рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Конспект лекций по С и СМС группы СК-03у Руководитель

Конспект лекций по С и СМС группы СК-03у Руководитель - раздел Образование, Федеральное Агентство Связи Государственное Образовательное Учрежден...

Федеральное агентство связи

Государственное образовательное учреждение высшего профессионального образования

«Поволжский государственный университет телекоммуникаций и информатики»

 

Кафедра МСИБ

 

 

Конспект лекций по С и СМС группы СК-03у

 

Выполнила: студентка

группы СК-03у

Паторова С. Н.

Руководитель:

Фирстова Т. В

 

 

САМАРА 2012 г

Содержание

Лекция №1. 4

Лекция за 2 неделю на тему: «Поколения мобильной связи.Структура сети GSM.» Ответственная Голубничая Е. Ю. 26

Лекция за 3 неделю на тему: «Поколения мобильной связи.Структура сети GSM.» Ответственная Голубничая А. Ю. 52

3. Поколение 2G.. 55

Лекция за 4 неделю на тему: «Повторное использование частот.(CDMA)». Ответственные Ворновская Е. и Бурлова Е. 74

Лекция за 5 неделю на тему: «Глава 3 – Концепция построения каналов в системе GSM » Ответственный Горбунов И.С. 77

Лекция за 5 неделю на тему: «Глава 3 – Концепция построения каналов в системе GSM». Ответственный Дудник И.В. 97

Лекция за 6 неделю на тему: «Широкополосный доступ». Ответственные Ипполитова А. и Инкин М. 115

Лекция за 7 неделю на тему: «UMTS». Ответственные Истюфеев Н. и Малинина С.В. 138

Лекция за 8 неделю на тему: «Описание базовых принципов построения мобильных сетей связи 3-го поколения на базе UMTS». Ответственный Пакаев И. И. 151

Лекция за 8 неделю на тему: «Сетевые компоненты сети UMTS». Ответственная Пищакова А. А. 175

Лекция за 9 неделю на тему: «Оборудование пользователя (UE)». Ответственная Романова А. Е. 185

Лекция за 9 неделю на тему: «Оборудование пользователя (UE)». Ответственная Просвиркина А. В. 198

Лекция за 10 неделю на тему: «Проблемы, возникающие при передаче радиосигналов и Способы борьбы с негативными воздействиями на радиосигнал». Ответственная Харчейкина Н. М. 205

Лекция за 10 неделю на тему: «Способы борьбы с негативными воздействиями на радиосигнал». Ответственная Шихранова О. Ю. 230

Лекция за 11 неделю на тему: «Проблемы, возникающие при передаче радиосигналов». Ответственный Юров Е. 242

 

 


 

 

Лекция №1

  1.1. Мобильная связь  

История развития стандартов и поколений сотовой связи

Все первые системы сотовой связи были аналоговыми. К ним относятся: AMPS (Advanced Mobile Phone Service – усовершенствованная мобильная телефонная… TACS (Total Access Communications System – общедоступная система связи, диапазон 900 МГц) - используется в Англии,…

Стандарт D-AMPS дополнительно усовершенствовался за счет введения нового типа каналов управления.

[C1] 1.2.1. Поколение 2.5G Поколение 2.5G представлено стандартами GPRS и WiDEN.

Стандарт GSM

Таблица 1 - Основные характеристики стандарта GSM Частоты передачи подвижной станции приема базовой станции, МГц 890-915 … 2.2 Структурная схема и состав оборудования сетей связи Функциональное построение и интерфейсы, принятые в стандарте GSM, иллюстрируются структурной схемой рисунка 6, на…

MSC (Mobile Switching Centre) - центр коммутации подвижной связи;

BTS – базовая приёмо-передающая станция.

BSS (Base Station System) - оборудование базовой станции;

ОМС (Operations and Maintenance Centre) - центр управления и обслуживания;

MS (Mobile Stations) - подвижные станции.

HLR – опорный регистр местонахождения[C3] Функциональное сопряжение элементов системы осуществляется рядом интерфейсов.… Центр коммутации подвижной связи обслуживает группу сот и обеспечивает все виды соединений, в которых нуждается в…

К базе данных EIR получают дистанционный доступ MSC данной сети, а также MSC других подвижных сетей. Как и в случае с HLR, сеть может иметь более одного EIR, при этом каждый EIR управляет определенными группами 1МЕ1. В состав MSC входит транслятор, который при получении номера 1МЕ1 возвращает адрес EIR, управляющий соответствующей частью базы данных об оборудовании.

[C5]

IWF - межсетевой функциональный стык, является одной из составных частей MSC. Он обеспечивает абонентам доступ к средствам преобразования протокола и скорости передачи данных так, чтобы можно было передавать их между его терминальным оборудованием (DIE) сети GSM и обычным терминальным оборудованием фиксированной сети. Межсетевой функциональный стык также "выделяет" модем из своего банка оборудования для сопряжения с соответствующим модемом фиксированной сети. IWF также обеспечивает интерфейсы типа прямого соединения для оборудования, поставляемого клиентам, например, для пакетной передачи данных PAD по протоколу Х.25.

ЕС - эхоподавитель, используется в MSC со стороны PSTN для всех телефонных каналов (независимо от их протяженности) из-за физических задержек в трактах распространения, включая радиоканал, сетей GSM. Типовой эхоподавитель может обеспечивать подавление в интервале 68 миллисекунд на участке между выходом ЕС и телефоном фиксированной телефонной сети. ОМС - центр эксплуатации и технического обслуживания, является центральным элементом сети GSM, который обеспечивает контроль и управление другими компонентами сети и контроль качества ее работы. ОМС соединяется с другими компонентами сети GSM по каналам пакетной передачи протокола Х.25. ОМС обеспечивает функции обработки аварийных сигналов, предназначенных для оповещения обслуживающего персонала, и регистрирует сведения об аварийных ситуациях в других компонентах сети. В зависимости от характера неисправности ОМС позволяет обеспечить ее устранение автоматически или при активном вмешательстве персонала. ОМС может обеспечить проверку состояния оборудования сети и прохождения вызова подвижной станции. ОМС позволяет производить управление нагрузкой в сети. NMC - центр управления сетью, позволяет обеспечивать рациональное иерархическое управление сетью GSM. Он обеспечивает эксплуатацию и техническое обслуживание на уровне всей сети, поддерживаемой центрами ОМС, которые отвечают за управление региональными сетями. NMC обеспечивает управление трафиком во всей сети и обеспечивает диспетчерское управление сетью при сложных аварийных ситуациях, как например, выход из строя или перегрузка узлов. Кроме того, он контролирует состояние устройств автоматического управления, задействованных в оборудовании сети, и отражает на дисплее состояние сети для операторов NMC. Это позволяет операторам контролировать региональные проблемы и, при необходимости, оказывать помощь ОМС, ответственному за конкретный регион. Таким образом, персонал NMC знает состояние всей сети и может дать указание персоналу ОМС изменить стратегию решения региональной проблемы.

NMC концентрирует внимание на маршрутах сигнализации и соединениях между узлами с тем, чтобы не допускать условий для возникновения перегрузки в сети. Контролируются также маршруты соединений между сетью GSM и PSTN во избежание распространения условий перегрузки между сетями. При этом персонал NMC координирует вопросы управления сетью с персоналом других NMC. NMC обеспечивает также возможность управления трафиком для сетевого оборудования подсистемы базовых станций (BSS).

BSS - оборудование базовой станции, состоит из контроллера базовой станции (BSC) и приемо-передающих базовых станций (BTS). Контроллер базовой станции может управлять несколькими приемо-передающими блоками. BSS управляет распределением радиоканалов, контролирует соединения, регулирует их очередность, обеспечивает режим работы с прыгающей частотой, модуляцию и демодуляцию сигналов, кодирование и декодирование сообщений, кодирование речи, адаптацию скорости передачи для речи, данных и вызова, определяет очередность передачи сообщений персонального вызова.

BSS совместно с MSC, HLR, VLR выполняет некоторые функции, например: освобождение канала, главным образом, под контролем MSC, но MSC может запросить базовую станцию обеспечить освобождение канала, если вызов не проходит из-за радиопомех. BSS и MSC совместно осуществляют приоритетную передачу информации для некоторых категорий подвижных станций.

[C6]

ТСЕ- транскодер, обеспечивает преобразование выходных сигналов канала передачи речи и данных MSC (64 кбит/с ИКМ) к виду, соответствующему рекомендациям GSM по радиоинтерфейсу. В соответствии с требованиями скорость передачи речи, представленной в цифровой форме, составляет 13 кбит/с. Этот канал передачи цифровых речевых сигналов называется "полноскоростным". Стандартом предусматривается в перспективе использование полускоростного речевого канала (скорость передачи 6,5 кбит/с). Снижение скорости передачи обеспечивается применением специального речепреобразующего устройства, использующего линейное предикативное кодирование (LPC), долговременное предсказание (LTP), остаточное импульсное возбуждение (RPE - иногда называется RELP).

Транскодер обычно располагается вместе с MSC, тогда передача цифровых сообщений в направлении к контроллеру базовых станций - BSC ведется с добавлением к потоку со скоростью передачи 13 кбит/с, дополнительных битов (стафингование) до скорости передачи данных 16 кбит/с. Затем осуществляется уплотнение с кратностью 4 в стандартный канал 64 кбит/с. Так формируется определенная Рекомендациями GSM ЗО-канальная ИКМ линия, обеспечивающая передачу 120 речевых каналов. Шестнадцатый канал (64 кбит/с), "временное окно", выделяется отдельно для передачи информации сигнализации и часто содержит трафик SS N7 или LAPD. В другом канале (64 кбит/с) могут передаваться также пакеты данных, согласующиеся с протоколом X.25 МККТТ.

Таким образом, результирующая скорость передачи по указанному интерфейсу составляет 30х64 кбит/с + 64 кбит/с + 64 кбит/с = 2048 кбит/с.

MS - подвижная станция, состоит из оборудования, которое служит для организации доступа абонентов сетей GSM к существующим фиксированным сетям электросвязи. В рамках стандарта GSM приняты пять классов подвижных станций от модели 1-го класса с выходной мощностью 20 Вт, устанавливаемой на транспортном средстве, до портативной модели 5-го класса, максимальной мощностью 0,8 Вт. При передаче сообщений предусматривается адаптивная регулировка мощности передатчика, обеспечивающая требуемое качество связи.

Контрольные вопросы

 

1. Какие стандарты лежат в основе поколения сетей 4-ого поколения?

2. К какому поколению относится сеть GSM?

3. Дайте понятие следующих элементов структурной схемы GSM: MSC, BTS , BSS, ОМС , MS , VLR, HLR.

4. Назовите базы данных, используемые в GSM и их содержание.

5. Оборудование базовой станции и его назначение.

6. Состав и организация базы данных регистра идентификации оборудования.

Лекция за 3 неделю на тему: «Поколения мобильной связи.Структура сети GSM.» Ответственная Голубничая А. Ю.

 

Введение

Прошло немногим более двух десятилетий с момента появления первых мобильных телефонов, но мобильная связь уже подверглась существенным изменениям. Системы первого поколения, основанные на аналоговом принципе, использовались исключительно для телефонной связи и лишь впоследствии обзавелись некоторыми базовыми сервисами. Системы второго поколения, включая стандарт GSM, предоставляют улучшенное качество передачи и защиту сигнала, дополнительные сервисы, низкоскоростную передачу данных, и для систем GSM - автоматическую службу т.н. роуминга для удобства передвижения абонента по разным странам и континентам.

 

 

Рисунок 1. Увеличение числа абонентов GSM


Вскоре после появления второго поколения мобильных систем, начались приготовления к проектированию стандартов мобильной связи следующего поколения. Разработки велись как на региональном уровне (ETSI, проект RAINBOW от ACTS, U.S. Joint Technical Committee,) так и на глобальном - ITU (International Telecommunications Union), следствием деятельности которого стало создание в 1985 инициативной группы, которая в 1996 была переименована в IMT-2000. Цифра '2000' призвана обозначить технологию нового тысячелетия и нового частотного диапазона, предназначенного для этой технологии - 2 GHz. Разные проекты предлагали различные пути перехода к системам третьего поколения. В рамкам каждого проекта в основном рассматривалось два варианта развития: постепенный переход от ныне действующих систем и "скачкообразный" прыжок. Большинство склонилось к необходимости постепенной интеграции, что и нашло своё отражение в работе IMT 2000.

 

 

Рисунок 2. Диаграмма объёма рынка мобильных систем

Технология третьего поколения (3G) обеспечивает высококачественную передачу речи, изображений (скорость предположительно будет достигать 2 Мбит/с вместо 9.6 Кбит/с, доступных сегодня), мультимедиа конвента и доступ в Internet, а также обмен данными между мобильным телефоном и компьютером. В то же самое время 3G технологии должны улучшить качество сервиса сетей вторых поколений, добавляя им множество новых услуг.

Поколение 1G

3. Поколение 2G В начале 90-х годов наблюдается подъем первых цифровых сотовых сетей, которые… 3.1. Поколение 2.5G

Поколение 2.5G представлено стандартами GPRS и Widen. Мобильные телефонные сети изначально были рассчитаны именно на передачу голоса. Поэтому, хотя GSM (Global System for Mobile Communications) и является цифровым стандартом, он предназначен для передачи голоса во время телефонного разговора и как результат не очень подходит для длительных высокоскоростных соединений.

Технология GPRS - то своеобразный мостик между обычными (GSM) сетями и сетями третьего поколения, позволяющий реализовать некоторые новые элементы на базе уже существующих сетей.

При связи мобильного телефона с базовой станцией мобильной сети по технологии GPRS данные транслируются в паузах между передачей голоса на частотах, которые в этот же момент могут использоваться для разговоров другими абонентами.

GPRS (англ. General Packet Radio Service - пакетная радиосвязь общего пользования) - надстройка над технологией мобильной связи GSM, осуществляющая пакетную передачу данных. GPRS позволяет пользователю мобильного телефона производить обмен данными с другими устройствами в сети GSM и с внешними сетями, в том числе Интернет и предполагает тарификацию по объему переданной/полученной информации, а не времени.

Служба передачи данных GPRS надстраивается над существующей сетью GSM. При использовании GPRS информация собирается в пакеты и передается через неиспользуемые в данный момент голосовые каналы, такая технология предполагает более эффективное использование ресурсов сети GSM.

Абоненту, подключенному к GPRS, предоставляется виртуальный канал, который на время передачи пакета становится реальным, а в остальное время используется для передачи пакетов других пользователей. Поскольку один канал могут использовать несколько абонентов, возможно возникновение очереди на передачу пакетов, и, как следствие, задержка связи.

Технология GPRS использует GMSK-модуляцию. В зависимости от качества радиосигнала, данные, пересылаемые по радио эфиру, кодируются по одной из 4-х кодовых схем (CS1-CS4). Каждая кодовая схема характеризуется избыточностью кодирования и помехоустойчивостью, и выбирается автоматически в зависимости от качества радиосигнала.

GPRS по принципу работы аналогична Интернет: данные разбиваются на пакеты и отправляются получателю (необязательно одним и тем же маршрутом), где происходит их сборка. При установлении сессии каждому устройству присваивается уникальный адрес, что, по сути, превращает его в сервер. Протокол GPRS прозрачен для TCP/IP, поэтому интеграция GPRS с Интернет незаметна конечному пользователю. Пакеты могут иметь формат IP или X.25, при этом не имеет значения, какие протоколы используются поверх IP, поэтому есть возможность использования любых стандартных протоколов транспортного и прикладного уровней, применяемых в Интернет (TCP, UDP, HTTP, HTTPS, SSL, POP3, Jabber и др.). Также при использовании GPRS мобильный телефон выступает как клиент внешней сети, и ему присваивается IP-адрес (постоянный или динамический).

[C7]3.2. Поколение 2.75G

 

EDGE (англ. Enhanced Data rates for GSM Evolution) - цифровая технология для мобильной связи, которая функционирует как надстройка над 2G и 2.5G (GPRS) сетями. Эта технология работает в TDMA и GSM сетях. Для поддержки EDGE в сети GSM требуются определённые модификации и усовершенствования. На основе EDGE могут работать: ECSD - ускоренный доступ в Интернет по каналу CSD, EHSCSD - по каналу HSCSD, и EGPRS - по каналу GPRS. EDGE был впервые представлен в 2003 году в Северной Америке.

В дополнение к GMSK (англ. Gaussian minimum-shift keying) EDGE использует модуляцию 8PSK (англ. 8 Phase Shift Keying) для пяти из девяти кодовых схем (MCS). EDGE получает 3-х битовое слово за каждое изменение фазы несущей. Это эффективно (в среднем в 3 раза в сравнении с GPRS) увеличивает общую скорость, предоставляемую GSM. EDGE, как и GPRS, использует адаптивный алгоритм изменения подстройки модуляции и кодовой схемы (MCS) в соответствии с качеством радиоканала, что влияет, соответственно, на скорость и устойчивость передачи данных. Кроме того, EDGE представляет новую технологию, которой не было в GPRS - Incremental Redundancy (нарастающая избыточность) - в соответствии с которой вместо повторной отсылки повреждённых пакетов отсылается дополнительная избыточная информация, которая накапливается в приёмнике. Это увеличивает возможность правильного декодирования повреждённого пакета.

В 2004 году наиболее активно EDGE был поддержан GSM-операторами Северной Америки, более, чем где-либо в мире. Причиной этому послужил сильный соперник: CDMA2000. Большинство других GSM-операторов рассматривали в качестве следующего шага развития технологию UMTS, поэтому предпочли либо пропустить внедрение EDGE, либо использовать его там, где будет отсутствовать покрытие UMTS-сети. Однако высокая стоимость и объём работ по внедрению UMTS (как показала практика) заставили некоторых западноевропейских операторов пересмотреть свой взгляд на EDGE как на целесообразный.

[C8] 4. Поколение 3G

 

3G — «третье поколение», набор услуг, которые объединяют как высокоскоростной мобильный доступ с услугами сети Интернет, так и технологию радиосвязи, которая создает канал передачи данных.

3G – это технология на базе мобильной связи, которая позволяет пользоваться сетью Интернет везде, где ловит сотовый телефон.

Если проследить всю цепочку возникновения мобильного Интернета, то 3G является продолжением технологии EDGE. В 3G была увеличена скорость и соответственно возросли объемы передаваемой информации. Пользоваться сетью Интернет стало более комфортно за счет скорости и стабильности, причем не только на мобильном телефоне, но и компьютере, ноутбуке, планшетах.

 

Рисунок 3.Эволюция сетей мобильной связи

 

4.1. Услуги 3G поколения

 

Речевые вызовы;

Видеотелефония;

IP-телефония;

видео/аудио потоки;

Телевидение;

Видео- и фотосъемка;

Мобильный офис;

Услуги, основанные на местоположении абонента;

Ориентация в незнакомом месте;

Обеспечение безопасности;

Мобильная электронная коммерция;

Оплата билетов, товаров и услуг;

Поиск и выбор товаров;

Игры.

[C9] 4.2. Стандарт для 3G


Эксперты полагают, что на начальном этапе не будет существовать никакого общего стандарта для телефонных трубок третьего поколения. Были предприняты большие усилия для создания единой системы для операторов во всем мире, но с небольшим успехом. Согласно предварительной информации, 3G технологии будут иметь, по крайней мере, 3 стандарта, и первые 3G терминалы будут использовать только один из них.

Европейские страны выбрали W-CDMA (WideBand Code Division Multiple Access) интерфейс, предложенный шведской компанией Ericsson, для перехода от GSM к 3G технологии. Основным конкурентом W-CDMA будет технология cdma2000 компании Qualcomm, которая, возможно, будет использоваться Японскими компаниями, в настоящее время использующими cdmaOne технологию. Японская система DoCoMo будет исключением, поскольку эта система будет разработана в сотрудничестве с W-CDMA. Для операторов, использующих TDMA принцип (Time Division Multiple Access) (это главным образом относится к операторам Северной Америки), 3G известен как UWC-136. Спецификация 3G все еще в процессе развития. Институт Европейских Стандартов Телекоммуникаций разрабатывает UMTS (Universal Mobile Telecommunications System) стандарт, который соответствует спецификации IMT-2000. Для новой UMTS системы были выделены следующие частотные диапазоны: 1885-2025 МГЦ, и 2110-2200 МГЦ для дальнейшего развития IMT-2000, в частности для спутниковой части 3G выделены диапазоны 1980-2010 и 2170-2200 МГЦ соответственно. Тем не менее, пока первая фаза 3G только подходит к завершению, в некоторых Европейских странах уже выданы лицензии на эксплуатацию UMTS, в то время как во многих других заявки только рассматриваются. Производители и операторы не теряют времени и проводят тестировочные запуски и испытания оборудования. Еще в начале 1999, Nortel Networks и BT (British Telecommunications) объявили о начале совместных испытаний прототипов и оборудования терминалов 3G/UMTS, чтобы лучше исследовать 3G технологию и возможности будущих рынков. Альянс же BT и Panasonic уже использует портативные телефоны со встроенными видеокамерами, TV дисплеями и скоростью передачи данных, превышающей 64 Кбит/с.

4.3. High Speed Circuit switched data

Эта технология позволит пользователям мобильных телефонов принимать данные на более высокой скорости, чем позволяют сегодняшние сети GSM. Скорость передачи достигнет 38.4 Кбит/с, которая является почти такой же, что и скорость передачи данных, предлагаемая модемом для обыкновенных телефонных линий. HSCSD широко раскрывает дорогу сервисам нового типа на рынке мобильных коммуникаций. После стандартной для GSM скорости 9.6 Кбит/с, значительное её увеличение посредством HSCSD, это - первый шаг к 3G мультимедиа сервисам. Недостатком HSCSD является то, что Nokia предлагает эту технологию только через модуль PC Card. Аппарат с инфракрасным портом был бы гораздо удобнее.

 

4.4. General Packet Radio System


GPRS (- одна из важнейших технологий в переходном периоде от систем второго поколения к UMTS. GPRS часто упоминается как GSM-IP (GSM Internet Protocol), так как это - технология, предлагающая абоненту GSM прямой доступ к провайдеру Internet со скоростью до 115 Кбит/с. Еще одной отличительной особенностью GPRS от систем старого поколения является то, что GPRS позволяет абоненту иметь постоянную связь с ISP и пребывать в так называемом режиме online. Новая система потребует введения нового принципа оплаты: Ваша плата будет зависеть только от объема принятых/переданных данных вне зависимости от времени использования радио канала

По существу GPRS представляет собой мобильный эквивалент ADSL по отношению к соединению через модем. Британская компания BT Cellnet уже приступила к испытаниям службы GPRS с использованием аппаратов Motorola и ПО ускоренной передачи данных, разработанного компанией Bluekite.com. Эта система позволяет пользоваться всеми функциями HTML-браузинга через GPRS (как через модем 56 Кбит/с). А за границей для телефонов GPRS нет роуминга, как у телефонов GSM.

4.5. Enhanced Data GSM Environment, i-mode


EDGE - заключительная ступень на пути к UMTS. Она позволит операторам GSM предлагать абонентам мультимедиа сервисы при 384 Кбит/с. Полагают, что операторы GSM смогут предоставлять услуги EDGE за относительно низкую цену, поскольку это потребует всего лишь небольших изменений в программном обеспечении и оборудовании операторов. Система будет использовать TDMA интерфейс (Time Division Multiple Access) и типичный для GSM шаг 200 КГЦ.
i-mode -эта технология обеспечивает постоянное соединение с пропускной способностью 9,6 Кбит/с, что позволило DoCoMo начать разработку мобильных приложений на базе IP-телефонии, опередив GPRS. В одной только Японии насчитывается свыше 10 млн. пользователей i-mode, так что данную технологию можно считать довольно успешной. Она конкурирует и с WAP, так как использует компактную версию HTML (cHTML), в то время как WAP работает со специальным языком маркеров WML (Wireless Markup Language).

4.6. Мобильные концепт-аппараты 3G

 

Рисунок 4. Концепт-устройство с гибким экраном

Экран этого концепт-устройства Ericsson гнется, и его можно разворачивать в дороге.

 

Рисунок 5. Видеотелефон с Bluetooth-аксессуарами

Концепт-видеофон Ericsson включает видеокамеру, цветной сенсорный экран и плеер МР3 и использует технологию Bluetooth для связи с беспроводным наушником и авторучкой.

 

Рисунок 6. High-end устройство с отсоединяемой клавиатурой

Этот складной концепт-аппарат Ericsson снабжен отсоединяемой беспроводной клавиатурой.

 

Рисунок 7. Круглый аппарат с видеоэкраном и убирающимся наборным диском.

Этот сверхпортативный аппарат с убирающимся номеронабирателем удобно располагается в кармане брюк.

 

 

Рисунок 8. Электронный органайзер с 3G-функциями

Традиционный электронный органайзер, дополненный функциями мобильного телефона.

Поколение 3.5G

 

Переходное поколение 3.5G представлено стандартом HSDPA.

Для сотовых сетей сегодня существует несколько протоколов, увеличивающих скорость передачи данных. Однако фактически ни один из них не способен экономить ресурсы мобильной сети, что делает такой трафик дорогим и неэффективным. Задуманный ведущими производителями инфраструктурного оборудования мобильной связи протокол HSDPA призван повысить производительность сети именно за счет более эффективного использования радиоканала, в частности сокращением задержек при передаче пакетов. Технология HSDPA не несет в себе ничего нового, но изменяет представление пользователя о мобильных сетях передачи данных третьего поколения.

HSDPA (англ. High-Speed Downlink Packet Access - высокоскоростная пакетная передача данных от базовой станции к мобильному телефону) - стандарт мобильной связи, рассматривается специалистами как один из переходных этапов миграции к технологиям мобильной связи четвертого поколения (4G). Максимальная теоретическая скорость передачи данных по стандарту составляет 14,4 Мбит/сек., практическая достижимая в существующих сетях - около 3 Мбит/сек.

По сравнению с UMTS, в сети HSDPA можно передавать в три раза больше данных и поддерживать вдвое больше пользователей на одну соту.

Стандарты 3GPP, которые станут пятой версии, нацелены на дальнейшее увеличение пропускной способности: достижение пиковых скоростей порядка 20-30… Кроме того, HSDPA значительно улучшает качество предоставляемых абоненту… [C10] 6. Поколение 4G

Физические и логические каналы

Физический канал предназначен для передачи речи, данных или сигнальной информации.   Рис 3.1.Организация каналов

Логические каналы

В системе GSM существует большое количество логических каналов, которые разработаны для передачи различной информации к/от MS.

Как было отмечено раньше, информация от MS к ней передается в виде пакетов (burst). Существует несколько типов берстов. Соотношения между пакетами и логическими каналами показано на рис 3.2.

 

Рис. 3.2 Логические каналы и пакеты

Каналы управления (Control Channels)

На BCCH частоте передается очень важная для MS информация. Например, информация о фреймовой структуре в соте, идентификатор зоныместоположения (LA),… После того, как MS закончит анализировать информацию на канале BCH, она будет… Если абонент инициализирует вызов с помощью MS, то мобильная станция должна использовать общие каналы управления…

Каналы для передачи трафика

После завершения процедуры установления соединения по логическому каналу управления, MS настраивается на канал, отведенный для передачи трафика. Этот логический канал называется TCH (Traffic Channel). Существует два типа каналов TCH:

- Полноскоростной канал (Full Rate TCH): передача осуществляется со скоростью 13 Кбит/с. То есть TCH занимает под трафик один физический канал.

- Канал «половинной» скорости (Half Rate TCH): передача осуществляется со скоростью 5.6 Кбит/с. Два HRTCH занимают один физический канал, тем самым увеличивая количество установленных соединений в соте в два раза.

 

Пакеты (Bursts)

Таблица 3.4 – Типы берстов Тип пакета Для чего используется Используется для: Содержит Normal… Нормальный пакет – NB (Normal Burst) NB используется для передачи информации по трафиковым каналам и каналам сигнализации, за исключением логических…

Соотношения между временными интервалами и циклами

 

Рис. 3.3. Соотношения между временными интервалами и циклами

 

Размещение логических каналов на физических каналах

Несмотря на то, что большинство логических каналов занимают только один временной интервал, некоторые логические каналы могут занимать более чем 1… Поскольку логические каналы являются короткими, несколько логических каналов… На рис. 3.4. показан случай, когда на одной несущей соты каналом DCCH из-за высокой нагрузки занимается дополнительный…

Остальные таймслоты

На целом физическом канале размещается 8 SDCCH каналов и 4 SACCH канала, что позволяет максимум 8-ми абонентам в один момент времени осуществлять…   Рис. 3.6 Размещение каналов SDCCH и SACCH.

Пример обслуживания входящего вызова к MS

Рис. 3.5 схематично показывает обслуживание входящеговызова к MS и использование различных каналов управления.

 

Рис. 3.8. Вызов к MS

 

1. MSC/VLR располагает информацией о том, в какой LA находится MS. Вызывное сообщение передаётся тем/тому BSC, которые/ый контролирует данную LA.

2. BSC посылает вызывное сообщение через все базовые станции в требуемой LA. Базовые станции передают вызывные сообщения через эфир, используя канал PCH.

3. Когда MS обнаруживает идентифицирующий ее PCH, она осуществляет запрос на выделение канала сигнализации через RACH.

4. BSC использует канал AGCH для информирования MS о том, какие каналы SDCCH и SACCH она может использовать, а также выдает информацию о ТА.

5. SDCCH и SACCH используются для установления соединения. BSC назначает канал ТСН, а канал SDCCH освобождается.

6.MS и BTS переключаются на частоту канала TCH и выделенный под этот канал временной интервал. Если абонент отвечает, то соединение устанавливается. В процессе разговора радиосоединение контролируется посредством информации, передаваемой и получаемой MS по каналу SACCH.

 

Вопросы:

1. Что такое физический канал, его предназначение.

2. Для чего используются логические каналы?

3. Что такое NB, параметры?

4. Рассказать про mapping.

 

Лекция за 5 неделю на тему: «Глава 3 – Концепция построения каналов в системе GSM». Ответственный Дудник И.В.

Глава 3 – Концепция построения каналов в системе GSM

3.1. Физические и логические каналы

 

Каждый временной интервал (time slot - TS) внутри кадра TDMA называется физическим каналом. В системе GSM используется 8 физических каналов на одной несущей частоте.

Физический канал предназначен для передачи речи, данных или сигнальной информации.

 

 

 

Рис 3.1. Организация каналов TDMA

 

По физическому каналу могут передаваться любые сообщения. Последнее зависит от информации, которую нужно передать. Информация по каналам передается в виде логических сообщений. В соответствии с типами сообщений каналы подразделяются на различные типы логических каналов, то есть в зависимости от типа передаваемого сообщения физическому каналу присваивается определенное наименование. Например, один из физических каналов используется для передачи трафика, то есть трафик передаётся по каналам TCH – Traffic Channel, в виде речевых сообщений - Traffic messages), в то время как хэндоверные команды передаются, используя сообщения канала управления с быстрым доступом Fast Associated Control Channel (FACCH).

 

3.1.1. Логические каналы

 

В системе GSM существует большое количество логических каналов, которые разработаны для передачи различной информации к/от MS.

Информация, передаваемая от и к MS должна всегда передаваться корректно, таким образом, чтобы принимающее устройство могло правильно разобрать, что означает каждый переданный бит информации. Как упоминалось выше, пакет передачи (burst), используемый для передачи трафика, помимо речи передаёт другие вспомогательные данные, такие как тестовая последовательность. Существует несколько типов пакетов (burst). Соотношения между пакетами и логическими каналами показано на рис 3.2.

 

 

 

Рис. 3.2 Логические каналы и пакеты

 

3.1.1.1 Каналы управления

 

Когда мобильная станция включается, она начинает искать BTS, чтобы соединиться с ней. MS сканирует весь частотный диапазон или, в качестве варианта, использует список частот, принадлежащих оператору. Когда MS находит несущую с самым большим уровнем сигнала, она должна определить канал управления. Первый из каналов, который MS должна найти – это широковещательный логический канал Broadcast Control Channel (BCCH) - канал управления с широковещательной передачей.

Несущая частота BCCH содержит важную информацию для MS, включающую, например, идентификатор зоны местоположения (LA), идентификатор сети, информацию о синхронизации. Без такой информации MS не может работать с сетью. Данная информация передается в определённом временном интервале и называется широковещательной информацией, так как предназначена всем MS, способным получить доступ к этой несущей. Именно поэтому канал Broadcast Channel (BCH) называется широковещательным.

После того, как MS закончит анализировать информацию на канале BCH, она будет располагать всей информацией, необходимой для нормального функционирования и работы с сетью. Однако, если MS переходит в другую соту (этот процесс называется роуминг - roaming), она должна повторить всю процедуру сканирования системы, читая информацию на каналах FCCH, SCH, BCCH.

Если абонент инициализирует вызов с помощью MS, то мобильная станция должна использовать общий канал управления Common Control CHannel (CCCH).

Таблица 3.1 – Информация о канале BCH.

Broadcast Channel (BCH) - Широковещательные каналы
Логический канал Направление BTS MS
FCCH Канал коррекции частоты (Frequency Correction Channel)   Downlink – от BTS к MS, точка-многоточка Передаёт несущую частоту. Идентифицирует несущую BCCH посредством несущей частоты и позволяет осуществить синхронизацию с частотой.
SCH Канал синхронизации (Synchronization Channel)   Downlink – от BTS к MS, точка-многоточка Передаёт информацию о структуре кадра TDMA в соте (номер кадра) и идентификатор BТS (Base Station Identity Code -BSIC). Позволяет осуществить синхронизацию со структурой кадра внутри конкретной соты для обеспечения гарантии того, что выбранная BTS принадлежит GSM – если BTS принадлежит сети GSM, то декодировать BTSIC может только MS.
BCCH Канал управления с широковещательной передачей (Broadcast Control Channel) Downlink – от BTS к MS, точка-многоточка Передаёт всю общую информацию о соте: идентификатор зоны местоположения (LAI), максимальную допустимую выходную мощность в соте, идентификатор несущей BCCH для соседних сот, информацию о секторах Принимает LAI; в качестве части процедуры обновления местоположения уведомляет сеть о том, отличается ли LAI от того, который хранится в SIM; устанавливает выходную мощность на основе информации, принятой на BCCH. Кроме того, MS хранит список несущих BCCH, на которых были произведены измерения уровня приема для принятия решения о хэндовере.

 

 

Таблица 3.2 – Информация о канале CCCH.

Common Control Channel (CCCH)
Логический канал Направление BTS MS
PCH Канал вызова MS (Paging Channel)   Downlink, от BTS к MS, точка - точка Передаёт вызывное сообщение, чтобы оповестить MS о входящем вызове или поступлении сообщения SMS. Содержит идентификационный номер абонента, с которым система желает установить связь. MS прослушивает PCH в определённые временные интервалы и, если обнаруживает собственный номер (номер идентификатора абонента), то она отвечает.
RACH Канал запроса доступа в сеть (Random Access Channel)   Uplink, от MS к BTS, точка - точка Принимает запрос от MS для установления соединения, обновления информации о местоположении, передачи SMS. Отвечает на пэйджинговые сообщения по каналу RACH путем запроса предоставления канала сигнализации.
AGCH - Канал уведомления о разрешении доступа (Access Grant Channel) Downlink от BTS к MS, точка - точка Назначение сигнального канала SDCCH для MS. Приём команды назначения сигнальногоканала SDCCH.

 

На этой стадии MS и BSS готовы выполнить процедуры установления соединения. Для этого MS и BSS используют выделенные каналы управления - DCCH (Dedicated Control channel).

 

 

Таблица 3.3 – Информация о каналах DCCH.

Common Control Channel (CCCH)
Логический канал Направление BTS MS
SDCCH Сигнальный канал (Stand alone Dedicated Control Channel) Оба направления (Uplink, Downlink), точка - точка BTS переключается на назначенный канал SDCCH, используемый для сигнализации при установлении соединения. С помощью этого канала BSC назначает канал TCH. SDCCH используется также для передачи в направлении MS текстовых сообщений SMS. MS переключается на выделяемый канал SDCCH, осуществляется процедура установления соединения. MS получает информацию о назначении TCH (несущую и временной интервал)
CBCH Канал широковещательной передачи в соте (Cell Broadcast Channel) Downlink, от BTS к MS, точка - многоточка Использует данный канал для широковещательной передачи текстовых сообщений (SMS) всем MS, находящимся в определенной соте. MS принимает широковещательные текстовые сообщения
SACCH Канал управления с медленным доступом (Slow Associated Control Channel) Оба направления (Uplink, Downlink), точка - точка Оповещает MS о том, на какой мощности осуществлять связь, а также передаёт информацию о временной задержке. Отсылает отчеты об усредненных измерениях в обслуживающую её BTS (уровень сигнала, качество, временная задержка) и соседние BTS (уровень сигнала). MS в процессе разговора постоянно использует SDCCH.
FACCH Канал управления с быстрым доступом (Fast Associated Control Channel) Оба направления (Uplink, Downlink), точка - точка Передаёт информацию о хэндовере. Передает необходимую информацию о хэндовере в пакете доступа.

 

3.1.1.2 Каналы для передачи трафика

 

После завершения процедуры установления соединения по физическому каналу управления, MS настраивается на физический канал передачи трафика. Для этого используется логический канал TCH (Traffic Channel). Существует два типа каналов TCH:

Полноскоростной канал (FR-TCH): передача осуществляется со скоростью 13 кбит/сек. То есть TCH занимает под трафик один физический канал.

Полускоростной канал (HR-TCH): передача осуществляется со скоростью 6.5 кбит/сек. Два полускоростных канала занимают один физический канал, тем самым увеличивая пропускную способность соты вдвое.

 

3.1.2. Пакеты (Bursts)

 

В структуре кадра TDMA для передачи информации по каналам связи и управления, подстройки несущих частот, обеспечения временной синхронизации и доступа к каналу связи используются пять видов пакетов (bursts):

 

 

Таблица 3.4 – Типы пакетов

Тип пакета Для чего используется Исполь-зуется: Содержит
Normal Burst Нормальный пакет Используется для передачи информации на каналах трафика и управления BCCH, PCH, AGCH, SDCCH, CBCH, SACCH, FACCH, TCH Два блока по 57 бит каждый, для передачи трафика. Тестовую последовательность (26 бит). Индикаторы заимствования (Steal flags) – каждый состоит из 1 бита, указывающего на то, что канал FACCH временно занял 57 бит. Хвостовые биты (Tail bits) (всегда 000) Защитный период (Guard period) длительность 8.25 бит.
Frequency Correction Burst Пакет подстройки частоты Используется для частотной синхронизации MS FCCH 142 бита коррекции частоты. Хвостовые биты. Защитный период: 8.25 бит.
Synchronization Burst Пакет синхронизации Используется для кадровой синхронизации MS SCH Два блока по 39 бит информации о кадровой структуре TDMA. 64 бит синхронизации. Хвостовые биты. Защитный период: 8.25 бит.
Dummy Burst Установочный пакет «Пустышка» Используется тогда, когда не передается никакой информации – «пустышка» Все свободные TS канала C0 (1-7) Модель пакета идентична нормальному интервалу, но содержит тестовую последовательность.
Access Burst Пакет доступа Используется для случайного доступа и для хэндоверов RACH, FACCH 41 бит синхронизации. 36 бит информации о доступе (например, набираемый В-номер). Хвостовые биты. Защитный период (GP): 68.25 бит . Больший GP используется из-за того, что при установке соединения нет информации о временной задержке.

 

Нормальный пакет – NB (Normal Burst)

NB используется для передачи информации по каналам связи и управления, за исключением канала доступа RACH. Он состоит из 114 бит зашифрованного сообщения и включает защитный интервал (GP) в 8,25 бит длительностью 30,46 мксек. Информационный блок в 114 бит разделен на два самостоятельных блока по 57 бит, отделенных друг от друга обучающей последовательностью в 26 бит, которая используется для установки эквалайзера в приемнике в соответствии с характеристиками канала связи в данный момент времени.

В состав NB включены два контрольных бита (Steeling Flag), которые служат признаком того, какую информацию содержит передаваемая группа: речевую информацию или информацию сигнализации. В последнем случае информационный канал (Traffic Channel) используется для обеспечения сигнализации, то есть «украден» у канала трафика.

Между двумя группами зашифрованных бит в составе NB находится обучающая последовательность из 26 бит, известная в приемнике. С помощью этой последовательности обеспечивается:

- оценка частоты появления ошибок в двоичных разрядах по результатам сравнения принятой и эталонной последовательностей. В процессе сравнения вычисляется параметр RXQUAL, принятый для оценки качества связи. Конечно, речь идет только об оценке связи, а не о точных измерениях, так как проверяется только часть передаваемой информации. Параметр RXQUAL используется при вхождении в связь, при выполнении процедуры хэндовера и при оценке зоны покрытия радиосвязью;

- оценка импульсной характеристики радиоканала на интервале передачи NB для последующей коррекции тракта приема сигнала за счет использования адаптивного эквалайзера в тракте приема;

-определение задержек распространения сигнала между базовой и подвижной станциями для оценки дальности связи. Эта информация необходима для того, чтобы пакеты данных от разных подвижных станций не накладывались при приеме на базовой станции. Поэтому удаленные на большее расстояние подвижные станции должны передавать свои пакеты раньше станций, находящихся в непосредственной близости от базовой станции.

Пакет подстройки частоты – FCB (Frequency Correction Burst)

FCB предназначен для синхронизации по частоте подвижной станции. Все 142 бита в этом временном интервале – нулевые, что соответствует немодулированной несущей со сдвигом 1625/24 кГц выше номинального значения частоты несущей. Это необходимо для проверки работы своего передатчика и приемника при небольшом частотном разносе каналов (200 кГц), что составляет около 0,022% от номинального значения полосы частот 900 МГц. FCB содержит защитный интервал 8,25 бит так же, как и нормальный пакет. Повторяющиеся пакеты подстройки частоты (FCB) образуют канал коррекции частоты (FCCH).

 

Пакет синхронизации – SB (Synchronization Burst)

SB используется для синхронизации по времени базовой и подвижной станций. Он состоит из синхропоследовательности длительностью 64 бита, несет информацию о номере кадра TDMA и идентификационный код базовой станции. Этот пакет передается вместе с пакетом подстройки частоты. Повторяющиеся пакеты синхронизации образуют так называемый канал синхронизации (SCH).

Установочный пакет – DB (Dummy Burst)

DB обеспечивает установление и тестирование канала связи. По своей структуре DB совпадает с NB (рис. 3.3) и содержит установочную последовательность длиной 26 бит. В DB отсутствуют контрольные биты, и не передается никакой информации. DB лишь информирует о том, что передатчик функционирует.

 

Пакет доступа – AB (Access Burst)

АВ обеспечивает разрешение доступа подвижной станции к новой базовой станции. АВ передается подвижной станцией при запросе канала сигнализации. Это первый передаваемый подвижной станцией пакет, следовательно, время прохождения сигнала еще не измерено. Поэтому пакет имеет специфическую структуру. Сначала передается концевая комбинация 8 бит, затем – последовательность синхронизации для базовой станции (41 бит), что позволяет базовой станции обеспечить правильный прием последующих 36 зашифрованных бит. Пакет содержит большой защитный интервал (68,25 бит, длительностью 252 мксек.), что обеспечивает (независимо от времени прохождения сигнала) достаточное временное разнесение от пакетов других подвижных станций.

Этот защитный интервал соответствует двойному значению наибольшей задержки сигнала в рамках одной соты и тем самым устанавливает максимально допустимые размеры соты. Особенность стандарта GSM – возможность обеспечения связью подвижных абонентов в сотах с радиусом около 35 км. Время распространения радиосигнала в прямом и обратном направлениях составляет при этом 233,3 мксек.

3.1.2.1. Соотношения между временными интервалами и кадрами

 

Рис. 3.3. Соотношения между временными интервалами и кадрами

 

3.2. Размещение логических каналов на физических каналах

 

Известно, что логические каналы образуются с помощью физических каналов. Метод размещения логических каналов на физических называется «отображением» - mapping.

Несмотря на то,что большинство логических каналов занимают только один временной интервал, некоторые логические каналы могут занимать более чем 1 TS. В этом случае информация логических каналов передаётся в одном и том же временном интервале физического канала в последовательных кадрах TDMA.

Поскольку логические каналы являются короткими, несколько логических каналов могут занимать один и тот же физический канал, что позволяет более эффективно использовать временные интервалы.

На рис. 3.4. показан случай, когда на одной несущей соты каналом DCCH из-за высокой нагрузки занимается дополнительный временной интервал.

 

 

 

Рис. 3.4. Размещение логических каналов на физических каналах

 

 

3.2.1. Несущая «0», временной интервал «0»

 

Нулевой временной интервал на нулевой несущей частоте в соте всегда резервируется для сигнализации. Таким образом, когда MS определила, что несущая частота является несущей BCCH, она знает, где и как считывать информацию.

При направлении передачи от BTS к MS (downlink) передается информация BCH и CCCH. Единственным каналом, по которому информация передается только в направлении от MS к BTS (uplink), является канал RACH. Канал для передачи информации RACH всегда свободен, поэтому MS может осуществить доступ в сеть в любое время.

 

3.2.2. Несущая «0», временной интервал «1»

 

Как правило, первый («1») временной интервал на нулевой несущей частоте в соте также всегда резервируется для сигнальных целей. Единственным исключением являются соты, где наблюдаются высокий или низкий трафик.

Как видно из рис. 3.4, если трафик в соте большой, то в целях установления соединения может быть занят третий физический канал, используя DCCH. Этим каналом может быть любой временной интервал, исключая временные интервалы «0» и «1» на несущей «0».

Это же происходит и тогда, когда нагрузка в соте низкая. В этом случае есть возможность занять временной интервал «0» на несущей «0» для передачи/приёма всей сигнальной информации: BCH, CCCH и DCCH. Таким образом, физический канал «1» может быть освобождён под трафик.

Восемь SDCCH каналов и 4 SACCH канала могут совместно использовать один и тот же физический канал. Это означает, что на одном физическом канале может быть установлено одновременно 8 соединений.

 

3.2.3. Несущая «0», временные интервалы со второго по седьмой и все остальные временные интервалы других несущих той же самой соты

 

Все остальные интервалы, кроме сигнальных интервалов «0» и «1» используются в соте под трафик, то есть для передачи речи или данных. В этом случае используется логический канал TCH.

Дополнительно MS во время разговора передает результаты измерений уровня сигнала, качества, временной задержки. Для этой цели используется канал SACCH, занимая на время один временной интервал TCH.

3.3. Пример обслуживания входящего вызова к MS

 

Рис. 3.5 схематично показывает обслуживаниевходящеговызова к MS и использование различных каналов управления.

 

 

 

Рис. 3.5. Вызов к MS

2 – PCH, 3 – RACH, 4- AGCH, 5 – SDCCH, 6 - TCH

 

MSC/VLR располагает информацией о том, в какой LA находится MS. Сигнальное сообщение пейджинга передаётся тем BSC, который контролирует данную LA.

 

BSC распределяет вызывное сообщение между всеми базовыми станциями в требуемой LA. Базовые станции передают вызывные сообщения через эфир, используя канал PCH.

Когда MS обнаруживает идентифицирующий ее PCH, она осуществляет запрос на выделение канала управления через канал RACH.

BSC использует канал AGCH для информирования MS о том, какие каналы SDCCH и SACCH она может использовать.

SDCCH и SACCH используются для установления соединения. Занимается канал ТСН, а канал SDCCH освобождается.

MS и BTS переключаются на частоту канала TCH и выделенный под этот канал временной интервал. Если абонент отвечает, то соединение устанавливается. В процессе разговора радиосоединение контролируется посредством информации, передаваемой и получаемой MS по каналу SACCH.

 

 

5. Что такое физический канал, его предназначение.

6. Для чего используются логические каналы?

7. Что такое NB, параметры?

8. Рассказать про mapping.

 


 

Лекция за 6 неделю на тему: «Широкополосный доступ». Ответственные Ипполитова А. и Инкин М.

 

Широкополосный доступ

Сравнительные характеристики технологий мобильной связи

В сетях второго поколения пропускной способности каналов GPRS и даже EDGE вполне хватило бы для передачи картинки невысокого разрешения, однако при этом через тот же самый канал передачи данных пришлось бы передавать и звук по принципу IP-телефонии. Скорость передачи данных в сетях 2G крайне не стабильна, и при ее снижении возникает потеря пакетов – из-за этого разговаривать будет невозможно.

Передача данных в сетях второго поколения (так называемые 2G) всегда являлась лишь своеобразным «довеском» к передаче голоса (сети 1G не предоставляли такой возможности), то есть и голос, и данные использовали один и тот же ресурс сети. При большой загрузке соты приоритет всегда имела передача голоса, а для данных оставалась лишь свободная емкость. Из-за этого при работе в сетях GPRS/EDGE скорость передачи данных постоянно колеблется, и когда нет свободных тайм-слотов, она может даже падать до нуля.

Стратегии перехода к сетям 3-го поколения

Также один из важнейших признаков, принципиально разделяющих два подхода, — способ освоения частотного ресурса. При революционном подходе требуется новый частотный ресурс. Сегодня действующие технологии 2-го поколения — TDMA/AMPS и GSM имеют ограниченные возможности по наращиванию пропускной способности и видам услуг в рамках выделенного частотного диапазона. Рост их емкости без дополнительного расширения спектра возможен лишь за счет перехода на полускоростные каналы (GSM), введения многосекторных антенн или использования спектрально-эффективных методов модуляции (8PSK и др.).

 

 

Эволюционное внедрение требует меньших капитальных затрат и предполагает плавную замену оборудования в зависимости от уровня спроса на конкретные виды услуг. Такой подход позволяет максимально использовать существующую инфраструктуру сети связи, внедряя новые сетевые элементы в процессе последовательной модернизации

 

Таблица . Сравнение двух стратегий освоения рынка мобильной связи

 

В техническом плане, очевидно, что нецелесообразно осуществлять в короткие сроки переход всех сетей мобильной связи к новым техническим стандартам в режиме обслуживания абонентов, что объясняется массивностью и инерционностью общемирового телекоммуникационного рынка. Однако в некоторых регионах или отраслях народного хозяйства создание сетей 3-го поколения будет начато “с нуля”. Но для стран с развитой телекоммуникационной инфраструктурой типичными станут две стратегии перехода к 3-му поколению. Этап развертывания новых технологий составит не менее 2-3 лет, а совместное существование продлится не менее десяти лет.

Сети третьего поколения изначально разрабатывались именно с тем расчетом, чтобы передача данных и голоса не мешали друг другу. В сетях 3G голос не имеет приоритета над данными.

Некоторые энтузиасты пытались выходить в Интернет, подключая к ноутбуку сотовый телефон, однако такой метод пригоден только для самых продвинутых и терпеливых пользователей: скорость передачи данных в сетях EDGE (не говоря уже о GPRS) и так невысока, а при большой загрузке сети стремится к нулю.

Десять лет назад, когда сети GPRS только начинали появляться в России, большинство пользователей выходили в Интернет при помощи обычного аналогового модема. Соответственно, и создатели веб - сайтов ориентировались на такие низкие скорости. Теперь же, когда широкополосный доступ получил повсеместное распространение, у веб-дизайнеров развязаны руки – сегодня даже страничка рядового пользователя Интернета изобилует анимацией, интерактивными скриптами и уж точно не обходится без видеоролика.

В связи с этими изменениями потребовалось новое решение для комфортной работы в мобильных условиях.

Для подключения к Интернету можно использовать и свой телефон. Многие современные мобильники располагают функциональностью Wi-Fi-роутера, что позволяет подключаться к Сети даже без наличия кабеля между компьютером и телефоном.

Сначала отдушиной для продвинутых пользователей стал Wi-Fi – по сути дела, он представляет собой ту же выделенную линию, но только без проводов. Однако основной недостаток технологии Wi-Fi заключается в ограниченной зоне действия каждой точки доступа (в реальности – 20–50 м).

Третье поколение (3G), равно как и прочие названия – это не более чем маркетинговые уловки. Настоящие же названия стандартов выглядят совсем не так привлекательно, как хотелось бы пиар - менеджерам, например ETSI TS 125 101 V9.2.0 (2010-02). Четкой договоренности по использованию общепринятых названий поколений связи не существует в принципе. Можно лишь примерно очертить границы: третье поколение – это скорости в несколько мегабит в секунду, четвертое – десятки и даже сотни мегабит в секунду.

При этом реальная скорость передачи данных в беспроводной сети зависитне от используемого стандарта связи, который также представляет собой по большей части маркетинговое наименование, а от конкретных технологий, протоколов и модуляций.

Технологии протоколы и виды модуляции широкополосного доступа

Следующий этап развития сетей UMTS – это технология HSPA. Используется модуляция 64-QAM и пиковые скорости составляют от 21,1 Мбит/с и. При этом уже разработаны варианты с поддержкой 42,2 Мбит/с и даже 84,4 Мбит/с (столь высокая скорость достигается лишь при одновременной связи телефона или 3G-модема с двумя базовыми станциями).

Как и HSDPA, технология высокоскоростной пакетной передачи данных в обратном канале (HSUPA) представляет собой новый стандарт мобильной связи, позволяющий ускорить передачу данных от устройств конечного пользователя к базовой станции за счет применения более совершенных методов модуляции. Теоретически – стандарт HSUPA рассчитан на максимальную скорость передачи данных до 5,7 Мбит/с.

Изначально к третьему поколению стали относить сети UMTS, которые на момент своего появления поддерживали скорость всего до 384 кбит/с – как в прямом (передача данных на мобильное устройство пользователя), так и в обратном (отгрузка файлов в Интернет) каналах. Именно с этим обстоятельством обычно связывают провал запуска сетей UMTS в Европе, который состоялся около 7–8 лет назад – реальная скорость мобильного Интернета оказалась недостаточной для действительно комфортной работы.

Постепенно стали появляться различные надстройки для стандарта UMTS, в частности технология HSDPA. Первоначально она обеспечивала пиковые скорости 1,8 Мбит/с, в последующих версиях эти показатели были увеличены сначала до 3,6 Мбит/с, затем до 7,2 и, наконец, до 14,4 Мбит/с. Наиболее распространенной является версия 3,6 Мбит/с – ее поддерживает большая часть доступного по цене абонентского оборудования. Российские сети UMTS изначально строились с поддержкой HSDPA 3,6 Мбит/с. Реализовать следующий уровень – до 7,2 Мбит/с – можно при помощи обновления ПО базовых станций.

HSDPA — High Speed Downlink Packet Access

  Несомненным плюсом этой технологии является то, что дальность связи…  

Описание базовых принципов построения мобильных сетей связи 3-го поколения на базе UMTS

Данные материалы компании NetTest представляют собой характеристику новейших технологий. В тоже время они могут использоваться в качестве краткого… В главах 1 - 3 рассматривается технология UMTS и подробно описывается… В главах 4 и 5 рассматриваются ключевые аспекты UMTS: обеспечение секретности и качество обслуживания.

Обзор сети UMTS

Введение

Связь всегда имела большое значение для человечества. Когда встречаются два человека, для общения им достаточно голоса, но при увеличении расстояния между ними возникает потребность в специальных инструментах. Когда в 1876 году Александр Грэхем Белл изобрел телефон, был сделан значительный шаг, позволивший общаться двум людям, однако для этого им необходимо было находиться рядом со стационарно установленным телефонным аппаратом! Более ста лет проводные линии были единственной возможностью организации телефонной связи для большинства людей. Системы радиосвязи, не зависящие от проводов для организации доступа к сети, были разработаны для специальных целей (например, армия, полиция, морской флот и замкнутые сети автомобильной радиосвязи), и, в конце концов, появились системы, позволившие людям общаться по телефону, используя радиосвязь. Эти системы предназначались главным образом для людей, ездивших на машинах, и стали известны как телефонные системы подвижной связи.

В начале 1980-х годов во многих Европейских странах начался быстрый рост телефонных систем подвижной связи первого поколения (1G), основанных на аналоговой технологии. В каждой стране была разработана собственная система, несовместимая с остальными с точки зрения оборудования и функционирования. Это привело к тому, что возникла необходимость в создании общей европейской системы подвижной связи с высокой пропускной способностью и зоной покрытия всей европейской территории. Последнее означало, что одни и те же мобильные телефоны могли использоваться во всех Европейских странах, и что входящие вызовы должны были автоматически направляться в мобильный телефон независимо от местонахождения пользователя (автоматический роуминг). Кроме того, ожидалось, что единый Европейский рынок с общими стандартами приведет к удешевлению пользовательского оборудования и сетевых элементов независимо от производителя. И, наконец, использование современной цифровой технологии должно было привести к уменьшению габаритов портативных устройств и улучшению функциональных возможностей и качества.

В 1982 году CEPT (Европейская конференция почтовых и телекоммуникационных ведомств) сформировала рабочую группу, названную специальной группой по подвижной связи (GSM) для изучения и разработки пан-Европейской наземной системы подвижной связи общего применения - второе поколение систем сотовой телефонии (2G). Название рабочей группы GSM также стало использоваться в качестве названия системы подвижной связи. В 1989 году обязанности CEPT были переданы в ETSI (Европейский институт стандартов в телекоммуникации). Первоначально GSM предназначалась только для стран-членов ETSI. Однако многие другие страны также имеют реализованную систему GSM, например, Восточная Европа, Средний Восток, Азия, Африка, Тихоокеанский регион и Северная Америка (с производной от GSM, названной PCS1900). Название GSM теперь означает "глобальная система для подвижной связи[2]", что соответствует ее сущности.

Эволюция мобильной телефонии

Система HSCSD является простейшей модернизацией системы GSM, предназначенной для передачи данных. Как и GSM, эта система базируется на соединениях… Система GPRS разработана как система пакетной передачи данных с теоретической… Система EDGE является модернизацией системы GSM/GPRS, использующей новый метод модуляции для радио интерфейса, …

Стандартизация

Рис. 2 Организации, входящие в 3GPP Организация 3GPP создает общий стандарт, основываясь на данных, получаемых от… Хотя система UMTS базируется на существующих сетях GSM/GPRS, она добавляет некоторые новые компоненты и интерфейсы к…

Версии UMTS

В процессе стандартизации UMTS в 3GPP система была определена набором этапов - или версий. Пока определено три версии: UMTS версии 1999 года (R99 - иногда называемая версией 3/Rel-3), UMTS версии 4 (Rel-4) и UMTS версии 5 (Rel-5).[4] На рисунке в разделе 1.5, представляющем архитектуру сети, показано влияние версий на сеть. Версии UMTS - это три основных представителя утвержденных требований от 3GPP.

Основные черты каждой версии:

R99

  • Определяет универсальную наземную сеть радио доступа (UTRAN) UMTS
  • К существующей сети GSM/GPRS добавляется подсистема сети радиосвязи (RNS)
  • Базовая сеть (CN) - это существующая сеть GSM/GPRS с некоторыми усовершенствованиями

Rel-4

  • Версия 4 вводит шлюза среды (MGW), сервер центра коммутации подвижной связи (MSC) и шлюз сигнализации (SGW). Это позволит логически разделять пользовательские данные и информацию сигнализации в MSC
  • Проводятся усовершенствования UTRAN, которые включают поддержку высоких скоростей передачи данных даже в локальных областях, до 2 Мбит/с

Rel-5

  • Добавляется подсистема IP-мультимедиа (IMS)
  • Домашний регистр (HLR) заменяется/дополняется сервером собственных ("домашних") абонентов (HSS)
  • Вводятся усовершенствования UTRAN, обеспечивающие эффективные услуги мультимедиа на базе IP в UMTS
  • Введение IubFlex (обеспечивает контроллеры сети радиосвязи (RNC) для подключения более одного комплекта Узлов B)
  • Усовершенствование услуг по определению местоположения (LCS)
  • Универсальная IP-сеть, в конечном счете, становится реальностью
  • Версия 5 основана на протоколе IP версии 6 (IPv6)

Вышеуказанные версии находятся в "замороженном" состоянии. Это означает, что версии признаются, если необходима коррекция (т.е. новые функциональные возможности больше не добавляются). Планируется версия 6 и выше со следующими особенностями: они касаются областей, подобных усовершенствованиям IMS, интеграции беспроводных локальных сетей (WLANI), конвергенции Интернета (касающейся протоколов и услуг), широковещательных/многоадресных мультимедийных услуг (MBMS) и эволюции в сети только в пределах области пакетной коммутации (PS).

Данные заметки обращаются главным образом к версии 4. Однако другие версии будут упоминаться в некоторых случаях для того, чтобы выделить основные отличия от версии 4.

Услуги, предоставляемые в сети UMTS

Поскольку сеть UMTS развивается, будет предоставляться все больше и больше услуг. Сеть подвижной связи UMTS версии 5 будет предоставлять услуги, подобные тем, которые известны сегодня из Интернета, например, потоковое видео, передачи речи по протоколу IP (VoIP), видеоконференция и интерактивные службы. Часть сети, осуществляющая коммутацию каналов, будет заменена технологией пакетной передачи (очень напоминающей IP) для поддержания более высоких скоростей передачи данных и повышения гибкости сети. Часть сети, осуществляющая коммутацию пакетов, останется без изменения, но будет добавлен новый пакетный домен: подсистема IP-мультимедиа (IMS).[5]

Общие услуги

Базовые услуги, предоставляемые UMTS, подобны услугам, известным из GSM и ISDN (цифровая сеть с интеграцией служб). Используя определения из МСЭ-Т, услуги можно разделить на службы переноса, телеслужбы и дополнительные услуги. Основной базовой услугой, предоставляемой UMTS, является телефония. Подобно другим передаваемым данным, выполняется цифровое кодирование речи, которая затем передается по сети в виде цифрового потока. Предлагается множество услуг передачи данных, реализованных как передача данных с коммутацией пакетов. Также будет доступна служба коротких сообщений (SMS), вводимая совместно с GSM. Дополнительные услуги предоставляются поверх телеслужб, например:

· Переадресация/исключение/установка вызова на ожидание/удержание · Служба трехсторонней связи · Информация об оплате · Идентификация вызывающего абонента · Группы закрытых пользователей

Качество обслуживания

Одно из достижений сетей 2.5G и 3G - обеспечение более качественной передачи данных. Для достижения этого и в GPRS, и в UMTS введена концепция качества обслуживания (QoS) как интегрированная часть системы. Наличие эффективного механизма QoS "на местах" позволит операторам подвижной связи экономично предоставлять высококачественные, дифференцированные приложения и услуги на базе IP.[6] Вопрос QoS подробно обсуждается в главе 5.

Возможности UMTS в предоставлении услуг

Способ организации UMTS предполагает отделение, насколько это возможно, части сети, выполняющей фактические соединения, от части, обеспечивающей предоставление услуг. Это способствует большей открытости и повышению потенциала в условиях рынка, обеспечивает концепцию раздельных поставщиков (провайдеров) информации, услуг и телекоммуникационных компаний. Некоторые из этих услуг приводятся ниже.

Услуги, основанные на местоположении

Географическое положение оборудования пользователя (UE) может быть определено путем измерения уровня радиосигналов. Функции позиционирования для оптимизации эксплуатационных характеристик системы радиосвязи могут использоваться внутри сети UTRAN, дополнительными сетевыми услугами, самим UE или на всем протяжении сети и услугами "третьей стороны". К типичным коммерческим услугам относятся следующие услуги:

  • Информация о движении городского транспорта
  • Управление парком автотранспорта
  • "Следуй за мной"
  • "Ближайшая услуга"
  • Услуги экстренных вызовов

Планировщики сети UMTS также могут использовать эту информацию.

Услуги, основанные на местоположении, могут быть реализованы в сетях GSM/GPRS на базе передачи информации сигнализации между сетью и подвижной станцией (MS является эквивалентом UE в сетях GSM/GPRS).

Услуга WAP

Протокол прикладного уровня для радиосвязи (WAP) - является протоколом доступа к Интернету, оптимизированным для мобильной телефонии. Он обеспечивает пользователю подвижной связи доступ к информации и услугам Интернета в любом месте и в любое время, например, электронная почта, расписание полетов и др. Услуга WAP предоставляет пользователю web-браузер, который использует язык маркировки радиосвязи (WML) вместо гипер-текстового языка маркировки (HTML), обычно применяемого в Интернете. Язык WML разработан для использования с мобильными терминалами. Шлюзы в системе заботятся о преобразовании между форматом WAP и обычным форматом Интернета.

Служба обмена мультимедийными сообщениями (MMS)

Служба обмена мультимедийными сообщениями (MMS) используется для доставки мультимедийных сообщений в UE из любого другого UE, из стационарного пункта в Интернете или от поставщика дополнительных услуг (VAS). Дополнительными услугами могут быть новости, прогнозы погоды, информация с фондовой биржи и др. Кроме текста мультимедийные сообщения могут содержать все типы мультимедиа, например, речь, видео, аудио и статические изображения.

CAMEL

Расширенная логика специализированных приложений для сетей подвижной связи (CAMEL) является общей платформой для множества услуг для потребителей. Она обеспечивает сеть UMTS функциями интеллектуальной сети (IN) подобными следующим:

  • Предоплата
  • Фильтрация вызовов
  • Наблюдение (контроль)

CAMEL предоставляет информацию, необходимую для осуществления обмена между сетями (функции IN обычно являются специфическими сетевыми функциями). Традиционные решения IN создают услуги на базе коммутации каналов. CAMEL будет делать тоже самое, а также осуществлять взаимодействие с соединениями на базе пакетной коммутации.[7]

Виртуальная домашняя среда (VHE)

VHE - это концепция предоставления услуг в пределах UMTS, которая позволяет пользователю иметь один и тот же персональный интерфейс с сетью, не обращая внимания на доступную сеть. Требуется, чтобы сети переносили информацию о профилях пользователей, о тарифах, услугах и множественной совместимости, которая, принимая во внимание сложность сетей, является непростой задачей. Там где для VHE требуется межсетевое взаимодействие, будет использоваться CAMEL.

Сетевые компоненты сети UMTS

На рисунке выше показаны некоторые из подсистем в сетях GSM/GPRS/UMTS, так как они будут развиваться вместе с версиями UMTS. На стороне сети… Сеть GSM/GPRS/UMTS взаимодействует с другими наземными сетями подвижной связи…

Элементы сети доступа

Для сети GSM/GPRS/UMTS определяется два типа сети доступа: BSS - используется для сетей доступа GSM, GPRS и EDGE (GERAN), а RNS - используется для доступа WCDMA.[8]

1.5.2 Архитектура сети радио доступа GSM/EDGE (GERAN)

GERAN - это сеть доступа, определенная для GSM, GPRS и EDGE. GERAN подключается к базовой сети (CN) GSM Этап 2+ либо через два традиционных интерфейса (A-интерфейс и интерфейс Gb), либо через интерфейсы Iu. Интерфейс между GERAN и доменом PS базовой сети (Iu-PS или традиционный интерфейс Gb) используется для передачи данных методом коммутации пакетов, а интерфейс между GERAN и доменом коммутации каналов (CS) базовой сети (Iu-CS или традиционный интерфейс A) используется для передачи речевого сигнала или данных методом коммутации каналов.[9]


Рис. 4 Архитектура GERAN

Подсистема базовых станций (BSS)

BSS или GERAN - это система оборудования базовых станций (приемопередатчики, контроллеры и т.д.), которая отвечает за взаимодействие с мобильными станциями в определенной зоне. BSS подключается к MSC с помощью одного интерфейса A или Iu-CS. Подобным же образом в сетях PLMN, поддерживающих GPRS, BSS подключается к обслуживающему узлу поддержки GPRS (SGSN) с помощью одного интерфейса Gb или Iu-PS.

Оборудование радиосвязи BSS может поддерживать одну или более ячеек. BSS может включать одну и более базовых станций. Там где реализован интерфейс Abis, BSS включает один контроллер базовых станций (BSC) и одну или более базовых приемопередающих станций (BTS). Взаимодействие BTS и BSC осуществляется через интерфейс Abis.

Базовая приемопередающая станция (BTS)

BTS включает в себя радиопередатчики и приемники (приемопередатчики - TRX), покрывающие определенную географическую зону сети GSM (зона базовой станции, включающая одну или более радио ячеек). BTS обрабатывает протоколы радио звена с помощью MS.

Контроллер базовых станций (BSC)

BSC управляет группой BTS при настройке радиоканала, управлении уровнем мощности, скачкообразной перестройке частоты и передаче обслуживания - переносе установленного соединения из одного радиоканала в другой обычно в результате перемещения MS из зоны действия одной базовой станции в зону действия другой. BSC - это соединение между мобильной станцией и MSC.

Мобильная станция GSM (MS)

Что касается UMTS, мобильная станция должна работать в одном из двух режимов: Режим, основанный на интерфейсах A/Gb между BSS и CN, например,…

Архитектура универсальной наземной сети радио доступа (UTRAN)

Для UMTS R99 была введена новая сеть радио доступа UTRAN. Сеть UTRAN основана на технологии WCDMA, введенной для того, чтобы добиться более эффективного использования пропускной способности по сравнению с методами, используемыми в GSM/GPRS. Сеть UTRAN подключается к базовой сети GSM Этап 2+ через интерфейс Iu; интерфейс между UTRAN и доменом PS базовой сети (Iu-PS) используется для передачи данных методом коммутации пакетов, а интерфейс между UTRAN и доменом CS базовой сети (Iu-CS) используется для передачи данных методом коммутации каналов. Фактически существует третий домен - домен широковещательной передачи (BC), который может использоваться для трансляции короткого сообщения в заданной географической зоне ("зона обслуживания", состоящая из одной или более ячеек). Интерфейс с областью BC называется Iu-BC. Он не показан на рисунке в разделе 1.5.2 и далее не будет описываться.

Подсистема сети радиосвязи (RNS)

Сеть UTRAN включает в себя одну или более RNS, подключаемых к CN через интерфейсы Iu. Каждая RNS состоит из контроллера сети радиосвязи (RNC) и одного или более Узлов B (Node B). Узлы B подключаются к RNC через интерфейс Iub. Узлы B обеспечивают радио доступ (т.е. антенны) к сети. Контроллеры RNC каждого RNS могут взаимодействовать через интерфейс Iur.


Рис. 5 Архитектура UTRAN

Контроллер сети радиосвязи (RNC)

Рис. 6 Обслуживающий RNC Дрейфующий RNC Чтобы минимизировать влияния от передачи обслуживания, контроллеры RNC могут играть третью… Рис. 7 Дрейфующий RNC

Узел B

Узел B обеспечивает передачу и прием сигналов в одной или более ячеек наподобие BTS в сети GSM. Узел B также отвечает за контроль уровня мощности по внутренней петле. Пожалуйста, обращайтесь к разделу 3.5 за подробной информацией о контроле уровня мощности.

Оборудование пользователя (UE)

Оборудование пользователя (UE) является эквивалентом мобильной станции (MS) в GSM, т.е. это терминал, с помощью которого пользователь получает доступ к сети. UE состоит из оборудования подвижной связи (терминала) и универсального модуля идентификации обслуживания (USIM). Оборудование подвижной связи идентифицируется уникальным образом с помощью IMEI. Для того чтобы разрешить дополнительную модернизацию, оконечное оборудование должно иметь интерфейс прикладного программирования (API). USIM обеспечивает персональную мобильность, предоставляя пользователю доступ к услугам, на которые абонент подписан. В отличие от SIM-карты в GSM карта USIM может поддерживать набор профилей. Каждый профиль будет иметь конкретную цель. Он может использоваться для регулирования доступных услуг в зависимости от возможностей терминала, в котором установлена карта USIM. И пользователь, и сеть могут регулировать профили.

Элементы базовой сети


Рис. 8 Архитектура сети UMTS

Базовая сеть (CN) логически разделяется на домен CS и домен PS. Кроме того, используется набор баз данных (регистров - "Registers") для сохранения информации, необходимой системе. Ниже описываются разные элементы в доменах.

Элементы базовой сети - домен коммутации каналов (CS)

1.5.5.1 Центр коммутации подвижной связи/Шлюзовой центр коммутации подвижной связи (MSC/GMSC) Центральным компонентом домена CS в CN является MSC. MSC - это коммутационная… MSC/GMSC представляет интерфейс между системой радиосвязи и стационарными сетями. MSC выполняет все функции, …

Шлюз сигнализации (SGW)

Шлюз сигнализации (SGW) преобразует информацию сигнализации (в обоих направлениях) на транспортном уровне между сигнализацией на базе SS7, используемой в сетях до версии 4, и сигнализацией на базе протоколов IP, которая вероятно будет использоваться в пост-R99 сетях (т.е. между SCTP/IP Sigtran и MTP SS7). SGW не интерпретирует сообщений прикладного уровня (например, MAP, CAP, BICC, ISUP), но может интерпретировать нижележащий уровень SCCP (подсистема управления соединениями сигнализации) или SCTP (протокол передачи управления потоком), чтобы гарантировать правильную маршрутизацию сигнализации. Шлюз SGW будет необходим для обеспечения универсальной IP-сети UMTS.

Функцию шлюза сигнализации можно реализовать как отдельный элемент или внутри другого элемента.


Рис. 10 Функция шлюза сигнализации

Элементы базовой сети - домен коммутации пакетов (PS)


Рис. 11 Элементы базовой сети - домен PS

Обслуживающий узел поддержки GPRS (SGSN)

SGSN действует как пакетный коммутатор и маршрутизатор в домене PS базовой сети. SGSN управляет доступом мобильной станции к сети и маршрутизирует пакеты в правильный BSC/RNC. Он выполняет функции управления мобильностью (MM), как это делает MSC в домене CS базовой сети, такие как регистрация местоположения, корректировки зоны маршрутизации (RAU) и пейджинг. SGSN также обрабатывает функции обеспечения секретности, такие как аутентификация и шифрование (между MS/UE и SGSN).

Шлюзовой узел поддержки GPRS (GGSN)

GGSN действует как пакетный маршрутизатор в домене PS базовой сети и является шлюзом между маршрутизацией пакетов IP в сети подвижной связи GPRS/UMTS и маршрутизацией пакетов IP в стационарных сетях Интернета. Он выполняет перенос пакетов между сетями IP-мультимедиа и соответствующим SGSN, который в текущий момент обслуживает MS/UE. Если MS меняет SGSN в течение режима готовности, GGSN используется в качестве буфера пакетов данных. GGSN сохраняет данные абонента для активных MS/UE и выполняет функции обеспечения секретности, такие как система защиты доступа и фильтрация.

Элементы базовой сети (CN) - Регистры

Домашний регистр (HLR)

HLR обеспечивает следующие функциональные возможности: Поддержка элементов в домене PS, таких как SGSN и GGSN через интерфейсы Gr и Gc. Это…

Сервер абонентов домашней сети (HSS)

В сети UMTS версии 5 HSS заменяет HLR. HSS является расширенным вариантом HLR и включает все функциональные возможности HLR плюс дополнительные… HSS является общим элементом доменов PS и CS. HSS - это основная база данных… Сеть UMTS может включать один или несколько HSS в зависимости от количества абонентов подвижной связи, пропускной…

Гостевой регистр (VLR)

Гостевой регистр содержит выборочную административную информацию, полученную от HLR, необходимую для управления соединением и предоставления подписанных услуг каждому абоненту подвижной связи, находящемуся в настоящий момент в зоне местоположения (LA), управляемой VLR. Каждый раз при выполнении MS роуминга в новой LA гостевой регистр, охватывающий эту LA, информирует HLR о новом местоположении абонента. Затем HLR информирует VLR об услугах, доступных данному абоненту. VLR также управляет процессом присваивания TMSI.

Регистры HLR и VLR вместе с MSC обеспечивают возможности маршрутизации вызовов и роуминга в сети. В большинстве реализаций VLR интегрирован с MSC, а в UMTS версии 4 будет являться частью сервера MSC.

Центр аутентификации (AuC)

Центр аутентификации - это защищенная база данных, которая включает в себя индивидуальные идентификационные ключи абонентов (которые также включены в SIM) и предоставляет данные абонента в HLR и VLR (через HLR), используемые для аутентификации (проверки подлинности) и шифрования соединений.[14]

Регистр идентификации оборудования (EIR)

Регистр EIR - это база данных, которая включает в себя перечень всего оборудования, действующего в сети подвижной связи, и в которой каждая MS идентифицируется с помощью IMEI.[15] Идентификатор IMEI помечается как неправильный, если был представлен отчет о краже мобильной станции или если MS несанкционированного типа.

Подсистема IP-мультимедиа (IMS)

Подсистема IMS является основным отличием сети UMTS версии 4 от версии 5. IMS включает все элементы CN для обеспечения мультимедийных услуг.… Подсистема IMS позволяет операторам PLMN предлагать мультимедийные услуги… Далее описываются специфические функциональные элементы IMS. CSCF, который играет три роли: Полномочный …

Сетевые компоненты сети UMTS

На рисунке выше показаны некоторые из подсистем в сетях GSM/GPRS/UMTS, так как они будут развиваться вместе с версиями UMTS. На стороне сети доступа… Сеть GSM/GPRS/UMTS взаимодействует с другими наземными сетями подвижной связи… 1.5.1 Элементы сети доступа

Рис. Архитектура сети UMTS

Базовая сеть (CN) логически разделяется на домен CS и домен PS. Кроме того, используется набор баз данных (регистров - "Registers") для сохранения информации, необходимой системе. Ниже описываются разные элементы в доменах.

Элементы базовой сети - домен коммутации каналов (CS)

Рис. Элементы базовой сети - домен CS

Центр коммутации подвижной связи/Шлюзовой центр коммутации подвижной связи (MSC/GMSC)

Центральным компонентом домена CS в CN является MSC. MSC - это коммутационная станция, которая выполняет все функции коммутации и сигнализации для MS, расположенных в географической зоне, назначенной в качестве зоны MSC. Основное различие между MSC и коммутационной станцией в стационарной сети состоит в том, что MSC должен принимать в расчет влияние распределения радио ресурсов и подвижность абонентов. Это означает, что MSC должен выполнять такие процедуры, как:

  • Процедуры, необходимые для регистрации местоположения
  • Процедуры, необходимые для передачи обслуживания

MSC/GMSC представляет интерфейс между системой радиосвязи и стационарными сетями. MSC выполняет все функции, необходимые для обработки услуг с коммутацией каналов в направлении к и от мобильных станций. MSC отвечает за управление соединением (настройка, маршрутизация, управление и завершение соединений), управление передачей обслуживания между MSC и управление дополнительными услугами, а также за сбор информации об оплате/учете пользователей. MSC подключается к регистрам местоположения и оборудования и другим MSC в той же сети.

GMSC действует в качестве шлюза для соединения с другими сетями подвижной связи и коммутируемыми сетями общего пользования (телефонная сеть, ISDN, сети передачи данных).

Чтобы обеспечить радио покрытие заданный географической зоны, обычно требуется несколько базовых станций; т.е. каждый MSC должен взаимодействовать с несколькими базовыми станциями. Кроме того, для обеспечения покрытия страны может потребоваться несколько MSC.

Шлюз среды/сервер центра коммутации подвижной связи (MGW/сервер MSC)

Чтобы обеспечить в версии 4 сетевую архитектуру CS, не зависящую от носителя (а, следовательно, обеспечить универсальные IP-сети), MSC разделяется на шлюз среды (MGW), обеспечивающий передачу пользовательских данных, и сервер MSC для обеспечения сигнализации. Сервер MSC состоит, главным образом, из двух частей: управления соединениями (CC) и управления мобильностью MSC. Разделение на MGW и сервер MSC также приводит к созданию более независимой среды для обслуживания. Новые функциональные возможности CAMEL извлекают выгоду из этой концепции, когда управление обслуживанием становится независимым от устройства коммутации.

MGW является оконечным пунктом транспортной сети PSTN/PLMN и связывает UTRAN с CN через интерфейс Iu. MGW может служить окончанием каналов-носителей (B-каналов) в сети с коммутацией каналов и потоков данных разных форматов в сети с коммутацией пакетов (например, потоки RTP (транспортный протокол реального времени) в IP-сети).

Шлюз сигнализации (SGW)

Шлюз сигнализации (SGW) преобразует информацию сигнализации (в обоих направлениях) на транспортном уровне между сигнализацией на базе SS7, используемой в сетях до версии 4, и сигнализацией на базе протоколов IP, которая вероятно будет использоваться в пост-R99 сетях (т.е. между SCTP/IP Sigtran и MTP SS7). SGW не интерпретирует сообщений прикладного уровня (например, MAP, CAP, BICC, ISUP), но может интерпретировать нижележащий уровень SCCP (подсистема управления соединениями сигнализации) или SCTP (протокол передачи управления потоком), чтобы гарантировать правильную маршрутизацию сигнализации. Шлюз SGW будет необходим для обеспечения универсальной IP-сети UMTS.

Функцию шлюза сигнализации можно реализовать как отдельный элемент или внутри другого элемента.

 

Рис. Функция шлюза сигнализации

Элементы базовой сети - домен коммутации пакетов (PS)

 

Рис. Элементы базовой сети - домен PS

Обслуживающий узел поддержки GPRS (SGSN)

SGSN действует как пакетный коммутатор и маршрутизатор в домене PS базовой сети. SGSN управляет доступом мобильной станции к сети и маршрутизирует пакеты в правильный BSC/RNC. Он выполняет функции управления мобильностью (MM), как это делает MSC в домене CS базовой сети, такие как регистрация местоположения, корректировки зоны маршрутизации (RAU) и пейджинг. SGSN также обрабатывает функции обеспечения секретности, такие как аутентификация и шифрование (между MS/UE и SGSN).

Шлюзовой узел поддержки GPRS (GGSN)

GGSN действует как пакетный маршрутизатор в домене PS базовой сети и является шлюзом между маршрутизацией пакетов IP в сети подвижной связи GPRS/UMTS и маршрутизацией пакетов IP в стационарных сетях Интернета. Он выполняет перенос пакетов между сетями IP-мультимедиа и соответствующим SGSN, который в текущий момент обслуживает MS/UE. Если MS меняет SGSN в течение режима готовности, GGSN используется в качестве буфера пакетов данных. GGSN сохраняет данные абонента для активных MS/UE и выполняет функции обеспечения секретности, такие как система защиты доступа и фильтрация.

Домашний регистр (HLR)

Домашний регистр (HLR) является независимым элементом базовой сети до и включая версию 4. В сети версии 5 HLR заменяется HSS (сервер абонентов домашней сети - см. следующий раздел), который является расширенным вариантом HLR. HLR включает в себя всю административную информацию по каждому абоненту, зарегистрированному в определенной сети, информацию о разрешенных услугах и текущем местоположении мобильной станции. Местоположение мобильной станции обычно представляется в форме адреса сигнализации гостевого регистра (VLR), связанного с MS. Логически существует один HLR на сеть, хотя он может быть реализован как распределенная база данных.

HLR обеспечивает следующие функциональные возможности:

  • Поддержка элементов в домене PS, таких как SGSN и GGSN через интерфейсы Gr и Gc. Это необходимо для того, чтобы обеспечить доступ абонента к услугам области PS
  • Поддержка элементов в домене CS, таких как MSC/сервер MSC, через интерфейсы C и D. Это необходимо для того, чтобы обеспечить доступ абонента к услугам домена CS и роуминг в традиционных сетях GSM/домене CS сети UMTS.

Сервер абонентов домашней сети (HSS)

В сети UMTS версии 5 HSS заменяет HLR. HSS является расширенным вариантом HLR и включает все функциональные возможности HLR плюс дополнительные функции для поддержки функций IM подсистемы IP-мультимедиа (IMS). Пожалуйста, обращайтесь к разделу 1.5.8.

HSS является общим элементом доменов PS и CS. HSS - это основная база данных для заданного пользователя и содержит информацию, связанную с подпиской, чтобы поддерживать сетевые компоненты, обрабатывающие вызовы/сеансы, например, поддержка серверов управления соединениями для выполнения процедур маршрутизации/роуминга путем решения взаимозависимостей аутентификации, авторизации, разрешение присваивания имен/ адресации и определения местоположения.

Сеть UMTS может включать один или несколько HSS в зависимости от количества абонентов подвижной связи, пропускной способности оборудования и организации сети.

В HSS предусматриваются следующие функциональные возможности:

  • Функциональные возможности IM для обеспечения поддержки управляющих функций IMS, таких как функция управления состоянием соединения (CSCF). Это необходимо для обеспечения доступа абонента к услугам подсистемы IM CN
  • Расширенное множество функций HLR, требующееся для домена PS
  • Расширенное множество функций HLR, требующееся для домена CS, если требуется обеспечить доступ абонента к домену CS или обеспечить роуминг в традиционных сетях GSM/домене CS сети UMTS.

HSS включает следующую информацию, относящуюся к пользователю:

  • Информация идентификации пользователя, нумерации и адресации
  • Информация по обеспечению защиты пользователя
    • Информация управления доступом к сети для аутентификации и авторизации
  • Информация о местоположении пользователя на межсистемном уровне
    • HSS обеспечивает регистрацию пользователей и сохраняет информацию о местоположении на межсистемном уровне и др.
  • Информация о профиле пользователя (т.е. установки параметров для определенных целей)

 

Рис. HSS - расширенный вариант HLR

Гостевой регистр (VLR)

Гостевой регистр содержит выборочную административную информацию, полученную от HLR, необходимую для управления соединением и предоставления подписанных услуг каждому абоненту подвижной связи, находящемуся в настоящий момент в зоне местоположения (LA), управляемой VLR. Каждый раз при выполнении MS роуминга в новой LA гостевой регистр, охватывающий эту LA, информирует HLR о новом местоположении абонента. Затем HLR информирует VLR об услугах, доступных данному абоненту. VLR также управляет процессом присваивания TMSI.

Регистры HLR и VLR вместе с MSC обеспечивают возможности маршрутизации вызовов и роуминга в сети. В большинстве реализаций VLR интегрирован с MSC, а в UMTS версии 4 будет являться частью сервера MSC.

Центр аутентификации (AuC)

Центр аутентификации - это защищенная база данных, которая включает в себя индивидуальные идентификационные ключи абонентов (которые также включены в SIM) и предоставляет данные абонента в HLR и VLR (через HLR), используемые для аутентификации (проверки подлинности) и шифрования соединений.

Регистр идентификации оборудования (EIR)

Регистр EIR - это база данных, которая включает в себя перечень всего оборудования, действующего в сети подвижной связи, и в которой каждая MS идентифицируется с помощью IMEI. Идентификатор IMEI помечается как неправильный, если был представлен отчет о краже мобильной станции или если MS несанкционированного типа.

Подсистема IP-мультимедиа (IMS)

Подсистема IMS является основным отличием сети UMTS версии 4 от версии 5. IMS включает все элементы CN для обеспечения мультимедийных услуг. Услуги IP-мультимедиа (IM) базируются на возможности управления сеансом, определенной Рабочей группой инженерных проблем Интернета (IETF). Услуги IM вместе с мультимедийными носителями используют домен PS - возможно включая эквивалентный набор услуг в соответствующем подмножестве услуг CS.

Подсистема IMS позволяет операторам PLMN предлагать мультимедийные услуги своим абонентам, базируясь на встроенных приложениях, услугах и протоколах Интернета. 3GPP не стремиться стандартизировать такие услуги в пределах IMS. Цель состоит в том, чтобы эти услуги были развернуты операторами PLMN и независимыми поставщиками (посредниками), включая услуги в пространстве Интернета, использующие механизмы, обеспечиваемые Интернетом и IMS. Подсистема IMS должна обеспечить для пользователей радиосвязи конвергенцию и доступ к различным технологиям: телефония, видео, передача сообщений, передача данных и технологии на базе web, а также объединить развитие Интернета с развитием подвижной связи.

Далее описываются специфические функциональные элементы IMS.

  • CSCF, который играет три роли:
    • Полномочный (Proxy)-CSCF (P-CSCF) - это первая контактная точка для UE в пределах IMS. Функция управления стратегией (PCF) является логическим элементом P-CSCF
    • Опрашивающий CSCF (I-CSCF) - это контактная точка в пределах сети оператора для всех соединений IMS, предназначенных пользователю этого конкретного сетевого оператора
    • Обслуживающий CSCF (S-CSCF) выполняет услуги управления сеансом для UE
  • Функция управления шлюзом среды (MGCF) выполняет преобразование протоколов между ISUP (подсистема пользователей ISDN) и протоколами управления соединениями IMS (например, преобразование ISUP/SIP (протокол инициирования сеанса))
  • Функция множества ресурсов (MFR) выполняет функции коллективных соединений и проведения мультимедийных конференций
  • Шлюз среды IP-мультимедиа (IM-MGW) завершает каналы-носители из сети с коммутацией каналов и потоки мультимедиа из сети с коммутацией пакетов. Шлюз IM-MGW может поддерживать преобразование среды, управление носителем и обработку загрузки (например, кодек, эхо-компенсатор, мост конференц-связи)

 

Рис. Подсистема IP-мультимедиа

Проблемы, возникающие при передачи радиосигналов

 

Потери на пути распространения радиосигналов (Path loss)

 

Path Loss (PL) – это потери, возникающие тогда, когда принимаемый сигнал становится всё слабее и слабее из-за увеличения расстояния между MS и BТS. Проблема PL редко ведёт к разрыву соединения (dropped calls), потому что как только проблема становится экстремальной, соединение переключается на другую BТS и PL становится, соответственно, меньше.

 

Затенения (Shadowing)

 

Затенения случаются тогда, когда на пути распространения радиосигнала между MS и BТS возникают физические препятствия, например, холмы, здания, деревья и т.д. Препятствия создают эффект затенения, который уменьшает уровень сигнала (signal strength). Уровень сигнала в процессе движения MS флуктуирует в зависимости от возникающих препятствий на пути между MS и BТS.

Действующие на сигнал замирания изменяют уровень сигнала. Снижение уровня сигнала называется глубиной замирания (fading dips). На рис. 2.10 показаны препятствия, возникающие на пути распространения сигнала между MS и BТS.

Многолучёвые замирания (Multipath fading)

 

Многолучёвые замираниявозникают тогда, когда существует более чем один путь распространения радиоволны между MS и BТS и, в связи с этим, к приёмнику приходит более чем один сигнал. Последнее связано с многократным отражением радиосигнала от таких препятствий, как горы, здания, располагающиеся либо близко, либо далеко от приёмников.

 

Релеевские замирания сигналов (Rayleigh fading)

 

Релеевские замирания возникают тогда, когда сигнал достигает приёмника по нескольким путям от базовой станции. В этом случае сигнал не принимается по линии прямой видимости прямо от передающей антенны, а приходит с разных направлений, отражаясь от зданий. Релеевские замирания сильно выражены тогда, когда препятствия располагаются близко к приёмной антенне. Результирующий принятый сигнал представляет собой сумму сигналов, пришедших с разной амплитудой и фазой. Глубина замираний и их периодичность зависят от скорости движения MS и рабочей частоты. Расстояние между замираниями приблизительно составляет половину длины волны колебания. Таким образом, в системе GSM 900 расстояние между двумя замираниями составляет 17см.

Временная дисперсия (Time Dispersion)

 

Временная дисперсия является дополнительной проблемой, связанной с многолучёвым характером распространения радиоволн между MS и BТS.

Однако в данном случае в сравнении с Релеевскими замираниями, отражённый сигнал приходит к приёмной антенне, отражаясь от достаточно удалённых объектов, таких как горы, холмы.

Временная интерференция вызывает межсимвольную интерференцию (Inter-Symbol Interference - ISI), где последовательные символы (биты) интерферируют друг с другом, что затрудняет приёмнику правильно определять символы.

Если отраженный сигнал приходит после прохождения одного бита прямого сигнала, то приёмник обнаруживает «1» от отраженной волны и в то же самое время «0» от прямой радиоволны. Поэтому символ «1» интерферирует с символом «0» и MS не знает, какой из этих символов является правильным.

 

Временное наложение (Time Alignment)

 

Каждая MS во время обслуживания вызова занимает один TS внутри кадра TDMA. Другими словами, мобильная станция занимает определённый временной интервал, в течение которого MS передаёт информацию на BТS.

Проблема временного наложения проявляется тогда, когда часть информации, переданная MS, не приходит в занимаемом TS.

Вместо этого не пришедшая часть информации придёт в следующем TS, следовательно, может интерферировать с информацией, передаваемой другой MS, использующей другой TS.

Временное наложение возникает за счёт большого расстояния между MS и BТS. Сигнал же не может распространяться на большие расстояния внутри заданного значения временной задержки.

Комбинированные потери сигнала (Combined Signal Loss)

 

Все проблемы, возникающие при распространении сигнала, в частности те, которые были описаны выше, возникают и существуют независимо друг от друга. Однако в процессе обслуживания некоторых вызовов эти проблемы могут возникать одновременно. Такое наложение сигналов можно представить зависимостью изменения сигнала на входе приёмника MS в процессе её движения.

 

Лекция за 9 неделю на тему: «Оборудование пользователя (UE)». Ответственная Просвиркина А. В.

 

Оборудование пользователя (UE)

Оборудование пользователя (UE) является эквивалентом мобильной станции (MS) в GSM, т.е. это терминал, с помощью которого пользователь получает доступ к сети. UE состоит из оборудования подвижной связи (терминала) и универсального модуля идентификации обслуживания (USIM). Оборудование подвижной связи идентифицируется уникальным образом с помощью IMEI. Для того чтобы разрешить дополнительную модернизацию, оконечное оборудование должно иметь интерфейс прикладного программирования (API). USIM обеспечивает персональную мобильность, предоставляя пользователю доступ к услугам, на которые абонент подписан. В отличие от SIM-карты в GSM карта USIM может поддерживать набор профилей. Каждый профиль будет иметь конкретную цель. Он может использоваться для регулирования доступных услуг в зависимости от возможностей терминала, в котором установлена карта USIM. И пользователь, и сеть могут регулировать профили.

Элементы базовой сети

Рис. 8 Архитектура сети UMTS

Базовая сеть (CN) логически разделяется на домен CS и домен PS. Кроме того, используется набор баз данных (регистров - "Registers") для сохранения информации, необходимой системе.

 

Элементы базовой сети - домен коммутации каналов (CS)

 

 

Рис. 9 Элементы базовой сети - домен CS

Обслуживающий узел поддержки GPRS (SGSN)

SGSN действует как пакетный коммутатор и маршрутизатор в домене PS базовой сети. SGSN управляет доступом мобильной станции к сети и маршрутизирует пакеты в правильный BSC/RNC. Он выполняет функции управления мобильностью (MM), как это делает MSC в домене CS базовой сети, такие как регистрация местоположения, корректировки зоны маршрутизации (RAU) и пейджинг. SGSN также обрабатывает функции обеспечения секретности, такие как аутентификация и шифрование (между MS/UE и SGSN).

Шлюзовой узел поддержки GPRS (GGSN)

GGSN действует как пакетный маршрутизатор в домене PS базовой сети и является шлюзом между маршрутизацией пакетов IP в сети подвижной связи GPRS/UMTS и маршрутизацией пакетов IP в стационарных сетях Интернета. Он выполняет перенос пакетов между сетями IP-мультимедиа и соответствующим SGSN, который в текущий момент обслуживает MS/UE. Если MS меняет SGSN в течение режима готовности, GGSN используется в качестве буфера пакетов данных. GGSN сохраняет данные абонента для активных MS/UE и выполняет функции обеспечения секретности, такие как система защиты доступа и фильтрация.

Подсистема IP-мультимедиа (IMS)

Рис. 13 Подсистема IP-мультимедиа

IMS включает все элементы CN для обеспечения мультимедийных услуг. Услуги IP-мультимедиа (IM) базируются на возможности управления сеансом, определенной Рабочей группой инженерных проблем Интернета (IETF). Услуги IM вместе с мультимедийными носителями используют домен PS - возможно включая эквивалентный набор услуг в соответствующем подмножестве услуг CS.

Подсистема IMS должна обеспечить для пользователей радиосвязи конвергенцию и доступ к различным технологиям: телефония, видео, передача сообщений, передача данных и технологии на базе web, а также объединить развитие Интернета с развитием подвижной связи.

Функциональные элементы IMS.

  • CSCF, который играет три роли:
    • Полномочный (Proxy)-CSCF (P-CSCF) - это первая контактная точка для UE в пределах IMS. Функция управления стратегией (PCF) является логическим элементом P-CSCF
    • Опрашивающий CSCF (I-CSCF) - это контактная точка в пределах сети оператора для всех соединений IMS, предназначенных пользователю этого конкретного сетевого оператора
    • Обслуживающий CSCF (S-CSCF) выполняет услуги управления сеансом для UE
  • Функция управления шлюзом среды (MGCF) выполняет преобразование протоколов между ISUP (подсистема пользователей ISDN) и протоколами управления соединениями IMS (например, преобразование ISUP/SIP (протокол инициирования сеанса))
  • Функция множества ресурсов (MFR) выполняет функции коллективных соединений и проведения мультимедийных конференций
  • Шлюз среды IP-мультимедиа (IM-MGW) завершает каналы-носители из сети с коммутацией каналов и потоки мультимедиа из сети с коммутацией пакетов. Шлюз IM-MGW может поддерживать преобразование среды, управление носителем и обработку загрузки (например, кодек, эхо-компенсатор, мост конференц-связи)

Проблемы, возникающие при передаче радиосигналов

Основные проблемы, возникающие при передаче сигналов по радио интерфейсу:

· Затухание сигнала

· Теневые зоны

· Многолучевое распространение сигналов

· Замирания сигнала

· Временные задержки

Проблемой еще также становится то, что в системах сотовой связи передается трафик реального времени (голос), который не допускает длительных задержек.

Теневые зоны

При распространении сигнала от базовой станции (BTS) сотовой связи он встречает на своем пути различные препятствия искусственного и естественного происхождения.В зависимости от размеров преграды возможны несколько вариантов: сигнал, возможно, просто будет огибать препятствие, либо за встретившимся объектом образуется так называемая теменная зона с очень низким уровнем сигнала, либо сигнал будет отсутствовать вовсе.

Существует достаточно много решений данной проблемы. Во-первых, для закрытия обширных теменных зон с большим числом потенциальных абонентов в данной зоне может быть, установлена дополнительная базовая станция. При этом она может быть в конфигурации с малой емкостью. Если речь идет о малонаселенной теменной зоне, то наиболее разумным решением будет установка репитера (переизлучателя). Принцип его работы заключается в том, что репитер забирает емкость какой-либо другой базовой станции и излучает сигнал сотовой связи в заданной местности.

Многолучевое распространение сигналов

Радиосигнал, на пути распространения от источника к приемнику может встречать какие-либо преграды. При этом сигнал может быть поглощен ими либо отражен. После чего этот сигнал снова может быть отражен в сторону получателя. В этом случае данный сигнал достигнет приемника, однако произойдет это с опозданием.С другой стороны остальная энергия сигнала может достичь приемник без переотражения за более короткое время или пройти большее число отражений что в свою очередь приведет к еще большим задержкам.Данный эффект возникает, когда между источником и приемником возникают несколько путей доставки сигнала. При этом энергия сигнала будет распределена между копиями сигнала неравномерно, что в итоге может привести к ситуации, когда приемник не сможет получить достаточно энергии хотя бы в одной из копий для однозначного приема сигнала.

Многолучевое распространение радиосигнала

При многолучевом распространении сигнала приемник получает сразу несколько копий сигнала. Сравнив эти копии между собой можно выявить и даже исправить ошибки возникшие при распространении сигнала. Данный принцип положен в основу работы Rake-приемника в мобильном оборудовании (UE) сети сотовой связи стандарта UMTS (Universal Mobile Telecommunications System). Rake-приемник представляет собой по сути несколько приемников в одном. Каждый из данных приемников настраивается на свой луч, определяет временное смещение от остальных копий. Затем энергия от данных приемников сравнивается и складывается. Таким образом, для Rake-приемника лучшей обстановкой является именно многолучевое распространение сигнала, а не беспрепятственное.

В технологии MIMO (Multiple Input Multiple Output) многолучевое распространение – это необходимый элемент работы приемопередатчиков. Принцип данной технологии основан на том, что информационный поток от одного источника делится между несколькими приемопередатчиками. На приемной стороне также существует набор из такого же числа приемопередатчиков. Таким образом, организуются не один, а много каналов связи и для них желательно, чтобы были различные пути прохождения сигнала. Практические испытания показали, что чем меньше препятствий между приемопередатчиками MIMO, тем ниже суммарная скорость передачи данных в тоге достигается. Эта технология получила распространение в сетяхUMTS (Rel.7) и LTE (Long Term Evolution).

Контрольные вопросы:

1. Отличие SIM-карты от карты USIM в GSM?

2. Проблемы, возникающие при передаче радиосигнала?

3. Принцип работы репитера?

4. Что происходит с сигналом при многолучевом распространении сигнала?

5. Что представляет собой Rake – приемник?

 


Лекция за 10 неделю на тему: «Проблемы, возникающие при передаче радиосигналов и Способы борьбы с негативными воздействиями на радиосигнал». Ответственная Харчейкина Н. М.

Проблемы, возникающие при передаче радиосигналов и способы борьбы с негативными воздействиями на радиосигнал

Проблемы, возникающие при передаче радиосигналов

Сотовая связь позволяет абоненту быть мобильным и не привязанным к какой-либо географической точке. В первую очередь это возможно благодаря особой структуре сети доступа, а именно из-за того, что на крайнем к абоненту участке сети используется не проводное, а радио соединение. Как и в любой другой системе радиосвязи, сигналы сотовой связи распространяются не в идеальной среде и претерпевают ряд негативных воздействий на пути от базовой станции (BTS) к мобильной станции (MS) абонента. Некоторые из данных проблем можно решить простым увеличением мощности сигнала, а некоторые требуют внедрение сложных алгоритмов в работу приемопередатчиков и установку дополнительных устройств.

Можно выделить следующие основные проблемы, которые возникают при передаче сигналов по радио интерфейсу:

 Затухание сигнала

 Теневые зоны

 Многолучевое распространение сигналов

 Замирания сигнала

 Временные задержки

Некоторые из указанных проблем проявляются практически в любой системе радио связи (затухание сигнала, теневые зоны) и, следовательно, уже существуют варианты решения данных проблем. Однако другие (замирания, многолучевое распространение сигналов) требовали от разработчиков стандарта внедрение новых методов борьбы. Проблемой еще также становится то, что в системах сотовой связи передается трафик реального времени (голос), который не допускает длительных задержек.

Наибольшее число различных алгоритмов борьбы с проблемами распространения сигналов были сделаны в стандарте GSM (Global System for Mobile Communications), т.к. это первая полностью цифровая система связи. Большая часть методов улучшения качества принимаемого сигнала, впервые введенные в данном стандарте применяются и в последующих системах (UMTS (Universal Mobile Telecommunications System), LTE (Long Term Evolution) и др.)

1.1. Затухание сигнала

Для передачи телекоммуникационных сигналов применяются различные среды: электрический или оптический кабель связи, воздушное пространство и т.п. При этом не зависимо от выбранного способа передачи первоначальная энергия сигнала, которая была на выходе передатчика будет уменьшаться. Иными словами сигнал будет затухать. Главным негативным следствием этого процесса будет сложность в приеме сигнала, т.е. если энергия сигналы на выходе канала связи будет меньше некоего уровня (порога чувствительности приемника), то сигнал может быть принят с ошибкой.

В зависимости от канала связи причин затухания может быть достаточно много. В любом случае главная причина – неидеальность среды передачи. В частности электрический канал связи обладает неким сопротивлением и чем выше это сопротивление, тем выше будут потери. Энергия будет рассеиваться на нагрев проводника. Для оптического каналасвязи основной причиной затухания являются примеси в проводнике и неоднородности.Из-за наличия примесей и неоднородностей часть полезной энергии переотражается обратно в сторону источника или выходит за пределы оптического волокна.

Для радиоканала существует целый ряд причин затухания. Главной из них является рассеивание энергии сигнала на тепло, т.е. практически радиопередатчик "греет" окружающее пространство. Однако данный вид потерь вполне предсказуем и обладает свойством линейности. Таким образом, зная затухание сигнала для определенной частоты на единицу длинны, заранее можно рассчитать необходимую мощность излучения передатчика для передачи сигнала на заданное расстояние.

Большую проблему для сотовой связи создают искусственные объекты. Например, стена жилого дому вносит очень ощутимое затухание, в результате чего в центре здания связи может не быть вовсе. Решением этой сложности является размещение специальных Indoor (внутриобъектовых) – базовых станций, которые специально предназначены для создания устойчивого покрытия внутри подобных объектов. К сожалению, размещение даже внутриобъектовой базовой станции – это достаточно дорого и к этому прибегают в редких случаях, когда речь может идти о быстрой окупаемости или высокой важности клиента для оператора. В остальных случаях решение данной проблемы остается на плечах самого абонента. Решить эту проблему можно установив на мобильный телефон (MS) внешнюю антенну или подойдя к открытому пространству, например к окну.

1.2. Теневые зоны

При распространении сигнала от базовой станции (BTS) сотовой связи он встречает на своем пути различные препятствия искусственного и естественного происхождения. К преградам искусственного происхождения можно отнести жилые здания, производственные корпуса, широкие мосты и виадуки и т.п. К препятствиям естественного происхождения относятся горы, холмы, обрывы, высокие лесные массивы и т.д. Таким образом, любой более менее широкий объект, возвышающийся над земной поверхностью хотя бы на несколько метров может создать препятствие. В зависимости от размеров преграды возможны несколько вариантов: сигнал, возможно, просто будет огибать препятствие, либо за встретившимся объектом образуется так называемая теменная зона с очень низким уровнем сигнала, либо сигнал будет отсутствовать вовсе.

Обычно объекты, которые могут стать преградой известны еще до развертывания сети связи и проектирование осуществляется с самого начала с учетом возможных препятствий. Существует достаточно много решений данной проблемы. Во-первых, для закрытия обширных теменных зон с большим числом потенциальных абонентов в данной зоне может быть, установлена дополнительная базовая станция. При этом она может быть в конфигурации с малой емкостью. Если речь идет о малонаселенной теменной зоне, то наиболее разумным решением будет установка репитера (переизлучателя).Принцип его работы заключается в том, что репитер забирает емкость какой-либо другой базовой станции и излучает сигнал сотовой связи в заданной местности.Однако на практике оказывается, что установка репитера обходится не на много дешевле, чем строительство полноценной базовой станции, но при этом репитер имеет ограничения по емкости и возможности расширения, а также расходует ресурсы другой BTS.

1.3. Многолучевое распространение сигналов

Радиосигнал, на пути распространения от источника к приемнику может встречать какие-либо преграды. При этом сигнал может быть поглощен ими либо отражен. После чего этот сигнал снова может быть отражен в сторону получателя. В этом случае данный сигнал достигнет приемника, однако произойдет это с опозданием. С другой стороны остальная энергия сигнала может достичь приемник без переотражения за более короткое время или пройти большее число отражений что в свою очередь приведет к еще большим задержкам. Данный эффект возникает, когда между источником и приемником возникают несколько путей доставки сигнала. При этом энергия сигнала будет распределена между копиями сигнала неравномерно, что в итоге может привести к ситуации, когда приемник не сможет получить достаточно энергии хотя бы в одной из копий для однозначного приема сигнала.

 

Рисунок 1. Многолучевое распространение радиосигнала

Однако данная проблема имеет и другую не лежащую на поверхности пользу. При многолучевом распространении сигнала приемник получает сразу несколько копий сигнала.Сравнив эти копии между собой можно выявить и даже исправить ошибки возникшие при распространении сигнала. Данный принцип положен в основу работы Rake-приемника в мобильном оборудовании (UE) сети сотовой связи стандарта UMTS (Universal Mobile Telecommunications System). Rake-приемник представляет собой по сути несколько приемников одном. Каждый из данных приемников настраивается на свой луч, определяет временное смещение от остальных копий. Затем энергия от данных приемников сравнивается и складывается.Таким образом, для Rake-приемника лучшей обстановкой является именно многолучевое распространение сигнала, а не беспрепятственное.

В технологии MIMO (Multiple Input Multiple Output) многолучевое распространение – это необходимый элемент работы приемопередатчиков. Принцип данной технологии основан на том, что информационный поток от одного источника делится между несколькими приемопередатчиками. На приемной стороне также существует набор из такого же числа приемопередатчиков. Таким образом, организуются не один, а много каналов связи и для них желательно, чтобы были различные пути прохождения сигнала. Практические испытания показали, что чем меньше препятствий между приемопередатчиками MIMO, тем ниже суммарная скорость передачи данных в итоге достигается. Эта технология получила распространение в сетях UMTS (Rel.7) и LTE (Long Term Evolution).

 

 

1.4. Замирания сигнала

Сигнал на радио интерфейсе системы сотовой связи редко когда распространяется по прямой. На пути распространения обычно попадаются различные препятствия, которые ведут к отражениям сигнала и изменению его траектории. В результате может сложиться ситуация когда к приемнику будут поступать не одна а сразу несколько сдвинутых по времени копий исходного сигнала с разными амплитудами. Причем энергия исходного сигнала будет распределена между копиями неравномерно. Это так называемое явление многолучевого распространения сигнала. Само по себе это явление не ведет к большим проблемам, т.к. существуют достаточно эффективные методы борьбы, например, Rake-приемник. Однако может сложиться ситуация когда две копии сигнала придут в противофазе. Это означает, что копия сигнала может задержаться на промежуток времени кратный периоду сигнала. В таком случае два луча сигнала могут сложиться в приемнике и нейтрализовать друг друга. Если окажется, что эти два луча в сумме несли весомую энергию сигнала, то этоможет привести к увеличению числа ошибок и снижению качества канала связи. Это явление получило название "замирания" сигнала, т.е. сигнал вроде как перестает на время поступать между источником и приемником.

 

Рисунок 2. Замирания сигналов

Выделяют две основные разновидности замираний в зависимости от эффекта оказываемого ими и их причины: быстрые и медленные замирания. Медленные замирания вызваны, как правило, плохими метеоусловиями и существуют достаточно эффективные методы борьбы с ними. Быстрые замирания вызваны преимущественно движением приемника (источника) или препятствиями близкорасположенными с получателем сигнала. Этот вид замираний частотно селективен, т.е. изменение частоты, на которой ведется передача, может или снизить этот эффект, или полностью его убрать.

Таким образом, замирания сигнала – это одна из самых важных проблем в сотовой связи. Однако многолетний опыт и большой объем наработок в области сотовой связи позволяют в настоящее время достаточно эффективно бороться с замираниями.

1.5. Временные задержки

Телекоммуникационный сигнал, распространяется от источника по какому либо каналу связи: электрический, оптический кабель или радиоэфир. При этом в зависимости от среды распространения и используемой частоты сигнал будет приходить к получателю с той или иной задержкой. Если задержка для всех посылок сигнала будет постоянна и не превышать определенного максимального порога, то она не влечет за собой каких-либо существенных последствий. Обычно борьбу с небольшими задержками(порядка нескольких сотен микросекунд или миллисекунд) ведут, вводя в структуру сигнала небольшие защитные интервалы. Однако если задержка вызвана переотражением или неоднородностью среды распространения, то задержка может начать изменяться и даже выходить за пределы защитного интервала.Это в свою очередь может привести к наложению двух соседних по времени посылок и потери части информационного потока.

Временные задержки могут оказывать не только вред, но и приносить пользу. В частности в сотовой связи длительность задержки сигнала в радио интерфейсе может говорить о расстоянии находящемся до объекта, т.е. мобильной станции (MS) абонента. Эта информация используется для подстройки мощности излучения передатчика. В стандарте GSM (Global System for Mobile Communications), например, максимальная дальность связи может достигать 35 км. Максимальное значение задержки (Timing advance) может быть равно 64 единицам. Соответственно расстояние от базовой станции до абонента может быть определено с точностью до 550 метров. Еще одним полезным приложением временных задержек является возможность предоставления сервиса "Определение местоположения". Если мобильная станция получает сигнал одновременно нескольких базовых станций и зная их географические координаты, то вычисление местоположения сводится к обычной геометрической задаче.Причемчем от большего числа базовых станций MS получает сигнал, тем более точным может быть определение местоположения, иногда достигая нескольких десятков метров.

Способы борьбы с негативными воздействиями на радиосигнал

При передаче сигнала сотовой связи через эфир на него воздействует целый комплекс нежелательных воздействий. К ним можно отнести: затухание, многолучевое распространение, замирания, временные задержки и др.

Однако в существующих системах сотовой связи внедрен целый ряд методов борьбы. Некоторые из них используется во многих системах связи и не только радио, но и проводных (например, помехоустойчивое кодирование). Но существует целый ряд проблем, для которых были специально разработаны уникальные методы и они были внедрены впервые именно в сотовой связи. Наиболее значимые способы защиты для сотовой связи перечислены ниже:

 Перемежение (Interleaving)

 Разнесённый приём (Antenna Diversity)

 Перескоки по частоте (Frequency Hopping)

 Адаптивная коррекция (Adaptive Equalization)

 Помехоустойчивое кодирование

 Управление мощностью

Это лишь ряд из существующих и применяемых методов. Для каждого конкретного стандарта набор применяемых способов защиты и их настройки могут сильно отличаться. Существенное влияние на комплекс применяемых способов борьбы оказывает способ разделения каналов. Так для стандарта GSM опасны частотно селективные помехи, когда действие мешающего внешнего источника сосредоточено в узком частотном диапазоне. Для стандарта UMTS, возникновение частотно селективных помех не оказывает существенного воздействия, т.к. энергия полезного сигнала распределена в широкой полосе частот и незначительная потеря существенно не повлияет на общее качество сигнала. Однако системы с WCDMA чувствительны к интерференции и требуют специальных способов управления мощностью.

1.6. Перемежение (Interleaving)

Передаваемый через эфир радиосигнал подвергается помехам различных типов. Это могут быть промышленные шумы, атмосферные помехи(например, грозы) и т.п., при этом многие ошибки не одиночны по времени, а возникают пачками. Это означает, что длительности воздействующего мешающего сигнала достаточно для возникновения ошибок в нескольких подряд идущих битах. Главная опасностьтакого вида помех заключаетсяв том, что применяемые способы защиты от помех обычно могут распознать и исправить не более одной ошибки. Пачечные ошибки эти виды защиты не определяют, что соответственно может привести к ухудшению качества связи.

Для борьбы с пачечными ошибками в сотовой связи применяется так называемый Interleaving или перемежение. Суть его заключается в том, что перед передачей в эфир биты переставляются местами. Например, вместо последовательности «1, 2, 3, 4, 5, 6 …» создается последовательность: «5, 3, 6, 1, 4, 2 …». Причем одна и та же схема перемежения, обычно, накладывается как маска и применяется циклически к цифровому потоку.После перемежения полученная последовательность подвергается дальнейшим преобразованиям, как и обычный цифровой сигнал. После приема сигнала последовательность подвергается обратной перестановке, чтобы получить исходный сигнал. В случае, если на сигнал будет воздействовать пачечная помеха, например, на подряд идущие биты 3, 6 и 1, то после восстановления исходного потока эти биты окажутся не рядом стоящими и к ним уже можно будет применить стандартные алгоритмы защиты от ошибок. Очевидно, что чем меньше отрезок сигнала, т.е. чем короче кадр по времени будет подвержен перемежению, тем более коротким пачечным ошибкам он может противостоять. Однако чем более длительный отрезок сигнала будет вовлечен в перемежение, тем больше это потребует производственных возможностей и может потребовать дополнительных временных затрат и привести к задержкам сигнала. Поэтому на практике выбирают золотую середину: берут достаточно длительный кадр для перемежения, что бы можно было противостоять пачечным ошибкам достаточно часто встречающимся в радиоэфире.

 

Рисунок 3. Пример действия перемежения на практике

На практике часто применяют несколько ступеней интерливинга. После первичного перемежения, затем берется кадр, включающий в себя несколько первых кадров интерливинга, после чего еще раз проводят процедуру. Подобная двойная схема перестановки позволяет очень хорошо защитить сигнал и избежать практически всех длительных ошибок в канале связи.

Также к положительным эффектам процедуры Interleaving можно отнести повышение помехоустойчивости канала связи. Дело в том, что схемы интерливинга могут меняться со временем. Это усложняет для противника процесс выделения полезного сигнала и требует больших временных и вычислительных ресурсов.

1.7. Разнесённый приём (Antenna Diversity)

Одними из наиболее негативных явлений, возникающих в процессе передачи информации через радиоэфир, являются замирания сигнала. Радиосигнал сотовой связи во время распространения от источника к получателю может отражаться от различных препятствий. Вследствие многочисленных переотражений к получателю может прийти не одна, а сразу несколько копий исходного сигнала. При этом если одна из копий окажется в противофазе с основным источником сигнала, т.е. отставать от него на половину периода (1,5; 2,5 и т.д.), то после сложения двух копий сигнала в приемнике энергия основного сигнала окажется подавленной его копией. В результате этого вся или почти вся энергия переданного сигнала будет потеряна. Это в свою очередь приведет к ошибке в приеме сообщения. Также на сигнал во время передачи могут воздействовать различные виды помех и искажений. Кроме того, во время передачи радиосигнал претерпевает затухание. В итоге на приемной стороне энергия сигнала может оказаться ниже порога чувствительности приемника, что приведет к пропуску сигнала или ошибочному его приему.

Одни из возможных способов борьбы с обозначенными выше проблемами это использование нескольких копий сигнала на приемной стороне. Существует несколько вариантов получения копий сигнала, например повторная передача. Тогда это будет временное разнесение. Также можно передавать один и тот же сигнал на разных частотах – это частотное разнесение. Однако подобные способы разнесения требуют дополнительных затрат ресурсов. В сотовой связи используются более экономичные, но не менее эффективные способы разнесения: пространственное и поляризационное. Для реализации пространственного разнесения на базовой станции устанавливаются не одна, а две антенны на прием.Причемантенны могут быть установлены с вертикальным или горизонтальным пространственным разносом. Однако обычнона практике применяется горизонтальное разнесение,т.к. при этом требуется меньшее расстояние между антеннами. От каждой из приемных антенн до приемопередающего оборудования прокладывается отдельный фидер, а уже приемники базовой станции оценивают оба принятых сигнала. В результатевероятность появления эффекта «замирания» сигнала сразу на двух антеннах значительно снижается.Кроме тогоувеличивается суммарная принятая энергия полезного сигнала.

 

Рисунок 4. Принцип разнесенного приема

Сигнал сотовой связи от приемника к передатчику обычно распространяется в какой-либо плоскости. При этом, за счет различных причин (переотражения, неоднородность среды) возможно отклонение от заранее заданной плоскости, например вертикали. В результате к получателю радиосигнала поступят несколько копий исходного сигнала с различной поляризацией. Для того,чтобы собрать энергию сигнала из различных плоскостей и применяется поляризационное разнесение. Этот тип разнесения реализуется по средствам размещения внутри приемной антенны принимающих элементов под прямым углом друг к другу.Таким образом,удается собрать больше энергии исходного сигнала.Основная задача поляризационного разнесения – это борьба с затуханием сигнала .

 

1.8. Перескоки по частоте (Frequency Hopping)

На сигнал, передаваемый по радиоинтерфейсу между базовой станцией (BTS) и сотовым телефоном (MS) воздействуют различные внешние помехи. Это могут быть шумы промышленного происхождения (генераторы, сварочное оборудование и т.п.) или атмосферные помехи (например, грозовые разряды). Некоторые из помех распределены в каком-то частотном диапазоне и равномерно воздействуют на различные частотные каналы. К таким помехам относится белый шум, мощность которого равномерно распределена во всем спектре. Однако некоторые мешающие воздействия сосредоточены в каком-то узком частотном диапазоне и оказывают воздействие только на некоторые частотные каналы. Такие помехи называются частотно селективными. Причем они могут быть непрерывными во времени или иметь прерывистый характер, также могут дрейфовать и иметь изменяющуюся мощность. Частотно селективные помехи опасны тем, что они менее предсказуемы, а их мощность может изменяться в широком диапазоне. Для радиосоединений в сотовой связи это может привести к существенному ухудшению качества или полному разъединению и невозможностью установить соединение в течение действия помехи.

Одним из возможных способов борьбы с частотно селективными помехами может быть увеличение мощности. Однако подобный метод не позволяет бороться с высокими выбросами энергии и не является энергетически эффективным. В сотовой связи большее распространение нашел метод, называемый Frequency Hopping или перескоки по частоте. Суть его заключается в том, что во время радиосоединения частотный канал не постоянен и постоянно меняется в пределах заранее заданного набора, известно обеим сторонам передачи. Главное, чтобы смена частотного канала происходила синхронно, иначе возможна потеря качества или разрыв соединения.Очевидно, что участвующие в Frequency Hopping каналы не должны быть задействованы на той же или соседних базовых станциях. Также имеет значение количество частотных каналов и их разнос друг относительно друга. Чем большее число каналов и чем дальше они разнесены друг от друга, тем меньше вероятности возникновения частотно селективных помех на других каналах. Таким образом, в результате включения данной процедуры если на каком-либо канале возникнут помехи, то их воздействие будет распределено между всеми установленными соединениями. Применяемые в системах сотовой связи процедуры защиты от ошибок обычно позволяют выявить и исправить только редкие и одиночные ошибки. В результате распределения негативного воздействия общее число ошибок в каждом из соединений уменьшиться, а это, в свою очередь, позволит применить алгоритмы защиты от ошибок.

 

Рисунок 5. Пример Frequency Hopping

Существует несколько алгоритмов работы Frequency Hopping. Перескоки между каналами могут происходить последовательно от канала к каналу и одинаково от цикла к циклу. Также перескоки могут происходить случайно между каналами, и порядок будет меняться от цикла к циклу. Такой вариант обычно предпочтительнее, т.к. считается, что он позволяет лучше распределить помеху и исключить случай, когда помеха действует периодически и может оказывать воздействие на один и тот же канал.

1.9. Адаптивная коррекция (Adaptive Equalization)

Во время передачи сигнала через радиосоединение на него воздействуют различные виды помех. Это могут быть промышленные и атмосферные воздействия, помехи от других систем связи или преднамеренные искажения. При этом достаточно часто помехи разных типов накладываются друг на друга и оказывают на полезный сигнал суммарное воздействие. В результате на практике сталкиваются с помехой постоянно меняющейся по мощности, фазе, частоте и ширине спектра. Поэтому необходимо иметь какой-то механизм, который бы позволял компенсировать эти вредные воздействия. Регулирование мощности не позволяет своевременно подстраиваться под изменяющуюся обстановку, т.к. пока будут произведены измерения и отдана команда на изменение мощности шумовая ситуация уже может несколько раз измениться.

В сотовой связи для борьбы с «быстрыми» изменениями шумовой обстановки используется, так называемая,адаптивная коррекция. Суть ее заключается в том, что вместе с полезным сигналом по частотному каналу передается тестовая последовательность (training sequence), которая заранее известна отправителю и получателю. Во время передачи помеха будет воздействовать не только на полезный сигнал, но и на тестовую последовательность. В результате на приемной стороне будет получен «слепок» канала, соответствующий текущей ситуации в канале связи. После получения полезного сигнала и training sequence в действие вступает эквалайзер Витерби (для стандарта GSM). По полученной тестовой последовательности данный эквалайзер изменяет и полезный сигнал. Вместе с передачей следующей порции полезной информации также будет передана новая тестовая последовательность, которая позволит отрегулировать эквалайзер на новую шумовую обстановку.

Очевидным недостатком данного алгоритма является введение избыточной информации в общий поток информации. Кроме того, возникает необходимость в дополнительных вычислительных мощностях на приемной стороне. Вместе с тем производительность современного телекоммуникационного оборудования и ширина каналов связи заранее предусматривает проведение этих процедур и не мешает нормальному процессу обмена информацией. Также адаптивная коррекция обладает еще одним недостатком: используемый канал оценивается только во время передачи тестовой последовательности и может дать лишь примерную информацию о канале связи в остальное время. Но, как показывает практика, даже выборочное тестирование канала дает достаточно полную картину о его состоянии в целом. Поэтому данный метод борьбы с помехами широко применяется не только в стандарте GSM, но и в последующих стандартах сотовой связи.

1.10.Помехоустойчивое кодирование

Защиту от ошибок в системах сотовой связи можно разделить на три основных стадии: предупреждение, обнаружение ошибок и исправление. Интерливинг, адаптивная коррекция, Antenna Diversity в первую очередь используются для предупреждения появления ошибок. Эти методы в совокупности позволяют достаточно эффективно противостоять помехам, затуханию сигнала и другим негативным факторам . Однако избежать появления ошибок в 100% случаев на практике невозможно.

Для обнаружения и исправления ошибок в сотовых системах связи применяется помехоустойчивое кодирование. Суть его заключается в том, что в передаваемый цифровой поток вносится некоторая избыточность. Обычно помехоустойчивое кодирование разделено на 2 части: обнаружение и исправление ошибок. Для обнаружения ошибок обычно применяется CRC (Cyclic Redundancy Check). Он реализуется по средствам вычисления контрольной суммы блока информации и передачи ее вместе с полезной информации. Причем в зависимости от степени важности и скорости передачи информации контрольная сумма может содержать больше или меньше бит. Чем выше важность информации и скорость передачи данных, тем больше контрольных бит нужно передавать. Кроме CRC в различных стандартах может применяться и другой вид кодирования.

Для исправления ошибок применяются другие коды: сверточные, блочные и т.п. Их задача состоит в том, чтобы добавить к передаваемой информации дополнительные биты, которые помогут восстановить исходный сигнал или его часть в случае возникновения ошибки. В зависимости от стандарта (GSM,UMTS и т.п.) разная по важности информация сопровождается различным объемом дополнительных данных. При этом возможно увеличение объема передаваемых данных в 2 или даже в 3 раза.

Помехоустойчивое кодирование – это крайний способ защиты от помех. Если он не поможет справиться с ошибками, то искаженные данные будут переданы пользователю. Поэтому на него накладываются высокие требования по надежности. Однако конкретная реализация зависит от используемого стандарта сотовой связи. В зависимости от поколения, технологий передачи данных и используемых средств может вводиться большая избыточность или могут появиться дополнительные коды, но, в любом случае, главная цель остается не изменой.

1.11.Управление мощностью (Power control)

Передаваемый сигнал излучается с конечной мощностью и постепенно затухает в окружающем пространстве. Наиболее очевидный способ борьбы с данными явлениями – это увеличение мощности передаваемого сигнала. Однако данный процесс не такой простой, как может показаться на первый взгляд.

Главная сложность заключается в том, что в одной и той же системе работают сразу несколько источников и приемников сигнала, которые близко расположены друг к другу. Для систем UMTS это особенно важно, т.к. необдуманное увеличение мощности одного из передатчиков может привести к снижению качества и их обрыва соединений других абонентов и не возможности доступа новых. Кроме того, как сотовый телефон, так и базовая станция имеют ограниченные энергетические ресурсы. Поэтому лишняя излучаемая мощность может привести к быстрому разряду аккумулятора для абонентского оборудования и высоким затратам на электроэнергию для BTS. Также нельзя забывать о том, что микроволновое воздействие может оказывать нежелательное воздействие на организм человека. В разных стандартах сотовой связи процесс управления мощностью решался по-разному. В системе GSM был реализован принцип обычной обратной связи. Контроллер базовых станций (BSC) определяет качество соединения по данным полученным от MS и BTS, которые в свою очередь определяются на основе анализа сигнала от противоположного элемента. После оценки уровня ошибок BSC отдает команду на снижение или увеличение для MS или BTS. Также во внимание принимается удаленность MS от BTS. Определение расстояния до абонента возможно по задержке сигнала, т.е. смещения его относительно начала кадра, предназначенного для его передачи.

 

Рисунок 6. Принцип управления мощностью в сети сотовой связи стандарта GSM

В стандарте UMTS реализованы сразу три механизма управления мощностью и называются они «петлями». Решение об изменении мощности и команды инициируют сразу три элемента сети: UE, NodeB и RNC. Даже мобильное оборудование, принадлежащее абоненту, может отдавать команды базовой станции на изменение мощности передачи. Три петли управления мощности обеспечивают эффективную борьбу с разными видами искажений: быстрые и медленные замирания, уменьшения воздействия помех и компенсации затухания сигнала. Также в UMTS управления мощностью решает еще одну важную задачу – борьба с интерференцией. Дело в том, что абоненты в данной системе работают в одном частотном диапазоне в одной и той же местности. Разделение каналов связи осуществляется на основе принципа WCDMA, т.е. кодового разделения каналов. Из-за неидеальной ортогональности кодов различные соединения могут оказывать воздействие друг на друга, т.е. будет возникать интерференция. Чем больше будет абонентов в зоне действия одной соты, тем выше будет уровень интерференции. Соответственно, будет снижено качество соединений, скорость передачи данных и максимально возможное число абонентов. Наиболее эффективным способом борьбы с интерференцией является снижение уровня мощности. Поэтому для систем сотовой связи стандарта UMTS управление мощностью – это неотъемлемый аспект нормального функционирования системы и его важность проявляется даже больше чем в каких-либо других стандартах.

Таким образом, процесс управлению мощностью в системах сотовой связи – это один из наиболее важных и ответственных процессов, от которого зависят качество соединения, количество одновременно обслуживаемых абонентов, степень воздействия на организм и даже стоимости услуг.

Вопросы:

1. Что является основной причиной затухания для оптического канала связи?

Ответ: примеси в проводнике и неоднородности.

 

2.Что такое репитер и для чего он необходим? Принцип работы репитера?

Ответ:Репитер (повторитель) – сетевое оборудование. Предназначен для увеличения расстояния сетевого соединения путём повторения электрического сигнала «один в один». Принцип работы: репитер забирает емкость какой-либо другой базовой станции и излучает сигнал сотовой связи в заданной местности.

3. Основные разновидности замираний в зависимости от эффекта, оказываемого ими и их причины?

Ответ:Выделяют две основные разновидности замираний в зависимости от эффекта оказываемого ими и их причины: быстрые и медленные замирания. Медленные замирания вызваны плохими метеоусловиями и существуют достаточно эффективные методы борьбы с ними. Быстрые замирания вызваны преимущественно движением приемника (источника) или препятствиями близкорасположенными с получателем сигнала.

4. Для чего применяют эффективное кодирование и в чем его суть?

Ответ:Помехоустойчивое кодирование применяют для обнаружения и исправления ошибок в сотовых системах связи. Суть его заключается в том, что в передаваемый цифровой поток вносится некоторая избыточность.

5. Основные недостатки адаптивной коррекции?

Ответ:введение избыточной информации в общий поток информации, необходимость в дополнительных вычислительных мощностях на приемной стороне, используемый канал оценивается только во время передачи тестовой последовательности и может дать лишь примерную информацию о канале связи в остальное время.

6. Применение и задача поляризационного разнесения?

Ответ:Поляризационное разнесение реализуется по средствам размещения внутри приемной антенны принимающих элементов под прямым углом друг к другу. Таким образом, удается собрать больше энергии исходного сигнала. Основная задача поляризационного разнесения – это борьба с затуханием сигнала .

7. Какой способ применяется для борьбы с пачечными ошибками в сотовой связи и в чем его суть?

Ответ: применяется Interleaving или перемежение. Суть его заключается в том, что перед передачей в эфир биты переставляются местами.

8. Принцип многолучевого распространения?

Ответ:многолучевое распространение – это необходимый элемент работы приемопередатчиков. Принцип данной технологии основан на том, что информационный поток от одного источника делится между несколькими приемопередатчиками.

 

 


 

Лекция за 10 неделю на тему: «Способы борьбы с негативными воздействиями на радиосигнал». Ответственная Шихранова О. Ю.

 

Способы борьбы с негативными воздействиями на радиосигнал

Перемежение (Interleaving) Разнесённый приём (Antenna Diversity) Перескоки по частоте (Frequency Hopping)

Перемежение (Interleaving)

Передаваемый через эфир радиосигнал подвергается помехам различных типов. Это могут быть промышленные шумы, атмосферные помехи (например, грозы) и…   Для борьбы с пачечными ошибками в сотовой связи применяется так называемый Interleaving или перемежение. Суть его…

Принцип разнесенного приема

 

Сигнал сотовой связи от приемника к передатчику обычно распространяется в какой-либо плоскости. При этом, за счет различных причин (переотражения, неоднородность среды) возможно отклонение от заранее заданной плоскости, например вертикали. В результате к получателю радиосигнала поступят несколько копий исходного сигнала с различной поляризацией. Для того, чтобы собрать энергию сигнала из различных плоскостей и применяется поляризационное разнесение. Этот тип разнесения реализуется по средствам размещения внутри приемной антенны принимающих элементов под прямым углом друг к другу. Таким образом, удается собрать больше энергии исходного сигнала. Основная задача поляризационного разнесения – это борьба с затуханием сигнал

Перескоки по частоте (Frequency Hopping)

На сигнал, передаваемый по радиоинтерфейсу между базовой станцией (BTS) и сотовым телефоном (MS) воздействуют различные внешние помехи. Это могут…   Одним из возможных способов борьбы с частотно селективными помехами может быть увеличение мощности. Однако подобный…

Помехоустойчивое кодирование

Защиту от ошибок в системах сотовой связи можно разделить на три основных стадии: предупреждение, обнаружение ошибок и исправление. Интерливинг,…   Для обнаружения и исправления ошибок в сотовых системах связи применяется помехоустойчивое кодирование. Суть его…

Управление мощностью (Power control)

РадиосигналBTS) и мобильным телефоном (MS) подвержен различным нежелательным воздействиям. К ним, в частности, можно отнести воздействие шумов…   Главная сложность заключается в том, что в одной и той же системе работают сразу несколько источников и приемников…

Проблемы, возникающие при передаче радиосигналов

Можно выделить следующие основные проблемы, которые возникают при передаче сигналов по радио интерфейсу:  Затухание сигнала  Теневые зоны

Затухание сигнала

В зависимости от канала связи причин затухания может быть достаточно много. В любом случае главная причина – неидеальность среды передачи. В… Для радиоканала существует целый ряд причин затухания. Главной из них является… Большую проблему для сотовой связи создают искусственные объекты. Например, стена жилого дому вносит очень ощутимое…

Теневые зоны

Обычно объекты, которые могут стать преградой известны еще до развертывания сети связи и проектирование осуществляется с самого начала с учетом…

Многолучевое распространение сигналов

Радиосигнал, на пути распространения от источника к приемнику может встречать какие-либо преграды. При этом сигнал может быть поглощен ими либо отражен. После чего этот сигнал снова может быть отражен в сторону получателя. В этом случае данный сигнал достигнет приемника, однако произойдет это с опозданием. С другой стороны остальная энергия сигнала может достичь приемник без переотражения за более короткое время или пройти большее число отражений что в свою очередь приведет к еще большим задержкам. Данный эффект возникает, когда между источником и приемником возникают несколько путей доставки сигнала. При этом энергия сигнала будет распределена между копиями сигнала неравномерно, что в итоге может привести к ситуации, когда приемник не сможет получить достаточно энергии хотя бы в одной из копий для однозначного приема сигнала.

 

Рисунок 1. Многолучевое распространение радиосигнала

Однако данная проблема имеет и другую не лежащую на поверхности пользу. При многолучевом распространении сигнала приемник получает сразу несколько копий сигнала.Сравнив эти копии между собой можно выявить и даже исправить ошибки возникшие при распространении сигнала. Данный принцип положен в основу работы Rake-приемника в мобильном оборудовании (UE) сети сотовой связи стандарта UMTS (Universal Mobile Telecommunications System). Rake-приемник представляет собой по сути несколько приемников одном. Каждый из данных приемников настраивается на свой луч, определяет временное смещение от остальных копий. Затем энергия от данных приемников сравнивается и складывается.Таким образом, для Rake-приемника лучшей обстановкой является именно многолучевое распространение сигнала, а не беспрепятственное.

В технологии MIMO (Multiple Input Multiple Output) многолучевое распространение – это необходимый элемент работы приемопередатчиков. Принцип данной технологии основан на том, что информационный поток от одного источника делится между несколькими приемопередатчиками. На приемной стороне также существует набор из такого же числа приемопередатчиков. Таким образом, организуются не один, а много каналов связи и для них желательно, чтобы были различные пути прохождения сигнала. Практические испытания показали, что чем меньше препятствий между приемопередатчиками MIMO, тем ниже суммарная скорость передачи данных в итоге достигается. Эта технология получила распространение в сетях UMTS (Rel.7) и LTE (Long Term Evolution).

Замирания сигнала

 

Рисунок 2. Замирания сигналов

Выделяют две основные разновидности замираний в зависимости от эффекта оказываемого ими и их причины: быстрые и медленные замирания. Медленные замирания вызваны, как правило, плохими метеоусловиями и существуют достаточно эффективные методы борьбы с ними. Быстрые замирания вызваны преимущественно движением приемника (источника) или препятствиями близкорасположенными с получателем сигнала. Этот вид замираний частотно селективен, т.е. изменение частоты, на которой ведется передача, может или снизить этот эффект, или полностью его убрать.

Таким образом, замирания сигнала – это одна из самых важных проблем в сотовой связи. Однако многолетний опыт и большой объем наработок в области сотовой связи позволяют в настоящее время достаточно эффективно бороться с замираниями.

Временные задержки

Временные задержки могут оказывать не только вред, но и приносить пользу. В частности в сотовой связи длительность задержки сигнала в радио…

Способы борьбы с негативными воздействиями на радиосигнал

Однако в существующих системах сотовой связи внедрен целый ряд методов борьбы. Некоторые из них используется во многих системах связи и не только…  Перемежение (Interleaving)  Разнесённый приём (Antenna Diversity)

Перемежение (Interleaving)

Для борьбы с пачечными ошибками в сотовой связи применяется так называемый Interleaving или перемежение. Суть его заключается в том, что перед…  

Рисунок 3. Пример действия перемежения на практике

На практике часто применяют несколько ступеней интерливинга. После первичного перемежения, затем берется кадр, включающий в себя несколько первых кадров интерливинга, после чего еще раз проводят процедуру. Подобная двойная схема перестановки позволяет очень хорошо защитить сигнал и избежать практически всех длительных ошибок в канале связи.

Также к положительным эффектам процедуры Interleaving можно отнести повышение помехоустойчивости канала связи. Дело в том, что схемы интерливинга могут меняться со временем. Это усложняет для противника процесс выделения полезного сигнала и требует больших временных и вычислительных ресурсов.

Разнесённый приём (Antenna Diversity)

Одними из наиболее негативных явлений, возникающих в процессе передачи информации через радиоэфир, являются замирания сигнала. Радиосигнал сотовой связи во время распространения от источника к получателю может отражаться от различных препятствий. Вследствие многочисленных переотражений к получателю может прийти не одна, а сразу несколько копий исходного сигнала. При этом если одна из копий окажется в противофазе с основным источником сигнала, т.е. отставать от него на половину периода (1,5; 2,5 и т.д.), то после сложения двух копий сигнала в приемнике энергия основного сигнала окажется подавленной его копией. В результате этого вся или почти вся энергия переданного сигнала будет потеряна. Это в свою очередь приведет к ошибке в приеме сообщения. Также на сигнал во время передачи могут воздействовать различные виды помех и искажений. Кроме того, во время передачи радиосигнал претерпевает затухание. В итоге на приемной стороне энергия сигнала может оказаться ниже порога чувствительности приемника, что приведет к пропуску сигнала или ошибочному его приему.

Одни из возможных способов борьбы с обозначенными выше проблемами это использование нескольких копий сигнала на приемной стороне. Существует несколько вариантов получения копий сигнала, например повторная передача. Тогда это будет временное разнесение. Также можно передавать один и тот же сигнал на разных частотах – это частотное разнесение. Однако подобные способы разнесения требуют дополнительных затрат ресурсов. В сотовой связи используются более экономичные, но не менее эффективные способы разнесения: пространственное и поляризационное. Для реализации пространственного разнесения на базовой станции устанавливаются не одна, а две антенны на прием.Причемантенны могут быть установлены с вертикальным или горизонтальным пространственным разносом. Однако обычнона практике применяется горизонтальное разнесение,т.к. при этом требуется меньшее расстояние между антеннами. От каждой из приемных антенн до приемопередающего оборудования прокладывается отдельный фидер, а уже приемники базовой станции оценивают оба принятых сигнала. В результатевероятность появления эффекта «замирания» сигнала сразу на двух антеннах значительно снижается.Кроме тогоувеличивается суммарная принятая энергия полезного сигнала.

 

Рисунок 4. Принцип разнесенного приема

Сигнал сотовой связи от приемника к передатчику обычно распространяется в какой-либо плоскости. При этом, за счет различных причин (переотражения, неоднородность среды) возможно отклонение от заранее заданной плоскости, например вертикали. В результате к получателю радиосигнала поступят несколько копий исходного сигнала с различной поляризацией. Для того,чтобы собрать энергию сигнала из различных плоскостей и применяется поляризационное разнесение. Этот тип разнесения реализуется по средствам размещения внутри приемной антенны принимающих элементов под прямым углом друг к другу.Таким образом,удается собрать больше энергии исходного сигнала.Основная задача поляризационного разнесения – это борьба с затуханием сигнала .

Перескоки по частоте (Frequency Hopping)

Одним из возможных способов борьбы с частотно селективными помехами может быть увеличение мощности. Однако подобный метод не позволяет бороться с…  

Рисунок 5. Пример Frequency Hopping

Существует несколько алгоритмов работы Frequency Hopping. Перескоки между каналами могут происходить последовательно от канала к каналу и одинаково от цикла к циклу. Также перескоки могут происходить случайно между каналами, и порядок будет меняться от цикла к циклу. Такой вариант обычно предпочтительнее, т.к. считается, что он позволяет лучше распределить помеху и исключить случай, когда помеха действует периодически и может оказывать воздействие на один и тот же канал.

Адаптивная коррекция (Adaptive Equalization)

В сотовой связи для борьбы с «быстрыми» изменениями шумовой обстановки используется, так называемая,адаптивная коррекция. Суть ее заключается в том,… Очевидным недостатком данного алгоритма является введение избыточной…

Помехоустойчивое кодирование

Для обнаружения и исправления ошибок в сотовых системах связи применяется помехоустойчивое кодирование. Суть его заключается в том, что в… Для исправления ошибок применяются другие коды: сверточные, блочные и т.п. Их… Помехоустойчивое кодирование – это крайний способ защиты от помех. Если он не поможет справиться с ошибками, то…

Управление мощностью (Power control)

Главная сложность заключается в том, что в одной и той же системе работают сразу несколько источников и приемников сигнала, которые близко…  

Рисунок 6. Принцип управления мощностью в сети сотовой связи стандарта GSM

В стандарте UMTS реализованы сразу три механизма управления мощностью и называются они «петлями». Решение об изменении мощности и команды инициируют сразу три элемента сети: UE, NodeB и RNC. Даже мобильное оборудование, принадлежащее абоненту, может отдавать команды базовой станции на изменение мощности передачи. Три петли управления мощности обеспечивают эффективную борьбу с разными видами искажений: быстрые и медленные замирания, уменьшения воздействия помех и компенсации затухания сигнала. Также в UMTS управления мощностью решает еще одну важную задачу – борьба с интерференцией. Дело в том, что абоненты в данной системе работают в одном частотном диапазоне в одной и той же местности. Разделение каналов связи осуществляется на основе принципа WCDMA, т.е. кодового разделения каналов. Из-за неидеальной ортогональности кодов различные соединения могут оказывать воздействие друг на друга, т.е. будет возникать интерференция. Чем больше будет абонентов в зоне действия одной соты, тем выше будет уровень интерференции. Соответственно, будет снижено качество соединений, скорость передачи данных и максимально возможное число абонентов. Наиболее эффективным способом борьбы с интерференцией является снижение уровня мощности. Поэтому для систем сотовой связи стандарта UMTS управление мощностью – это неотъемлемый аспект нормального функционирования системы и его важность проявляется даже больше чем в каких-либо других стандартах.

Таким образом, процесс управлению мощностью в системах сотовой связи – это один из наиболее важных и ответственных процессов, от которого зависят качество соединения, количество одновременно обслуживаемых абонентов, степень воздействия на организм и даже стоимости услуг.

 

 

Вопросы:

1.Что такое затухание сигнала?

Ответ: Затухание это уменьшение мощности первоначальной энергии сигнала, которая была на выходе передатчика. Главным негативным следствием этого процесса будет сложность в приеме сигнала, т.е. если энергия сигналы на выходе канала связи будет меньше некоего уровня (порога чувствительности приемника), то сигнал может быть принят с ошибкой.

2. Каковы причины затухания в радиоканале?

Для радиоканала существует целый ряд причин затухания. Главной из них является рассеивание энергии сигнала на тепло, т.е. практически радиопередатчик "греет" окружающее пространство. Большую проблему для сотовой связи создают искусственные объекты. Например, стена жилого дому вносит очень ощутимое затухание, в результате чего в центре здания связи может не быть вовсе.

3. Что такое технология MIMO(Multiple Input Multiple Output)?

Технология MIMO – это многолучевое распространение. Принцип данной технологии основан на том, что информационный поток от одного источника делится между несколькими приемопередатчиками.

4. Что такое замирания?

Сигнал на радио интерфейсе системы сотовой связи редко когда распространяется по прямой. В результате может сложиться ситуация когда к приемнику будут поступать не одна а сразу несколько сдвинутых по времени копий исходного сигнала с разными амплитудами. Однако может сложиться ситуация когда две копии сигнала придут в противофазе. Это означает, что копия сигнала может задержаться на промежуток времени кратный периоду сигнала. В таком случае два луча сигнала могут сложиться в приемнике и нейтрализовать друг друга. Если окажется, что эти два луча в сумме несли весомую энергию сигнала, то это может привести к увеличению числа ошибок и снижению качества канала связи. Это явление получило название "замирания" сигнала, т.е. сигнал вроде как перестает на время поступать между источником и приемником.

5. Каковы наиболее значимы способы защиты для сотовой связи?

• Перемежение (Interleaving)

• Разнесённый приём (Antenna Diversity)

• Перескоки по частоте (Frequency Hopping)

• Адаптивная коррекция (Adaptive Equalization)

• Помехоустойчивое кодирование

• Управление мощностью

6. Какова суть адаптивной коррекции?

Вместе с полезным сигналом по частотному каналу передается тестовая последовательность (training sequence), которая заранее известна отправителю и получателю. Во время передачи помеха будет воздействовать не только на полезный сигнал, но и на тестовую последовательность. В результате на приемной стороне будет получен «слепок» канала, соответствующий текущей ситуации в канале связи. После получения полезного сигнала и training sequence в действие вступает эквалайзер Витерби (для стандарта GSM). По полученной тестовой последовательности данный эквалайзер изменяет и полезный сигнал. Вместе с передачей следующей порции полезной информации также будет передана новая тестовая последовательность, которая позволит отрегулировать эквалайзер на новую шумовую обстановку.


[1] Каков стандарт 3 поколения мобильной связи?

[2] Что означает – GSM?

[3] Для чего была разработана система GPRS?

[4] Сколько этапов перехода UMTS в 3GPP?

[5] Какие услуги предоставляет сеть подвижной связи?

[6] Каково качество обслуживания?

[7] Для чего необходимо CAMEL?

[8] Элементы сети доступа?

[9] Что такое GERAN?

[10] Что включает в себя GSM?

[11] Что такое SIM-карта?

[12] Что такое IMEI?

[13] Что включает в себя SIM-карта?

[14] Что такое центр аутентификации?

[15] Регистр EIR?

[C1]ответ на КВ №2. GSM-второе поколение (2G)

[C2]ответ на КВ №1

[C3]Ответ на КВ №3

[C4]Ответ на КВ №4

[C5]Ответ на КВ №6

[C6] Ответ на КВ №5

[C7]Ответ на кв.№1

[C8]Ответ на кв.№2

 

[C9] [C9]Ответ на кв.№3

 

[C10]Ответ на кв.№4

 

[C11]Ответ на кв.№5

 

 

[C12]Ответ на кв.№6

 

– Конец работы –

Используемые теги: Конспект, лекций, смс, группы, СК-03у, Руководитель0.074

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Конспект лекций по С и СМС группы СК-03у Руководитель

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

КОНСПЕКТ ЛЕКЦИЙ по курсу Архитектурное материаловедение Конспект лекций по курсу Архитектурное материаловедение
ФГОУ ВПО ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ... ИНСТИТУТ Архитектуры и искусств... КАФЕДРА ИНЖЕНЕРНО строительных ДИСЦИПЛИН...

Конспект лекций по дисциплине Экономика недвижимости: конспект лекций
Государственное бюджетное образовательное учреждение... высшего профессионального образования... Уральский государственный экономический университет...

Психиатрия. Конспект лекций. ЛЕКЦИЯ № 1. Общая психопатология Психиатрия: конспект лекций
Психиатрия конспект лекций... Текст предоставлен литагентом http litres ru...

Психодиагностика. Конспект лекций ЛЕКЦИЯ № 1. Истоки психодиагностики Психодиагностика: конспект лекций
Психодиагностика конспект лекций... А С Лучинин...

История мировых религий: конспект лекций История мировых религий. Конспект лекций ЛЕКЦИЯ № 1. Религия как феномен культуры Классификация религий
История мировых религий конспект лекций... С Ф Панкин...

КОНСПЕКТ ЛЕКЦИЙ по предмету устройство и ремонт электропоездов для групп подготовки помощников машинистов электропоездов
по предмету устройство и ремонт электропоездов... для групп подготовки помощников машинистов электропоездов... и групп подготовки машинистов электропоездов...

Большая энциклопедия промышленного шпионажа. Конспект лекций
Эта книга наиболее полно освещает вес основные современные способы негласного съема информации и методы защиты от промышленного шпионажа. Энциклопедический характер изложенного материала, рассмотрение широкого круга аспектов информационной безопасности делают настоящее издание настольной книгой для представителей государственных органов и сотрудников служб безопасности, преподавателей, студентов и других лиц, обеспокоенных проблемой защиты информации. Книга может использоваться как учебное пособие и как справочник для специалистов, имеющих опыт практической работы. Надеемся, что она будет интересна и для людей, впервые столкнувшихся с этой проблемой....

Аккумуляторные батареи. Конспект лекций
В этой книге имеется конспект лекций про аккумуляторные батареи. Аккумуляторная батарея была изобретена в 1860 году французом Гастоном Планте. С тех пор прошло почти 140 лет...

Моделирование. Конспект лекций
В этой книге имеется конспект лекций про моделирование. Модель является представлением объекта в некоторой форме, отличной от формы его реального существования...

Бортовые радиоэлектронные системы. Конспект лекций
Конспект лекций по дисциплине "Бортовые радиоэлектронные системы"...

0.027
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам