат соединяется с новой кетокислотой (второй субстрат) и снова через промежуточное…

Биологическое значение трансаминирования

Трансаминирование – первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты… Оксидазы D-аминокислот. При физиологических значениях рН в тканях высоко… В печени человека присутствуют специфические ферменты, катализирующие реакции дезаминирования серина, треонина,…

Дезаминирование аминокислот

 

Дезаминирование аминокислот – реакция отщепления a-аминогруппы от аминокислоты с выделением аммиака. Различают два типа реакций дезаминирования: прямое и непрямое.

Прямое дезаминирование – непосредственное отщепление аминогруппы от аминокислоты без промежуточных посредников. В живой природе возможны следующие типы прямого дезаминирования: окислительное, восстановительное, гидролитическое и путем внутримолекулярной перестройки. Но у человека дезаминирование происходит преимущественно окислительным путем в результате чего образуется соответствующая a-кетокислота и выделяется аммиак. Процесс идет с участием ферментов оксидаз. Выделены оксидазы L-аминокислот, превращающие L-изомеры аминокислот, и D-оксидазы.

 

Окислительное дезаминирование глутамата

Наиболее активно в тканях происходит дезаминирование глутаминовой кислоты. Реакцию катализирует фермент глутаматдегидрогеназа, который несколько… · в качестве кофермента содержит НАД+ или НАДФ+; · обладает абсолютной специфичностью;

Непрямое дезаминирование аминокислот

Большинство аминокислот не способно дезаминироваться в одну стадию, подобно глутамату. Аминогруппы таких аминокислот перносятся на a-кетоглутарат с…   Аминокислота a-Кетокислота …

Декарбоксилирование аминокислот

Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию. Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами, нуждающимися в пиридоксальфосфате в качестве кофермента. Продуктами реакции являются СО2 и амины, которые оказывают выраженное биологическре действие на организм, и поэтому названы биогенными аминами. Они выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК и др.), гормонов (норадреналин, адреналин), регуляторных факторов местного действия (гистамин, карнозин, спермин и др.).

Биогенные амины

· стимулирует секрецию желудочного сока и слюны; · повышает проницаемость капилляров, вызывает отеки, снижает АД, но… · сокращает гладкую мускулатуру легких, вызывает удушье;

Пути катаболизма углеродного скелета аминокислот

Катаболизм всех аминокислот сводится к образованию шести веществ, вступающих в общий путь катаболизма: пируват, ацетил-КоА, a-кетоглутарат,… Аминокислоты, которые превращаются в промежуточные продукты ЦТК… Катаболизм лейцина и лизина не включает стадии образования пировиноградной кислоты, их углеводородная часть…

Тканевое обезвреживание аммиака

1. Основной путь – это связывание NH3 c глутаминовой кислотой с образованием глутамина (фермент глутаминсинтетаза);   Глутамат + NH3 + ATФ ® Глутамин + AДФ + Pн

Общее (конечное) обезвреживание аммиака

Образование и выведение аммонийных солей. Роль глутаминазы. В почках под действием глутаминазы происходит гидролиз глутамина с…

Регуляция синтеза мочевины

Быстрая регуляция происходит на уровне карбамоилфосфатсинтетазы I. Этот фермент аллостерически регулируется N-ацетилглутаминовой кислотой, которая синтезируется внутри митохондрий из глутамата и ацетил-КоА.

Долговременная регуляция зависит от синтеза новых ферментов. Индукция синтеза определяется уровнем пищевого белка. Повышение поступления белков с пищей повышает синтез всех ферментов орнитинового цикла.

Нарушения синтеза и выведения мочевины

Повышенная концентрация аммиака в организме приводит к активации глутаминсинтазы. При этом количество глутамата, который является нейромедиатором в… Выделяют первичную (врожденную) и вторичную (приобретенную) гипераммониемию. К… · Гипреаммониемия I-го типа – дефект карбамоилфосфатсинтетазы I.

Метаболизм метионина

  -СН3 МЕТИОНИН …  

Реакция активации метионина

Активной формой метионина является S-аденозилметионин (SAM), образующийся в результате присоединения метионина к молекуле аденозина. Аденозин… Реакции метилирования играют важную роль в организме и протекают очень… · фосфатидилхолина из фосфатидилэтаноламина;

Синтез креатина

 

Креатин необходим для образования в мышцах макроэргического соединения креатинфосфата. Синтез креатина идет в 2 стадии с использованием 3 аминокислот: аргинина, глицина и метионина. В почках образуется гуанидинацетат при действии глицинамидинотрансферазы. Затем гуанидинацетат транспортируется в печень, где происходит реакция его метилирования с образованием креатина. Креатин с током крови переносится в мышцы и клетки мозга, где из него под действием креатинкиназы (реакция легко обратима) образуется креатинфосфат – своеобразное депо энергии.

Метаболизм фенилаланина и тирозина

Фенилаланин – незаменимая аминокислота, так как в клетках животных не синтезируется ее бензольное кольцо. Метаболизм метионина осуществляется по 2-м… Обмен тирозина значительно сложнее. Кроме использования в синтезе белков,… В печени происходит катаболизм тирозина до конечных продуктов фумарата и ацетоацетата. Фумарат может окислятся до СО2…

Нарушение обмена фенилаланина и тирозина

 

Фенилкетонурия

  Тирозинемии Наследственные нарушения метаболизма тирозина в печени. Известно два типа.

Биосинтез пуриновых нуклеотидов

В 40-50-х годах ХХ столетия при проведении опытов с мечеными изотопами удалось выяснить происхождение атомов пуринового ядра при синтезе пуринов de novo. Было установлено, что в формировании кольца принимают участие аминокислоты ( аспарагиновая, глициновая, глутаминовая) СО2 и два одноуглеродных производных тетрагидрофолата: метенил-Н4-фолат. Этим способом образуется основное количество пуриновых нуклеотидов, тогда как нуклеотиды, синтезирующиеся за счёт повторного использования азотистых оснований или нуклеозидов, составляют не более 10-20% общего фонда этих соединений.

 

Регуляция синтеза пуриновых нуклеотидов

Образование АМФ и ГМФ регулируется аллостерическими механизмами по принципу обратной связи (рис. 26.1). АМФ и ГМФ ингибируют активность ферментов синтеза фосфорибозиламина, а также, соответственно, активность аденилосукцинатсинтетазы и ИМФ-дегидрогеназы. При этом АТФ и ГТФ оказывают перекрестное активирующее влияние.

Биосинтез пиримидиновых нуклеотидов

Фонд пиримидиновых нуклеотидов, подобно пуриновым нуклеотидам, в основном синтезируется из простых предшественников de novo, и только 10-20% от общего количества образуется по «запасным» путям из азотистых оснований или нуклеозидов.

В отличие от синтеза пуринов, где формирование гетероциклического основания осуществляется на остатке рибозо-5-фосфата, пиримидиновое кольцо синтезируется из простых предшественников: глутамина, СО2 и аспарагиновой кислоты и затем связывается с рибозо-5-фосфатом, полученным от ФРДФ.

Процесс протекает в цитозоле клеток. Синтез ключевого пиримидинового нуклеотида – УМФ идёт с участием 3 ферментов, 2 из которых полифункциональны.

 

Распад нуклеиновых кислот в желудочно-кишечном тракте и тканях

Нуклеиновые кислоты поступают в организм с пищей главным образом в составе нуклеопротеинов и высвобождаются в результате действия протеолитических ферментов желудочно-кишечного тракта. Далее под действием дезоксирибонуклеазы и рибонуклеазы панкреатического сока нуклеиновые кислоты гидролизуются до нуклеотидов. Нуклеотиды под воздействием нуклеотидаз или фосфатаз распадаются до нуклеозидов, которые могут всасываться или гидролизоваться далее до азотистых оснований и пентоз.

В тканях нуклеиновые кислоты гидролизуются дезоксирибонуклеазами (ДНК-азы) и рибонуклеазами (РНК-азы) до нуклеотидов, которые под действием нуклеотидаз теряют остаток фосфора. Образующиеся нуклеозиды пуринового и пиримидинового ряда подвергаются дальнейшему катаболизму.

Нарушения обмена нуклеотидов

Ксантинурия

  Оротацидурия Оротацидурия – наследственное заболевание связанное с утратой двух ферментов пути синтеза пиримидинов –…

Аллостерическая регуляция метаболических путей

Аллостерические регуляторы бывают, как правило, двух типов: 1. Конечные продукты цепей последовательных реакций, регулирующие свой синтез… 2. АТФ, АДФ, АМФ, НАД+ и НАДН·+Н+. Эти соединения хотя и не являются конечными продуктами самих метаболических путей,…

Взаимосвязь метаболизма

Метаболизм в целом не следует понимать как сумму обменов белков, нуклеиновых кислот, углеводов и липидов. В результате взаимодействия обменов…   Рис. 27.1. Взаимосвязь метаболизма различных классов органических соединений.

Инактивация гормонов, витаминов.

Большое значение печени определяется ее анатомическим положением. Это промежуточный орган между кишечником и системой общего кровотока. Благодаря печени в общем круге кровообращения изменения концентрации ряда веществ, поступающих в организм с пищей (глюкоза, аминокислоты и др.), незначительны.

Масса печени составляет 2-3% от веса тела, у взрослого человека – 1,2 – 2 кг.

Масса печени и её химический состав подвержены изменениям, в особенности, при патологических состояниях. Для осуществления обменных функций печень получает от 1/4 до 1/3 крови минутного объема сердца, что составляет около 1,5 литра в минуту. 70% крови поступает в печень по воротной вене, 30 % - по печеночной артерии.

Роль печени в углеводном обмене

Основная роль печени в углеводном обмене заключается в поддержании нормального содержания глюкозы в крови – т. е. в регуляции нормогликемии. Это… 1. Наличие в печени фермента глюкокиназы. Глюкокиназа, подобно гексокиназе,… После приема пищи содержание глюкозы в воротной вене резко возрастает и достигает 10 ммоль/л и более. Повышение…

Рис. 28.1. Участие глюкозо-6-фосфата в метаболизме углеводов

 

2. Синтез и распад гликогена. Гликоген печени выполняет роль депо глюкозы в организме. После приема пищи избыток углеводов откладывается в печени в виде гликогена, уровень которого составляет примерно 6 % от массы печени (100-150 г). В промежутках между приемами пищи, а также в период «ночного голодания» пополнения пула глюкозы в крови за счет всасывания из кишечника не происходит. В этих условиях активируется распад гликогена до глюкозы, что поддерживает уровень гликемии. Запасы гликогена истощаются к концу 1-х суток голодания.

3. В печени активно протекает глюконеогенез – синтез глюкозы из неуглеводных предшественников (лактат, пируват, глицерол, гликогенные аминокислоты). Благодаря глюконеогенезу в организме взрослого человека образуется примерно 70 г глюкозы в сутки. Активность глюконеогенеза резко возрастает при голодании на 2-е сутки, когда запасы гликогена в печени исчерпаны.

Благодаря глюконеогенезу печень участвует в цикле Кори – процессе превращения молочной кислоты, образующейся в мышцах, в глюкозу.

4. В печени осуществляется превращение фруктозы и галактозы в глюкозу.

В печени происходит синтез глюкуроновой кислоты.

Роль печени в липидном обмене

 

Печень участвует во всех этапах липидного обмена, начиная с переваривания липидов и заканчивая специфическими метаболическими превращениями отдельных липидных фракций:

· синтез желчных кислот и образование желчи;

· β-окисление жирных кислот;

· биосинтез жирных кислот;

· образование кетоновых тел;

· распад и синтез фосфолипидов;

· синтез холестерола и образование его эфиров; соотношение эфиры холестерина/свободный холестерин в норме составляет примерно 0,5 – 0,7 %; снижение этого коэффициента до 0,3 – 0,4 % наблюдается при поражениях печени и является неблагоприятным признаком;

· основное место синтеза липопротеинов очень низкой плотности и липопротеинов высокой плотности;

· гидроксилирование витамина D по 25-му положению.

 

Роль печени в обмене аминокислот и белков

 

Печень играет центральную роль в обмене белков и других азотсодержащих соединений. Она выполняет следующие функции:

· синтез специфических белков плазмы: - в печени синтезируется: 100 % альбуминов, 75 – 90 % α-глобулинов, 50 % β-глобулинов,

единственный орган, где синтезируются белки свертывающей системы крови – протромбин, фибриноген, проконвертин, проакцелерин;

· активно протекают реакции трансаминирования и дезаминирования аминокислот;

· биосинтез мочевины происходит исключительно в печени;

· образование мочевой кислоты происходит в основном в печени, так как здесь много фермента ксантиноксидазы, при участии которого продукты распада пуриновых оснований (гипоксантин и ксантин) превращаются в мочевую кислоту;

· синтез креатина и холина.

В печени происходит детоксикация различных веществ.

 

Обезвреживающая функция печени

 

Печень является главным органом, где происходит обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей или в качестве источников энергии. К ним относят лекарственные препараты, продукты хозяйственной деятельности человека, вещества бытовой химии и пищевой промышленности (консерванты, красители).

 

Обезвреживание нормальных метаболитов

В клетках ретикулоэндотелиальной системы печени протекает катаболизм гема до билирубина, конъюгация билирубина с глюкуроновой кислотой в гепатоцитах… 2. Обезвреживание аммиака. Аммиак – высокотоксичное соединение, особо опасное для мозга. Основным механизмом обезвреживания аммиака в организме…

Обезвреживание ксенобиотиков

Обезвреживание большинства ксенобиотиков происходит в 2 фазы: I – фаза химической модификации; II – фаза коньюгации.

Катаболизм гемоглобина

 

Катаболизм гема.

    Рис. 28.2. Распад гемоглобина

Желтухи. Дифференциальная диагностика

· усиление гемолиза эритроцитов и увеличение образования билирубина, превышающее способность печени экскретировать его; · повреждение печени, приводящее к нарушению секреции билирубина в желчь; · закупорка желчевыводящих протоков печени.

Желтуха новорожденных

Разновидность гемолитической желтухи новорожденных − «физиологическая желтуха». Наблюдается в первые дни жизни ребенка. Причинами повышения… - усиленный гемолиз эритроцитов, содержащих фетальный гемоглобин; - недостаточный синтез в печени УДФ-глюкуроната;

Биохимические механизмы развития печеночной недостаточности

Печеночная недостаточность – состояние, объединяющее различные нарушения функции печени, которые могут в дальнейшем полностью компенсироваться,… Причиной печеночной недостаточности является целый ряд заболеваний и… · острый вирусный гепатит;

Биохимические методы диагностики поражений печени

Биохимические лабораторные тесты могут быть высокочувствительными индикаторами повреждения печени. Результаты биохимических анализов указывают на… Для оценки функционального состояния печени при разных заболеваниях (острый и… · Исследование пигментного обмена – определение в крови и моче билирубина и продуктов его биотрансформации.

Распределение жидкости в организме

Внутриклеточная жидкость – жидкость, содержащаяся внутри клеток. У взрослых на внутриклеточную жидкость приходится 2/3 всей жидкости, или 30 – 40 %… 1. Интерстициальная жидкость – жидкость, окружающая клетки. Лимфа является… 2. Внутрисосудистая жидкость – жидкость находящаяся внутри сосудистого русла.

Состав жидкостей

 

Все жидкости состоят из воды и растворенных в ней веществ.

Вода.

Вода является основным компонентом человеческого организма. У взрослых мужчин вода составляет 60 % а у женщин – 55 % массы тела. К факторам влияющим на количество воды в организме относятся.

1. Возраст. Как правило, количество воды в организме с возрастом уменьшается. У новорожденного количество воды составляет 70 % массы тела, в возрасте 6 – 12 месяцев – 60 %, у пожилого человека 45 – 55 %. Снижение количества воды с возрастом происходит вследствие уменьшения мышечной массы.

2. Жировые клетки. Содержат мало воды, поэтому количество воды в организма снижается с увеличением содержания жира.

3. Пол. Женский организм имеет относительно меньше воды, так как содержит относительно больше жира.

 

Растворенные вещества

В жидкостях организма содержатся два типа растворенных веществ – неэлектролиты и электролиты. 1. Неэлектролиты. Вещества, которые не диссоциируют в растворе и измеряются по… 2. Электролиты. Вещества которые диссоциируют в растворе на катионы и анионы и их содержание измеряется в…

Характеристики жидкостей

 

Кроме состава, важное значение имеют общие характеристики (параметры) жидкостей. К ним относятся: объем, осмоляльность и рН.

Объем жидкостей.

Объем жидкости зависит от количества воды которая присутствует в данный момент в конкретном пространстве. Однако вода переходит пасивно, в основном за счет Na+.

Жидкости взрослого организма имеют объем:

Внутриклеточная жидкость – 27 л

Внеклеточная жидкость – 15 л

В том числе:

Интерстициальная жидкость – 11 л

Плазма – 3 л

Трансцеллюлярная жидкость – 1 л.

 

Вода, биологическая роль, обмен воды

1. Конституционная (прочно связанная) воды, входит в структуру белков, жиров, углеводов. 2. Слабосвязанная воды диффузионных слоев и внешних гидратных оболочек… 3. Свободная, мобильная вода, является средой в которой растворяются электролиты и ниэлектролиты.

Регуляция объема внеклеточной жидкости

Значительные колебания объема интерстициальной части внеклеточной жидкости могут наблюдаться без выраженного влияния на функции организма.… Альдостерон действует на главные клетки собирательных трубок, т. е. дистальную…  

Нарушения кислотно-основного равновесия

Нарушения наступают при не способности механизмов поддержания КОР предотвращать сдвиги. Могут наблюдаться два крайних состояния. Ацидоз – повышения… Изменение рН крови ниже 7,0 или выше 8,8 вызывают смерть организма. Три формы патологических состояний приводят к нарушению КОР:

Минеральные компоненты тканей, биологические функции

В организме человека обнаружено большинство элементов встречающихся в природе. С точки зрения количественного содержания в организме их можно разделить на 3 группы:

1. Микроэлементы-содержание в организме более 10-2%. К ним относятся – натрий, калий, кальций, хлорид, магний, фосфор.

2. Микроэлементы – содержание в организме от 10-2% до 10-5%. К ним относятся – цинкЮ молибден, иод, медь и др.

3. Ультрамикроэлементы – содержание в организме менее 10-5%, например серебро, алюминий и др.

В клетках минеральные вещества находятся в виде ионов.

Основные биологические функции

1. Структурная – участвуют в формировании пространственной структур биополимеров и других веществ. 2. Кофакторная – участие в образовании активных центров ферментов. 3. Осмотическая – поддержание осмолярности и объема жидкостей.

Кальций, биологическая роль, обмен, регуляция

Биологическая роль: · структура костной ткани, зубов; · мышечное сокращение;

Фосфор, биологическая роль, обмен, регуляция

Биологическая роль: · образование (совместно с кальцием) структуры костной ткани; · строение ДНК, РНК, фосфолипидов, коферментов;

Эссенциальные микроэлементы

Эссенциальные микроэлементы – микроэлементы без которых организм не может расти, развиваться и совершать свой естественный жизненный цикл. К…   Таблица 29.2.

Общая характеристика

 

Общий объем крови у взрослого человека составляет у женщин – 4 л, у мужчин – 5,2 л (примерно 8 % от массы тела). В норме рН крови – 7,36 – 7,7. Относительная плотность цельной крови – 1,050 – 1,065, плазмы – 1,024 – 1,030. Вязкость крови в 4-5 раз выше вязкости воды благодаря высокому содержанию белка и эритроцитов. Осмотическое давление плазмы крови при температуре 37о ~ 7,6 атм.

 

Функции крови

Кровь осуществляет транспорт различных химических веществ по кровеносным сосудам. 1. Дыхательная функция – перенос кислорода из легких в ткани и СО2 из тканей… 2. Трофическая функция – транспорт питательных веществ: глюкозы и кетоновых тел, липидов, жирных кислот, аминокислот…

Особенности метаболизма в форменных элементах крови

1. Зрелые эритроциты лишены ядра, поэтому в клетке не синтезируются белки. Эритроцит почти целиком заполнен гемоглобином. 2. Эритроциты не имеют митохондрий, поэтому в клетке не протекают реакции… 3. Основной путь получения энергии – гликолиз, 90% глюкозы в эритроцитах распадается в процессе анаэробного…

Гемоглобин человека

Гемоглобин – сложный железосодержащий белок, относится к классу гемопротеинов. Выполняет две важные функции:

· перенос кислорода из легких к периферическим тканям;

· участие в переносе СО2 и протонов из периферических тканей в легкие.

Производные гемоглобина

Молекула гемоглобина взаимодействует с различными лигандами, образуя производные гемоглобина. 1. Дезоксигемоглобин – ННb – не связанный с кислородом и содержащий гем с… 2. Оксигемоглобин– ННbO2 – полностью оксигенированный гемоглобин, связанный с четырьмя молекулами кислорода.

Варианты гемоглобина в онтогенезе

 

Количество и состав фракций гемоглобина изменяется в процессе онтогенеза. Все гемоглобины представляют собой тетрамеры, построенные из разного набора субъединиц (α, β, γ, δ) и преимущественно образуются на разных этапах развития организма человека – от эмбрионального до взрослого состояния. Различают следующие физиологические типы гемоглобинов: примитивный гемоглобин НbР, фетальный гемоглобин HbF (fetus – плод), гемоглобин взрослых HbA, HbA2, HbA3 (adultus – взрослый).

Примитивный гемоглобин– синтезируется в эмбриональном желточном мешке через несколько недель после оплодотворения. Состоит из двух α- и двух ε-цепей (2α, 2ε). Через две недели после формирования печени плода в ней начинает синтезироваться HbF, который к шести месяцам полностью замещает НbР.

Фетальный гемоглобин – синтезируется в печени и костном мозге плода до периода его рождения. Состоит из двух α- и двух γ-цепей (2α, 2γ). Характеризуется более высоким сродством к кислороду и обеспечивает эффективную доставку кислорода к эмбриону из системы кровообращения матери. HbF является главным типом гемоглобина плода. Кровь новорожденного содержит до 80% HbF, но к концу 1-го года жизни он почти целиком заменяется на HbA. В крови взрослого человека присутствует в минимальном количестве – до 1,5% от общего количества гемоглобина.

Гемоглобин А – основной гемоглобин взрослого человека (96 % от общего количества). Начинает синтезироваться в клетках костного мозга уже на 8-м месяце развития плода. HbA состоит из двух α- и двух β-цепей.

Минорные гемоглобины:

1) HbA2 - 2α 2δ, в крови взрослого человека примерно 2,6 % HbA2. Обладает большим сродством к кислороду.

2) HbA3 - 2α 2β, однако имеются изменения в строении β-цепей по сравнению с HbA. Появляется в крови в небольших количествах при старении.

 

Гемоглобинопатии

Все структурные аномалии белковой части гемоглобина называют гемоглобинозами. Различают: · гемоглобинопатии; · талассемии.

Обмен железа

В организме взрослого человека содержится 3-4 г железа, из этого количества около 3,5 г находится в плазме крови. Гемоглобин эритроцитов содержит…   В обмене железа принимает участие ряд белков.

Железодефицитные анемии

Железодефицитные анемии развиваются в результате нарушения обмена железа. Встречаются чаще других форм анемий. Основные причины: - хронические кровопотери;

Белки плазмы крови

Из 10 % сухого остатка плазмы крови на долю белков приходится около 7 %. Плазма крови, лишенная фибриногена, называется сывороткой. Содержание белков в сыворотке крови в норме составляет 65-85 г/л.

Белки плазмы крови выполняют множество функций.

1. Транспортная (альбумины, трансферрин, транскортин и др.).

2. Защитная:

- белки системы свертывания крови способствуют сохранению постоянного количества крови в сосудистом русле при повреждениях;

- γ-глобулины обеспечивают иммунную защиту;

- белки системы комплемента.

3. Поддержание онкотического (коллоидно-осмотического) давления крови (альбумины).

4. Регуляция кислотно-основного равновесия (белковая буферная система).

5. Белки плазмы крови являются резервом аминокислот для организма.

Характеристика белков сыворотки крови

Белки системы комплемента –к этой системе относятся 20 белков, циркулирующих в крови в форме неактивных предшественников. Их активация происходит… Биороль белков системы комплемента: - защитная функция, обеспечивают лизис бактериальных клеток;

Патологии системы свертывания крови.

Гемофилии

Гемофилин –наследственные заболевания, обусловленные отсутствием определенных факторов свертывания крови. Гемофилия А связана с дефицитом фактора… Диссеминированное внутрисосудистое свертывание (ДВС-синдром) ДВС-синдром представляет собой общепатологический процесс, вызванный проникновением в кровоток активаторов свертывания…

Особенности биохимических процессов в почечной ткани

· Высокая интенсивность энергетического обмена. Большие затраты АТФ связаны с процессами активного транспорта при реабсорбции, секреции, а также с… · Использование в качестве основного источника энергии жирных кислот (на их… · Использование в качестве источника энергии глюкозы, которая обеспечивает до 10% энергопотребностей почек.

Функции аксонального плазматического тока

1. Непрерывное возмещение составных частей нейрона в норме и при патологии. 2. Освобождение веществ из нейрона в связи с синаптическим переносом, его… 3. Транспорт трофических веществ из целевого органа в тело нейрона.

Гемато-энцефалический барьер (ГЭБ)

 

Большая часть стенок капилляров мозга (85-90%) покрыты выростами астроцитов, а остальная часть их поверхности окружена собственно телами глиальных клеток. Контакт между астроцитами и стенкой капилляров настолько тесен, что внешне поверхности мембран этих двух элементов как бы сливаются образуя двойную перегородку. Благодаря такой двойной перегородке возникает барьер, через который с трудом проникают многие растворимые в крови вещества. Морфологическую основу ГЭБ составляют – эндотелий сосудов мозга, периваскулярная базальная мембрана и плазматическая мембрана глиальных клеток. Интенсивность проникновения в мозг ряда веществ через ГЭБ определяется не только состоянием ГЭБ, но и интенсивностью функционирования и метаболизма ЦНС. Уровень деятельности и метаболизма нервной ткани является фактором, регулирующим функцию ГЭБ. С одной стороны, ГЭБ играет роль в защите головного мозга от экзогенных и эндогенных токсинов, циркулирующих в крови, а с другой – препятствуют «ускользанию» нейромедиаторов и других активных соединений из интерстициальной жидкости в кровь. Однако наиболее важной функцией ГЭБ, по видимо, является сохранение особой внутренней среды для головного мозга.

 

Общие особенности метаболизма нервной ткани

1. Высокая интенсивность в сравнении с другими тканями.

2. Поразительно высокий уровень обмена сохраняется при отсутствии большой функциональной активности – во время сна.

3. Метаболизм в периферических нервных волокнах отличается от обмена самих нервных клеток.

4. Общая интенсивность метаболизма в нервных волокнах низкая.

 

Обмен свободных аминокислот в головном мозге

Аминокислоты играют важную роль в метаболизме и функционировании ЦНС. Это объясняется не только исключительной ролью аминокислот как источников… 1. Большая способность нервной ткани поддерживать относительное постоянство… 2. Содержание свободных аминокислот в головном мозге в 8 – 10 раз выше, чем в плазме крови.

Нейропептиды

В последнее время значительно увеличился интерес к управлению важнейшими функциями мозга с помощью пептидов. Открыто достаточно большое количество… Нейропептиды представляют собой малые и средние по размеру пептиды, как…  

Энергетический обмен в нервной ткани

Характерными чертами энергетического обмена в ткани головного мозга являются: 1. Высокая его интенсивность в сравнении с другими тканями. 2. Большая скорость потребления кислорода и глюкозы из крови. Головной мозг человека, на долю которого приходится 2%…

Особенности углеводного обмена в ткани головного мозга

1. Функциональная активность мозга в наибольшей степени зависит от обмена углеводов.

2. Головной мозг в качестве энергетического материала использует почти исключительно глюкозу.

3. Доминирующим путем метаболизма глюкозы в нервной ткани является аэробный гликолиз.

4. Важная роль для метаболизма мозга гексокиназы, как основного механизма вовлечения глюкозы в гликолиз.

5. Существование единого функционального комплекса из двух ферментов гликолиза – гексокиназы и фосфофруктокиназы, синхронно однонаправленно регулируемых пулом адениловых нуклеотидов.

 

Липидный обмен в нервной ткани

 

Липидный состав головного мозга уникален не только по высокой концентрации общих липидов, но и по содержанию здесь их отдельных фракций. Почти все липиды головного мозга представлены тремя главными фракциями: глицерофосфолипидами, сфинголипидами и холестеролом, который всегда обнаруживается в свободном, а не эстерифицированном состоянии, характерном для большинства других тканей.

 

Обмен липидов в нервной ткани имеет следующие особенности

- мозг обладает высокий способностью синтезировать жирные кислоты;

- в мозге практически не происходит β-окисления жирных кислот;

- скорость липогенеза в головном мозге неодинакова в различные сроки постнатального периода;

- постоянство состава липидов в зрелом мозге подтверждает низкую скорость их обновления в целом;

- фосфатидилхолин и фосфатидилинозит обновляются в ткани мозга быстро;

- скорость синтеза холестерола в мозге высока в период его формирования. С возрастом активность этого процесса уменьшается;

- синтез цереброзидов и сульфатидов протекает наиболее активно в период миелинизации.

В зрелом мозге 90 % всех цереброзидов находятся в миелиновых оболочках, тогда как ганглиозиды – типичные компоненты нейронов.

Роль медиаторов в передаче нервных импульсов

 

Большинство синапсов в нервной системе млекопитающих является химическими. Процесс передачи сигнала в химическом синапсе осуществляется посредством освобождения нейромедиаторов из пресинаптических нервных окончаний. К нейромедиаторам относятся в настоящее время 4 группы веществ: моноамины, аминокислоты, пуриновые нуклеотиды, пептиды. В индивидуальном нейроне синтезируется, как правило, несколько нейромедиаторов различной химической природы. Кроме нейромедиаторов существует обширный класс соединений – нейромодуляторов, регулирующих уровень синаптической передачи.

 

Нейрохимические основы памяти

Память – сложный и еще не достаточно изученный процесс, включающий фазы запечатления, хранения и извлечения поступающей информации. Все эти фазы… Виды биологической памяти: 1. Генетическая; 2. Эпигенетическая; 3.… Нейрологическая память обладает сложной системной организацией и не имеет строгой локализации в определенных участках…

Спинномозговая жидкость (ликвор или цереброспинальная жидкость)

Распределение ликвора в ликворной системе: · боковые желудочки – 20-30 мл · 3 и 4 желудочки – 3-5 мл

Белки мышечной ткани

Выделяют три группы белков: · миофибриллярные белки – 45 %; · саркоплазматические белки – 35 %;

Биохимические механизмы сокращения и расслабления мышц

· 1-2-3 – стадии сокращения; · 4-5 – стадии расслабления. 1 стадия – в стадии покоя миозиновая «головка» может гидролизовать АТФ до АДФ и Фн, но не обеспечивает освобождения…

Актин

АТФ-миозин

5 1

актин-миозин-АТФ миозин-АДФ-Фн

 


4 2

АТФ актин

актин-миозин актин-миозин-АДФ-Фн


АДФ, Фн

Рис. 33.1. Цикл мышечного сокращения

 

Движущая сила мышечного сокращения – энергия, освобождающаяся при гидролизе АТФ.

 

Роль ионов кальция в регуляции мышечного сокращения

Мышечное сокращение инициируется приходом потенциала действия на концевую пластинку двигательного нерва. В синапс выделяется ацетилхолин, который… После прекращения действия двигательного импульса кальций с помощью… Кальций является аллостерическим модулятором мышечного сокращения.

Деполяризация Т-трубочек

 

Выброс Са2+ из цистерн

Саркоплазматического ретикулума

 

Комплекс Тн-С + 4Са2+

 

Тропонин (активный)

 

Тропомиозин (активный)

 

F – актин

 

 

Актин – Миозин

АДФ, Фн

 

 

Сократительный цикл

 

Рис. 33.2. Роль ионов кальция в мышечном сокращении

 

Биохимия мышечного утомления

Утомление – состояние организма, возникающее вследствие длительной мышечной нагрузки и характеризующееся временным снижением работоспособности. Центральная роль в развитии утомления принадлежит нервной системе. В состоянии… Биохимические изменения в работающей мышце при утомлении:

Коллаген.

Необычные механические свойства коллагена связаны с их первичной и пространственной структурами. Молекулы коллагена состоят из трех полипептидных… Первичная структура a-цепей коллагена необычна, так как каждая третья… Катаболизм коллагена. Как и любой белок, коллаген функционирует в организме определенное время. Его относят к медленно…

Эластин

В отличие от коллагена, образующего прочные фибриллы, эластин обладает резиноподобными свойствами. Нити эластина, содержащиеся в тканях легких, в… Эластин содержит в своем составе около 800 аминокислотных остатков, средии… Наличие ковалентных сшивок между пептидными цепочками с неупорядоченной, случайной конформацией позволяет всей сети…

Протеогликаны и гликопротеины

Протеогликаны – высокомолекулярные соединения, состоящие из белка (5-10%) и гликозаминогликанов (90-95%). Они образуют основное вещество… Гликозаминогликаны – гетерополисахариды, состоящие из многократно… Белки в протеогликанах представлены одной полипептидной цепью разной молекулярной массы. Белки протеогликанов называют…

ОГЛАВЛЕНИЕ

 

СПИСОК СОКРАЩЕНИЙ.. 3

 

глава 1. ВВЕДЕНИЕ В БИОХИМИЮ... 5

 

ГЛАВА 2. СТРОЕНИЕ И ФУНКЦИИ БЕЛКОВ.. 10

 

ГЛАВА 3. ФЕРМЕнТЫ. МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ.. 25

 

ГЛАВА 4. регуляция активности ферментов. Медицинская энзимология.. 33

 

ГЛАВА 5. СТРУКТУРА И ФУНКЦИИ НУКЛЕИНОВЫХ КИСЛОТ. 44

 

ГЛАВА 6. БИОСИНТЕЗ НУКЛЕИНОВЫХ КИСЛОТ. 50

 

ГЛАВА 7. БИОСИНТЕЗ БЕЛКА.. 63

 

Глава 8. ВВЕДЕНИЕ В МЕТАБОЛИЗМ.. 74

 

Глава 9. БИОЛОГИЧЕСКИЕ МЕМБРАНЫ.. 79

 

Глава 10. ЭНЕРГЕТИЧЕСКИЙ ОБМЕН. БИОЛОГИЧЕСКОЕ
ОКИСЛЕНИЕ. 84

 

Глава 11. ТИПЫ ОКИСЛЕНИЯ. АНТИОКСИДАНТНЫЕ СИСТЕМЫ.. 93

 

Глава 12.ё гормоны – общая характеристика и механизм действия 104

 

Глава 13. особенности действия гормонов эндокринных желез Либерины.. 114

 

Глава 14. БИОХИМИЯ ПИТАНИЯ.. 137

 

Глава 15. Основы витаминологии. жирорастворимые и водорастворимые витамины. 142

 

ГЛАВА 16. УГЛЕВОДЫ ТКАНЕЙ И ПИЩИ – ОБМЕН И ФУНКЦИИ.. 154

 

ГЛАВА 17. пути МЕТАБОЛИЗМА ГЛЮКОЗЫ.. 161

 

ГЛАВА 18. ОБМЕН ГЛИКОГЕНА.. 168

 

ГЛАВА 19. ЛИПИДЫ ТКАНЕЙ, ПЕРЕВАРИВАНИЕ И ТРАНСПОРТ ЛИПИДОВ 173

 

ГЛАВА 20. ОБМЕН ТРИАЦИЛГЛИЦЕРОЛОВ И ЖИРНЫХ КИСЛОТ. 183

 

ГЛАВА 21. ОБМЕН СЛОЖНЫХ ЛИПИДОВ.. 194

 

ГЛАВА 22. МЕТАБОЛИЗМ ХОЛЕСТЕРОЛА. БИОХИМИЯ АТЕРОСКЛЕРОЗА 199

 

Глава 23. Обмен аминокислот. Динамическое состояние белков организма.. 206

 

Глава 24. Образование и обезвреживание NH3 в
организме. 219

 

Глава 25. Метаболизм отдельных аминокислот. 224

 

ГЛАВА 26. обмЕн нуклеотидов.. 228

 

ГЛАВА 27. РЕГУЛЯЦИЯ И ВЗАИМОСВЯЗЬ МЕТАБОЛИЗМА.. 233

 

ГЛАВА 28. БИОХИМИЯ ПЕЧЕНИ.. 238

 

ГЛАВА 29. Водно-электролитный обмен.. 250

 

ГЛАВА 30. БИОХИМИЯ КРОВИ.. 261

 

ГЛАВА 31. БИОХИМИЯ ПОЧЕК.. 272

 

ГЛАВА 32. ОСОБЕННОСТИ МЕТАБОЛИЗМА В НЕРВНОЙ ТКАНИ.. 274

 

ГЛАВА 33. БИОХИМИЯ МЫШЕЧНОЙ ТКАНИ.. 281

 

Глава 34. Биохимия соединительной ткани. 286

 


Для заметок


 

Учебное пособие

 

 

КУРС ЛЕКЦИЙ

ПО БИОХИМИИ

 

Пособие для студентов лечебного и педиатрического факультетов

 

Ответственный за выпуск: И.Г. Жук

 

Компьютерная верстка: Е.П. Курстак

Корректор: Л.С. Засельская

 

 

Подписано в печать ______________.

Формат 60х84/16. Бумага офсетная.

Гарнитура Таймс. Ризография.

Усл. печ. л. ________. Уч.-изд. л. __________. Тираж ________. Заказ ________.

 

Издатель и полиграфическое исполнение

учреждение образования

«Гродненский государственный медицинский университет»

 

ЛИ № 02330/0133347 от 29.06.2004. Ул. Горького, 80, 230009, Гродно.

– Конец работы –

Используемые теги: курс, лекций, биохимии0.055

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: КУРС ЛЕКЦИЙ ПО БИОХИМИИ

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

КУРС ЛЕКЦИЙ по дисциплине Железобетонные конструкции Курс лекций. Для специальностей «Архитектура» и «Промышленное и гражданское строительство»
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ...

КОНСПЕКТ ЛЕКЦИЙ по курсу Архитектурное материаловедение Конспект лекций по курсу Архитектурное материаловедение
ФГОУ ВПО ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ... ИНСТИТУТ Архитектуры и искусств... КАФЕДРА ИНЖЕНЕРНО строительных ДИСЦИПЛИН...

Краткий курс механики в качестве программы и методических указаний по изучению курса Физика Краткий курс механики: Программа и методические указания по изучению курса Физика / С
Федеральное агентство железнодорожного транспорта... Омский государственный университет путей сообщения...

Курс офтальмологии КУРС ЛЕКЦИЙ ТЕМАТИЧЕСКИЙ ПЛАН ЛЕКЦИЙ 1. Введение. Офтальмология и ее место среди других медицинских дисциплин. История офтальмологии. Анатомо-физиологические особенности органа зрения. 2. Зрительные функции и методы их исследования
Курс офтальмологии... КОРОЕВ О А...

МАСТЕРСКАЯ ПРАКТИЧЕСКОГО ПСИХОЛОГА КУРС ЛЕКЦИЙ Введение в общую психодиагностику. Курс лекций
ИНСТИТУТ ИНФОРМАТИЗАЦИИ СОЦИАЛЬНЫХ СИСТЕМ... МАСТЕРСКАЯ ПРАКТИЧЕСКОГО ПСИХОЛОГА...

КУРС ЛЕКЦИЙ Пособие может быть использовано для закрепления материала, изученного в курсе микробиологии, вирусологии, иммунологии
УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ... КАФЕДРА МИКРОБИОЛОГИИ ВИРУСОЛОГИИ И ИММУНОЛОГИИ...

КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ
ГОУВПО УГМА Федерального агентства по здравоохранению и социальному развитию... Кафедра биохимии...

КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ
ГОУВПО УГМА Федерального агентства по здравоохранению и социальному развитию... Кафедра биохимии...

Курс лекций Экономика недвижимости Введение в курс. 3 Глава 1. Недвижимое имущество и его виды
Курс лекций Экономика недвижимости Кафедра Финансовый менеджмент Преподаватель Шаренков С Б...

КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ
Кафедра биохимии... КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ...

0.045
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам