рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ПОСОБИЕ ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЗ ТЯЖЕЛОГО БЕТОНА БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ

ПОСОБИЕ ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЗ ТЯЖЕЛОГО БЕТОНА БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ - раздел Образование, Пособие К Сп 52-101-2003 «Пособие По Проектированию Бетонных И Железобетонных...

Пособие к СП 52-101-2003 «Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры»

Ассоциация «ЖЕЛЕЗОБЕТОН»  
Центральный научно-исследовательский и проектно-экспериментальный институт промышленных зданий и сооружений (ЦНИИПРОМЗДАНИЙ) Научно-исследовательский, проектно-конструкторский и технологический институт бетона и железобетона (НИИЖБ)

ПОСОБИЕ

ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ

И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

ИЗ ТЯЖЕЛОГО БЕТОНА БЕЗ

ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ

АРМАТУРЫ
(к СП 52-101-2003)

Москва 2005

Содержание

ПРЕДИСЛОВИЕ 1. ОБЩИЕ РЕКОМЕНДАЦИИ ОСНОВНЫЕ ПОЛОЖЕНИЯ ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ 2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ БЕТОН ПОКАЗАТЕЛИ КАЧЕСТВА БЕТОНА И ИХ ПРИМЕНЕНИЕ ПРИ ПРОЕКТИРОВАНИИ НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА АРМАТУРА ПОКАЗАТЕЛИ КАЧЕСТВА АРМАТУРЫ НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ АРМАТУРЫ 3. РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ РАСЧЕТ БЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ ОБЩИЕ ПОЛОЖЕНИЯ РАСЧЕТ ВНЕЦЕНТРЕННО СЖАТЫХ ЭЛЕМЕНТОВ РАСЧЕТ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ Примеры расчета РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ ИЗГИБАЕМЫЕ ЭЛЕМЕНТЫ РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ДЕЙСТВИЕ ИЗГИБАЮЩИХ МОМЕНТОВ Общие положения Прямоугольные сечения Тавровые и двутавровые сечения Примеры расчета Прямоугольные сечения Тавровые и двутавровые сечения Элементы, работающие на косой изгиб Примеры расчета РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПРИ ДЕЙСТВИИ ПОПЕРЕЧНЫХ СИЛ Расчет железобетонных элементов по полосе между наклонными сечениями Расчет железобетонных элементов по наклонным сечениям на действие поперечных сил Элементы постоянной высоты, армированные хомутами, нормальными к оси элемента Элементы переменной высоты с поперечным армированием Элементы, армированные отгибами Элементы без поперечной арматуры Расчет железобетонных элементов по наклонным сечениям на действие моментов Примеры расчета ВНЕЦЕНТРЕННО СЖАТЫЕ ЭЛЕМЕНТЫ ОБЩИЕ ПОЛОЖЕНИЯ РАСЧЕТ ПРИ ДЕЙСТВИИ ПОПЕРЕЧНЫХ СИЛ УЧЕТ ВЛИЯНИЯ ПРОГИБА ЭЛЕМЕНТОВ РАСЧЕТ НОРМАЛЬНЫХ СЕЧЕНИЙ ПО ПРЕДЕЛЬНЫМ УСИЛИЯМ Прямоугольные сечения с симметричной арматурой Прямоугольные сечения с несимметричной арматурой Двутавровые сечения с симметричной арматурой Кольцевые сечения Круглые сечения Расчет элементов на косое внецентренное сжатие Примеры расчета Прямоугольные сечения с симметричной арматурой Прямоугольные сечения с несимметричной арматурой Двутавровые сечения Кольцевые сечения Круглые сечения Элементы, работающие на косое внецентренное сжатие Расчет наклонных сечений ЦЕНТРАЛЬНО И ВНЕЦЕНТРЕННО РАСТЯНУТЫЕ ЭЛЕМЕНТЫ ЦЕНТРАЛЬНО РАСТЯНУТЫЕ ЭЛЕМЕНТЫ ВНЕЦЕНТРЕННО РАСТЯНУТЫЕ ЭЛЕМЕНТЫ Примеры расчета РАСЧЕТ НОРМАЛЬНЫХ СЕЧЕНИЙ НА ОСНОВЕ НЕЛИНЕЙНОЙ ДЕФОРМАЦИОННОЙ МОДЕЛИ ЭЛЕМЕНТЫ, РАБОТАЮЩИЕ НА КРУЧЕНИЕ С ИЗГИБОМ ЭЛЕМЕНТЫ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ Расчет на совместное действие крутящего и изгибающего моментов Расчет на совместное действие крутящего момента и поперечной силы Примеры расчета РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА МЕСТНОЕ ДЕЙСТВИЕ НАГРУЗОК РАСЧЕТ НА МЕСТНОЕ СЖАТИЕ Примеры расчета РАСЧЕТ ЭЛЕМЕНТОВ НА ПРОДАВЛИВАНИЕ Общие положения Расчет на продавливание элементов без поперечной арматуры Расчет на продавливание элементов с поперечной арматурой Примеры расчета 4. РАСЧЕТ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО РАСКРЫТИЮ ТРЕЩИН ОБЩИЕ ПОЛОЖЕНИЯ ОПРЕДЕЛЕНИЕ МОМЕНТА ОБРАЗОВАНИЯ ТРЕЩИН ОПРЕДЕЛЕНИЕ ШИРИНЫ РАСКРЫТИЯ ТРЕЩИН, НОРМАЛЬНЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА Примеры расчета. РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ДЕФОРМАЦИЯМ ОБЩИЕ ПОЛОЖЕНИЯ РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОГИБАМ ОПРЕДЕЛЕНИЕ КРИВИЗНЫ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ОБЩИЕ ПОЛОЖЕНИЯ КРИВИЗНА ЖЕЛЕЗОБЕТОННОГО ЭЛЕМЕНТА НА УЧАСТКЕ БЕЗ ТРЕЩИН В РАСТЯНУТОЙ ЗОНЕ КРИВИЗНА ЖЕЛЕЗОБЕТОННОГО ЭЛЕМЕНТА НА УЧАСТКЕ С ТРЕЩИНАМИ В РАСТЯНУТОЙ ЗОНЕ ОПРЕДЕЛЕНИЕ КРИВИЗНЫ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ НЕЛИНЕЙНОЙ ДЕФОРМАЦИОННОЙ МОДЕЛИ ОПРЕДЕЛЕНИЕ УГЛОВ СДВИГА ЖЕЛЕЗОБЕТОННОГО ЭЛЕМЕНТА Примеры расчета 5. КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ ОБЩИЕ ПОЛОЖЕНИЯ ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ КОНСТРУКЦИЙ АРМИРОВАНИЕ ЗАЩИТНЫЙ СЛОЙ БЕТОНА МИНИМАЛЬНЫЕ РАССТОЯНИЯ МЕЖДУ СТЕРЖНЯМИ АРМАТУРЫ ПРОДОЛЬНОЕ АРМИРОВАНИЕ ПОПЕРЕЧНОЕ АРМИРОВАНИЕ АНКЕРОВКА АРМАТУРЫ СОЕДИНЕНИЯ АРМАТУРЫ ГНУТЫЕ СТЕРЖНИ ТРЕБОВАНИЯ К БЕТОННЫМ И ЖЕЛЕЗОБЕТОННЫМ КОНСТРУКЦИЯМ ФИКСАЦИЯ АРМАТУРЫ ПРИЛОЖЕНИЕ 1 СОРТАМЕНТ АРМАТУРЫ ПРИЛОЖЕНИЕ 2 ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ

ПРЕДИСЛОВИЕ

Настоящее Пособие разработано в развитие Свода Правил СП 52-101-2003 «Бетонные и железобетонные конструкции без предварительного напряжения арматуры».

В Пособии приведены все указания по проектированию СП 52-101-2003, положения, детализирующие эти указания, примеры расчета элементов, а также рекомендации по проектированию.

Материалы по проектированию редко встречаемых конструкций с ненапрягаемой высокопрочной арматурой (классов А600 и выше) в настоящее Пособие не включены, а приведены в «Пособии по проектированию предварительно напряженных железобетонных конструкций из тяжелого бетона».

В Пособии не приведены особенности проектирования конструкций отдельных видов зданий и сооружений, связанные с определением усилий в этих конструкциях. Эти вопросы освещены в соответствующих Сводах Правил и пособиях.

Единицы физических величин, приведенные в Пособии: силы выражены в ньютонах (Н) или килоньютонах (кН); линейные размеры - в мм (для сечений) или в м (для элементов или их участков); напряжения, сопротивления, модули упругости - мегапаскалях (МПа); распределенные нагрузки и усилия - в кН/м или Н/мм. Поскольку 1 МПа = 1 Н/мм2, при использовании в примерах расчета формул, включающих величины в МПа (напряжения, сопротивления и т.п.), остальные величины приводятся только в Н и мм (мм2).

В таблицах нормативные и расчетные сопротивления и модули упругости материалов приведены в МПа и в кгс/см2.

Пособие разработано «ЦНИИПромзданий» (инженер И.К.Никитин, доктора технических наук Э.Н.Кодыш и Н.Н.Трёкин) при участии «НИИЖБ» (доктора технических наук А.С.Залесов, Е.А.Чистяков, А.И.Звездов, Т.А.Мухамедиев).

ОБЩИЕ РЕКОМЕНДАЦИИ

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Рекомендации Пособия не распространяются на проектирование бетонных и железобетонных конструкций гидротехнических сооружений, мостов, тоннелей, труб… Примечание. Термин «тяжелый бетон» применен в соответствии с ГОСТ 25192. 1.2. При проектировании бетонных и железобетонных конструкций, кроме выполнения расчетных и конструктивных требований…

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

- предельные состояния первой группы (по полной непригодности к эксплуатации вследствие потери несущей способности); - предельные состояния второй группы (по непригодности к нормальной… Расчеты по предельным состояниям первой группы, содержащиеся в настоящем Пособии, включают расчеты по прочности с…

МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

БЕТОН

ПОКАЗАТЕЛИ КАЧЕСТВА БЕТОНА И ИХ ПРИМЕНЕНИЕ ПРИ ПРОЕКТИРОВАНИИ

2.1. Для бетонных и железобетонных конструкций следует предусматривать бетоны следующих классов и марок:

а) классов по прочности на сжатие:

В10; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60;

б) классов по прочности на осевое растяжение:

Вt0,8; Вt1,2; Вt1,6; Вt2,0; Вt2,4; Вt2,8; Вt3,2;

в) марок по морозостойкости:

F50; F75; F100, F150; F200; F300; F400; F500;

г) марок по водонепроницаемости:

W2; W4; W6; W8; W10; W12.

2.2. Возраст бетона, отвечающий его классу по прочности на сжатие и на осевое растяжение (проектный возраст), назначают при проектировании, исходя из возможных реальных сроков загружения конструкции проектными нагрузками. При отсутствии этих данных класс бетона устанавливают в возрасте 28 суток.

Значение отпускной прочности бетона в элементах сборных конструкций следует назначать в соответствии с ГОСТ 13015.0 и стандартами на конструкции конкретных видов.

2.3. Класс бетона по прочности на сжатие назначается во всех случаях.

Класс бетона по прочности на осевое растяжение назначается в случаях, когда эта характеристика имеет главенствующее значение, и ее контролируют на производстве (например, для бетонных изгибаемых элементов).

Марку по морозостойкости назначают для конструкций, подверженных в процессе эксплуатации попеременному замораживанию и оттаиванию (надземные конструкции, подвергающиеся атмосферным воздействиям, находящиеся во влажном грунте или под водой и др.).

Марку по водонепроницаемости назначают для конструкций, к которым предъявляют требования ограничения водопроницаемости (резервуары, подпорные стены и др.).

2.4. Для железобетонных конструкций рекомендуется принимать класс бетона на сжатие не ниже В15; при этом для сильно нагруженных сжатых стержневых элементов рекомендуется принимать класс бетона не ниже В25.

Для бетонных сжатых элементов не рекомендуется применять бетон класса выше В30.

2.5. Для надземных конструкций, повергаемых атмосферным воздействиям окружающей среды при расчетной зимней температуре наружного воздуха от минус 5°С до минус 40°С, принимают марку бетона по морозостойкости не ниже F75; при этом, если такие конструкции защищены от непосредственного воздействия атмосферных осадков, марку по морозостойкости можно применять не ниже F50.

При расчетной зимней температуре выше минус 5°С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.

Примечание. Расчетная зимняя температура наружного воздуха принимается согласно п.1.5.

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА

2.6.Нормативные значения сопротивления бетона осевому сжатию (призменная прочность) Rb,n и осевому растяжению (при назначении класса по прочности на сжатие) Rbt,n принимают в зависимости от класса бетона В согласно табл. 2.1.

Таблица 2.1.

Вид сопротивления Нормативные сопротивления бетона Rb,n и Rbt,n и расчетные значения сопротивления бетона для предельных состояний второй группы Rb,ser и Rbt,ser МПа (кгс/см2) при классе бетона по прочности на сжатие
В10 В15 Б20 В25 В30 В35 В40 В45 В50 В55 В60
Сжатие осевое Rb,n, Rb,ser 7,5 (76,5) 11,0 (112) 15,0 (153) 18,5 (188) 22,0 (224) 25,5 (260) 29,0 (296) 32,0 (326) 36,0 (367) 39,5 (403) 43,0 (438)
Растяжение Rbt,n Rbt,ser 0,85 (8,7) 1,10 (11,2) 1,35 (13,8) 1,55 (15,8) 1,75 (17,8) 1,95 (19,9) 2,10 (21,4) 2,25 (22,9) 2,45 (25,0) 2,60 (26,5) 2,75 (28,0)

При назначении класса бетона по прочности на осевое растяжение Вt нормативные сопротивления бетона осевому растяжению Rbt,n в МПа принимают равными числовой характеристике класса бетона на осевое растяжение.

2.7. Расчетные сопротивления бетона осевому сжатию Rb и осевому растяжению Rbt для предельных состояний первой группы определяют по формулам:

(2.1)

где γь - коэффициент надежности по бетону при сжатии, принимаемый равным 1,3;

γbt -коэффициент надежности по бетону при растяжении, принимаемый равным:

1,5 - при назначении класса бетона по прочности на сжатие;

1,3 - при назначении класса бетона по прочности на растяжение.

Расчетные сопротивления бетона Rb и Rbt (с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены соответственно в табл. 2.2 и 2.3

Расчетные значения сопротивления бетона осевому сжатию Rb.ser и осевому растяжению Rbt,ser для предельных состояний второй группы принимают равными соответствующим нормативным сопротивлениям, т.е. вводят в расчет с коэффициентом надежности по бетону γь = γbt = 1,0. Значения Rb.ser и Rbt,ser приведены в табл. 2.1.

Таблица 2.2

Вид сопротивления Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt, МПа (кгс/см2) при классе бетона по прочности на сжатие
В10 В15 В20 В25 В30 В35 В40 В45 В50 В55 В60
Сжатие осевое, Rb 6,0 (61,2) 8,5 (86,6) 11,5 (117) 14,5 (148) 17,0 (173) 19,5 (199) 22,0 (224) 25,0 (255) 27,5 (280) 30,0 (306) 33,0 (33б)
Растяжение осевое, Rbt 0,56 (5,7) 0,75 (7,6) 0,90 (9,2) 1,05 (10,7) 1,15 (11,7) 1,30 (13,3) 1,40 (14,3) 1,50 (15,3) 1,60 (16,3) 1,70 (17,3) 1,80 (18,3)

Таблица 2.3

Расчетные сопротивления бетона на осевое растяжения для предельных состояний первой группы Rbt, МПа (кгс/см2) при классе бетона по прочности на осевое растяжение
Вt0,8 Вt1,2 Вt1,6 Вt2,0 Вt2,4 Вt2,8 Вt3,2
0,62 (6,3) 0,93 (9,5) 1,25 (12,7) 1,55 (15,8) 1,85 (18,9) 2,15 (21,9) 2,45 (25,0)

2.8. В необходимых случаях расчетные сопротивления бетона умножаются на следующие коэффициенты условий работы γbi :

а) γb1 = 0,9 - для бетонных и железобетонных конструкций при действии только постоянных и длительных нагрузок, вводимый к расчетным значениям Rb и Rbt;

б) γb2 = 0,9 - для бетонных конструкций, вводимый к расчетному значению Rb;

в) γb3 = 0,9 - для бетонных и железобетонных конструкций, бетонируемых в вертикальном, вводимый к расчетному значению Rb.

2.9. Значение начального модуля упругости бетона при сжатии и растяжении Eb принимают в зависимости от класса бетона по прочности на сжатие В согласно табл. 2.4

2.10. Значения коэффициента поперечной деформации бетона (коэффициента Пуассона) допускается принимать vb,P = 0,2.

Модуль сдвига бетона G принимают равным 0,4 соответствующего значения Eb, указанного в табл. 2.4.

2.11. Значения коэффициента линейной температурной деформации бетона при изменении температуры от минус 40 до плюс 50°С принимают αbt = 1·10-5 °С-1.

Таблица 2.4

Значения начального модуля упругости бетона при сжатии и растяжении Eb·10-3, МПа (кгс/см2), при классе бетона по прочности на сжатие
В10 В15 В20 В25 В30 В35 В40 В45 В50 В55 В60
19,0 (194) 24,0 (245) 27,5 (280) 30,0 (306) 32,5 (331) 34,5 (352) 36,0 (367) 37,0 (377) 38,0 (387) 39,0 (398) 39,5 (403)

2.12. Для определения массы железобетонной или бетонной конструкции плотность бетона принимается равной 2400 кг/м3.

Плотность железобетона при содержании арматуры 3% и менее может приниматься равной 2500 кг/м3; при содержании арматуры свыше 3% плотность определяется как сумма масс бетона и арматуры на единицу объема железобетонной конструкции. При этом масса 1 м длины арматурной стали принимается по приложению 1, а масса листовой и фасонной стали - по государственным стандартам.

При определении нагрузки от собственного веса конструкции удельный вес ее в кН/м3 допускается принимать равным 0,01 плотности в кг/м3.

2.13. Значения относительных деформаций бетона, характеризующих диаграмму состояния сжатого бетона (εbo, εb1,red , εb2) и растянутого бетона (εbto, εbt1,red , εbt2), а также значения коэффициента ползучести бетона φb,cr приведены в пп. 4.27 и 4.23.

АРМАТУРА

2.14.Для железобетонных конструкций, проектируемых в соответствии с требованиями настоящего Пособия следует предусматривать арматуру: - горячекатаную гладкую арматуру класса А240 (A-I); - горячекатаную и термомеханически упрочненную периодического профиля классов А300 (А-II), А400 (А-III, А400С), А500…

РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ

РАСЧЕТ БЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

3.1. Бетонные элементы рассчитываются по прочности на действие продольных сжимающих сил, изгибающих моментов и поперечных сил, а также на местное… 3.2. Бетонные элементы в зависимости от условий их работы и требований,… Без учета сопротивления бетона растянутой зоны производят расчет внецентренно сжатых элементов, указанных в п.1.4,а,…

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

3.14. Железобетонные элементы рассчитывают по прочности на действие изгибающих моментов, поперечных сил, продольных сил, крутящих моментом и на местное действие нагрузки (местное сжатие, продавливание, отрыв).

ИЗГИБАЕМЫЕ ЭЛЕМЕНТЫ

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ДЕЙСТВИЕ ИЗГИБАЮЩИХ МОМЕНТОВ

Общие положения

Расчет нормальных сечений изгибаемых элементов следует производить на основе нелинейной деформационной модели согласно пп.3.72 - 3.76, принимая N =… Расчет прямоугольного, таврового и двутаврового сечений с арматурой,… Расчет элементов с такими сечениями на действие косого изгиба в некоторых случаях также допускается производить по…

Прямоугольные сечения

(3.16) а) при - из условия (3.17)

Тавровые и двутавровые сечения

а) если граница проходит в полке (черт. 3.4,а), т.е. соблюдается условие (3.27) расчет производят по пп.3.18 и 3.20 как для прямоугольного сечения шириной ;

Примеры расчета

Прямоугольные сечения

Требуется определить площадь сечения продольной арматуры. Расчет.. ho = 600 - 40 = 560 мм. Подбор продольной арматуры производим…

Тавровые и двутавровые сечения

b = 200 мм, h = 400 мм; а = 80 мм; бетон класса В25 (Rb = 14,5 МПа), арматура класса А400 (Rs = 355 МПа); изгибающий момент М = 260 кНм. Требуется определить площадь сечения продольной арматуры. Расчет. hо = 400 - 80 = 320 мм. Расчет производим согласно п.3.25 в предположении, что сжатая арматура по расчету не…

Элементы, работающие на косой изгиб

3.27.Расчет прямоугольных, тавровых, двутавровых и Г-образных сечений элементов, работающих на косой изгиб, допускается производить, принимая форму сжатой зоны по черт.3.5; при этом должно выполняться условие

Мх <Rb[Aweb(h0-х1/3) + Sov,x] + RscSsx, (3.35)

где Мх - составляющая изгибающего момента в плоскости оси х (за оси х и у принимаются две взаимно перпендикулярные оси, проходящие через центр тяжести сечения растянутой арматуры параллельно сторонам сечения; для сечения с полкой ось х принимается параллельно плоскости ребра);

Aweb =Аb - А0v; (3.36)

Аb - площадь сечения сжатой зоны бетона, равная

(3.37)

Черт.3.5 Форма сжатой зоны в поперечном сечении железобетонного элемента, работающего на косой изгиб

А - таврового сечения ; б- прямоугольного сечения; 1-плоскость действия изгибающего момента ; 2- центр тяжести сечения растянутой арматуры

х1 - размер сжатой зоны бетона по наиболее сжатой боковой стороне сечения, определяемый по формуле (3.38) где

Черт.3.7. График несущей способности прямоугольного, таврового и Г-образного сечений для элементов, работающих на косой изгиб

Требуемая площадь растянутой арматуры при условии ее работы с полным расчетным сопротивлением определяется по формуле (3.42) где Aov - см. формулу (3.36).

Примеры расчета

Пример 10.Дано: железобетонный прогон кровли с уклоном 1:4 (ctgβ = 4); сечение и расположение арматуры - по черт.3.8; бетон класса В25 (Rb =14,5МПа); растянутая арматура класса А400 (Rs = 355МПа); As = 763 мм2 (3Æ18); A's= 0,0; изгибающий момент в вертикальной плоскости M = 82,6 кНм.

Требуется проверить прочность сечения.

Ра с ч е т. Из черт.3.8 следует:

ho = 400-30-(1·30/3)=360 мм; bo = (2·120+1·30)/3=90 мм; b'ov = bov = (300-150)/2=75 мм;

h'f = 80+20/2=90 мм.

Черт.3.8 К примеру расчета 10

1 -плоскость действия изгибающего момента; 2-центр тяжести сечения растянутой арматуры

По формуле (3.37) определим площадь сжатой зоны бетона Аb

Площадь наиболее сжатого свеса полки и статические моменты этой площади относительно х и у соответственно равны:

Aov= b'ov h'f = 75·90 = 6750 мм2;

Sov,y = Aov (b0 + b'ov /2)=6750(90 + 75/2) = 86,06·104 мм3;

Sov,x = Aov(h0 - h'f /2) = 6750(360 - 90/2) = 212,6·104 мм3.

Так как Аb > Aov, расчет продолжаем как для таврового сечения.

Aweb = 18680 - 6750 = 11930 мм2.

Определим по формуле (3.38) размер сжатой зоны х1. Для этого вычисляем

Проверим условие (3.39):

следовательно, расчет продолжаем по формулам косого изгиба.

Проверим условие (3.40) для наименее растянутого стержня. Из черт.3.8 имеем boi = 30 мм, hoi = 400 - 30 = 370 мм;

(см. табл. 3.2).

Условие (3.40) не соблюдается. Расчет повторим, заменяя в формуле (3.37) значение Rs для наименее растянутого стержня напряжением σS определенным по формуле (3.41), и корректируя значения ho и bо.

Поскольку все стержни одинакового диаметра, новые значения Ao, ho и будут равны:

Аналогично определим значения Sov,y, Sov,x, Aweb и x1:

Sov,y = 6750· (91,1 + 75/2) = 86,8·104 мм3;

Sov,x = 6750· (359,8 - 90/2) = 212,5·104 мм3;

Aweb = 18338 - 6750 = 11588 мм2;

Проверяем прочность сечения из условия (3.35), принимая Ssx=0 и

Rb[Aweb(h0-х1/3) + Sov,x] = 14,5[11588(359,8-173,1/3)+212,5·104] = 81,57·106 Н·мм > Mx = 80,1·106 Н·мм

т.е. прочность сечения обеспечена.

Пример 11.По данным примера 10 необходимо подобрать площадь растянутой арматуры при моменте в вертикальной плоскости M = 64кНм.

Расчет. Составляющие изгибающего момента в плоскости осей у и х равны:

Mx =Myctgβ = 15,52·4 = 62,1 кНм.

Определим необходимое количество арматуры согласно п.3.28.

Принимая значения Rb, ho, Sov,x и Sov,y из примера 10 при Ssy = Ssx = 0 находим значения aтх и amy:

Так как aтх > 0, расчет продолжаем для таврового сечения.

Поскольку точка с координатами aтх = 0,185 и amy = 0,072 на графике черт.3.7 находится по правую сторону от кривой, отвечающей параметру , и по левую сторону от кривой, отвечающей параметру b'ov/bov = 75 / 90 = 0,83, расчет продолжаем с учетом косого изгиба и полного расчетного сопротивления арматуры, т.е. условие (3.40) выполнено.

На графике координатам aтх = 0,185 и amy = 0,072 соответствует значение as = 0,20. Тогда согласно формуле (3.42) площадь сечения растянутой арматуры будет равна

Аs = (as boho + Aov)Rb/Rs = (0,2·90·360 + 6750)14,5/355 = 540,4 мм2.

Принимаем стержни 3Æ16 (Аs = 603 мм2) и располагаем их, как показано на черт.3.8.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПРИ ДЕЙСТВИИ ПОПЕРЕЧНЫХ СИЛ

3.29. Расчет элементов при действии поперечных сил должен обеспечить прочность:

- по полосе между наклонными сечениями согласно п.3.30;

- на действие поперечной силы по наклонному сечению согласно пп.3.31- 3.42;

- на действие момента по наклонному сечению согласно пп.3.43-3.48.

Расчет железобетонных элементов по полосе между наклонными сечениями

3.30. Расчет изгибаемых элементов по бетонной полосе между наклонными сечениями производят из условия

Q < 0,3Rbbho, (3.43)

где Q - поперечная сила в нормальном сечении, принимаемая на расстоянии от опоры не менее ho.

Расчет железобетонных элементов по наклонным сечениям на действие поперечных сил

Элементы постоянной высоты, армированные хомутами, нормальными к оси элемента

Q < Qb + Qsw, (3.44) где Q - поперечная сила в наклонном сечении с длиной проекции с от внешних… Qb - поперечная сила, воспринимаемая бетоном в наклонном сечении;

Черт.3.11. К расчету наклонных сечений при изменении интенсивности хомутов

3.35. Шаг хомутов, учитываемых в расчете, должен быть не более значения:

(3.60)

Кроме того, хомуты должны отвечать конструктивным требованиям, приведенным в пп.5.20 и 5.21.

Элементы переменной высоты с поперечным армированием

3.36. Расчет элементов с наклонными на приопорных участках сжатыми или растянутыми гранями производят согласно п.3.31, принимая в качестве рабочей высоты сечения наибольшее значение ho в пределах рассматриваемого наклонного сечения (черт.3.12).

Черт.3.12 Балки с переменной высотой сечения и наклонной гранью

(3.61) при этом, если это значение с меньше или, если , то невыгоднейшее значение с равно

Черт.3.13. Консоль высотой, уменьшающейся от опоры к свободному концу

При действии на консоль сосредоточенных сил начало наклонного сечения располагают в растянутой зоне нормальных сечений, проведенных через точки приложения этих сил (см. черт.3.13).

При действии равномерно распределенной нагрузки или нагрузки, линейно увеличивающейся к опоре, консоль рассчитывают как элемент с постоянной высотой сечения согласно п.3.31 и п.3.32, принимая рабочую высоту в опорном сечении.

Элементы, армированные отгибами

3.39. Проверку прочности наклонного сечения на действие поперечной силы для элемента с отгибами производят из условия (3.44) с добавлением к правой его части значения

(3.63)

где Аs,inc - площадь сечения отгибов, пересекающих наклонную трещину, расположенную у конца наклонного сечения с длиной проекции равной с, но не более 2ho (черт.3.14);

θ - угол наклона отгибов к продольной оси элемента.

Черт.3.14. К определению наиболее опасной наклонной трещины для элементов с отгибами при расчете на действие поперечной силы

Значения с принимают равным расстояниям от опоры до концов отгибов, а также до мест приложения сосредоточенных сил; кроме того, следует проверить наклонные сечения, заканчивающиеся на расстоянии 2ho от начала предпоследней и последней плоскости отгибов (черт.3.15).

3.40. Расстояния между опорой и концом отгиба, ближайшего к опоре s1 также между концом предыдущей и началом последующего отгибов s2 (черт.3.16) должно быть не более .

Черт.3.15. К определению наклонных сечений в элементе с отгибами

1-4- расчетные наклонные сечения

Черт.3.16. Расстояния между хомутами, опорой и отгибами

Кроме того, отгибы должны удовлетворять конструктивным требованиям, приведенным в п.5.22.

Элементы без поперечной арматуры

a) Qmax < 2,5Rbtbho (3.64) где Qmax - максимальная поперечная сила у грани опоры;

Черт.3.17. Расположение невыгоднейших наклонных сечений в элементах без поперечной арматуры

Для упомянутых плоских плит с несвободными боковыми краями правая часть условия (3.66) делится на 0,64, а условие (3.67) принимает вид Qmax≤ 0,625Rbtbho + 2,4hoq1. (3.67a) Здесь q1 принимается при действии равномерно распределенной нагрузки в соответствии с п.3.32, а при действии сплошной…

Расчет железобетонных элементов по наклонным сечениям на действие моментов

3.43. Расчет железобетонных элементов по наклонным сечениям на действие момента (черт.3.18) производят из условия

M Ms + Msw, (3.69)

где М - момент в наклонном сечении с длиной проекции с на продольную ось элемента, определяемый от всех внешних сил, расположенных по одну сторону от рассматриваемого наклонного сечения, относительно конца наклонного сечения (точка 0), противоположного концу, у которого располагается проверяемая продольная арматура, испытывающая растяжение от момента в наклонном сечении (черт.3.19)

Черт.3.18. Схема усилий в наклонном сечении при расчете его по изгибающему моменту

Черт.3.19. Определение расчетного значения момента при расчете наклонного сечения

Ms - момент, воспринимаемый продольной арматурой, пересекающей наклонное сечение, относительно противоположного конца наклонного сечения; Msw- момент, воспринимаемый поперечной арматурой, пересекающей наклонное… Момент Ms, определяют по формуле

Примеры расчета

Расчет наклонных сечений на действие поперечных сил

Пример 12.Дано: ребро ТТ-образной плиты перекрытия с размерами сечения: h = 350 мм, d = 85 мм; а = 35 мм; бетон класса В15 (Rb = 8,5 МПа, Rbt = 0,75 МПа); ребро армировано плоским каркасом с поперечными стержнями из арматуры класса А400 (Rsw = 285 МПа) диаметром 8 мм (Asw = 50,3 мм2) шагом sw - 100 мм; полная равномерно распределенная нагрузка, действующая на ребро, q = 21,9 кН/м; временная эквивалентная нагрузка qv = 18 кН/м; поперечная сила на опоре Qmax = 62 кН.

Требуется проверить прочность наклонных сечений и бетонной полосы между наклонными сечениями.

Расчет. ho = h - a = 350-35 = 315 мм.

Прочность бетонной полосы проверим из условия (3.43):

0,3Rbbh0 = 0,3·8,5·85·315 = 68276 Н > Qmax = 62 кН, т.е. прочность полосы обеспечена.

Прочность наклонного сечения по поперечной силе проверим согласно п.3.31.

По формуле (3.48) определим интенсивность хомутов

Поскольку , т.е. условие (3.49) выполнено, хомуты полностью учитываем и значение Мb определяем по формуле (3.46)

Мb = 1,5Rbtbh02 = 1,5·0,75·85·3152 = 9,488·106 Н·мм.

Согласно п.3.32 определим длину проекции невыгоднейшего наклонного сечения с.

q1 = q - qv/2 = 21,9 - 18/2 = 12,9 кН/м (Н/мм).

Поскольку , значение с определяем по формуле

Принимаем co = c = 280,7 мм. Тогда

Qsw = 0,75qswco = 0,75·143,3·280,7 = 30168 Н = 30,17 кН.

Q = Qmax – q1c = 62 - 12,9·0,28 = 58,4 кН.

Проверяем условие (3.44)

Qb + Qsw = 33,8 + 30,17 = 63,97 Н > Q = 58,4 кН,

т.е. прочность наклонных сечений обеспечена.

Проверим требование п.3.35:

т.е. требование выполнено. Условия п.5.21 sw < /2= 315/2 = 157 мм и sw < 300 мм также выполнены.

Пример 13. Дано: свободно опертая балка перекрытия с размерами сечения: b = 200 мм, h = 400 мм; ho = 370 мм; бетон класса В25 (Rbt = 1,05 МПа); хомуты двухветвевые диаметром 8 мм (Asw = 101мм2) с шагом sw= 150 мм; арматура класса А240 (Rsw = 170 МПа); временная эквивалентная по моменту нагрузка qv = 36 кН/м, постоянная нагрузка qg = 14 кН/м; поперечная сила на опоре Qmax = 137,5 кН.

Требуется проверить прочность наклонных сечений.

Расчет. Прочность наклонных сечений проверяем согласно п.3.31. По формуле (3.48) определим интенсивность хомутов

Поскольку , т.е. условие (3.49) выполняется, хомуты учитываем полностью и значение Мb определяем по формуле (3.46)

Мb = 1,5Rbtbhо2 = 1,5·1,05·200·3702 = 4,312·107 Н·мм.

Согласно п.3.32 определяем длину проекции невыгоднейшего наклонного сечения:

q1 = qg + 0,5qv = 14 + 0,5·36 = 32 кН/м (Н/мм).

Поскольку

значение с принимаем равным 1161 мм > 2h0 = 740 мм. Тогда сo = 2h0 = 740 мм и Qsw = 0,75qswco = 0,75·114,5·740 = 63548 Н = 63,55 кН;

Q = Qmax – q1c = 137,5 - 32·1,161 = 100,35 кН.

Проверяем условие (3.44)

Qb + Qsw = 37,14 + 63,55 = 100,69 кН > Q = 100,35 кН,

т.е. прочность наклонных сечений обеспечена.

Пример 14.Дано: свободно опертая балка перекрытия пролетом l = 5,5 м; полная равномерно распределенная нагрузка на балку q = 50 кН/м; временная эквивалентная нагрузка qv = 36 кН/м; размеры поперечного сечения b = 200 мм, h = 400 мм; ho = 370 мм; бетон класса В15 (Rbt = 0,75 МПа); хомуты из арматуры класса А240 (Rsw =170 МПа).

Требуется определить диаметр и шаг хомутов у опоры, а также выяснить, на каком расстоянии и как может быть увеличен шаг хомутов.

Расчет. Наибольшая поперечная сила в опорном сечении равна

Определим требуемую интенсивность хомутов приопорного участка согласно п.3.33,б.

По формуле (3.46) определяем Мb

Мb = 1,5Rbtbh02 = 1,5·0,75·200·3702 = 30,8·106 Н·мм.

Согласно п.3.32

q1 = q - 0,5qvt = 50 - 0,5·36 = 32 кН/м (Н/мм).

Так как 2Мb/ho - Qmax = 2·30,8·106/370 - 137500 = 28986 Н < Qb1= 62790H, интенсивность хомутов определяем по формуле (3.52)

Согласно п.5.21 шаг хомутов sw у опоры должен быть не более ho/2 = 185 и 300 мм, а в пролете - 0,75ho = 271 и 500 мм. Максимально допустимый шаг у опоры согласно п.3.35 равен

Принимаем шаг хомутов у опоры sw1= 150 мм, а в пролете 250 мм. Отсюда

Принимаем в поперечном сечении два хомута по 10 мм (Asw = 157 мм2).

Таким образом, принятая интенсивность хомутов у опоры и в пролете соответственно равны:

Проверим условие (3.49):

0,25Rbtb = 0,25·0,75·200 = 37,5 Н/мм < qsw1 и 37,5 < qsw2

Следовательно, значения qsw1 и qsw2 не корректируем.

Определим, согласно п.3.34 длину участка l1 с интенсивностью хомутов qsw1. Так как Δ qsw = 0,75(qsw1 - qsw2) = 0,75(177,9 - 106,7) = 53,4 Н/мм > q1 = 32 Н/мм, значение l1 вычислим по формуле (3.59), приняв Qb.min = 0,5Rbtbho = 0,5·55500 = 27750 Н

Принимаем длину участка с шагом хомутов sw1 = 150 мм равной 0,9 м.

Пример 15.Дано: балка покрытия, нагруженная сосредоточенными силами как показано на черт.3.22,а; размеры сечения - по черт.3.22,б; бетон класса В15 (Rbt = 0,75 МПа); хомуты из арматуры класса А240 (Rsw = 170 МПа).

Требуется определить диаметр и шаг хомутов, а также выяснить, на каком расстоянии от опоры и как может быть увеличен шаг хомутов.

Черт.3.22. К примеру расчета 15

Расчет. ho = 890 - 80 = 810 мм.

Определим требуемую интенсивность хомутов qsw согласно п.3.33,а, принимая длину проекции сечения с, равной расстоянию от опоры до первого груза – c1 = 1350 мм. Тогда a1 = c1/ho = 1350/810 = 1,667 < 2, и, следовательно, a01 = a1 = 1,667.

Определяем

Согласно черт.3.22 поперечная сила на расстоянии с1 от опоры равна Q1 = 105,2 кН. Тогда и, следовательно, qsw определяем по формуле (3.51):

Определим qsw при значении с, равном расстоянию от опорыдо второго груза - с2 = 2850 мм:

a2 = c2/ho = 2850/810 = 3,52 > 3; принимаем a2 = 3,0.

Поскольку a2 > 2, принимаем a02 = 2,0.

Соответствующая поперечная сила равна Q2 = 58,1 кН. Тогда


и, следовательно,

Принимаем максимальное значение qsw = qsw1 = 60,7. Из условия сварки принимаем диаметр хомутов 8 мм (Asw = 50,3 мм2). Тогда максимально допустимый шаг хомутов на приопорном участке равен

Принимаем sw1 =100 мм. Назначаем шаг хомутов в пролете равным sw2 = 300 мм. Тогда интенсивность хомутов приопорного участка

а пролетного участка

Зададим длину участка с шагом хомутов sw1, равной расстоянию от опоры до первого груза – l1 = 1350 мм, и проверим условие (3.44) при значении с, равном расстоянию от опоры до второго груза - с = 2850 мм. Но поскольку 3ho = 3·810 = 2430 мм < с, принимаем с = 2430мм. Значение Qsw определяем согласно п.3.34.

Так как 2ho + l1 = 2·810 + 1350 = 2970 мм > с, значение Qsw определяем по формуле (3.56). При этом, поскольку с > 2ho, со = 2ho = 1620 мм.

Qsw = 0,75[qsw1co - (qsw1 - qsw2)(c - l1)] = 0,75[85,5·1620 - (85,5 -28,5)(2430 -1350)] =

57712 Н = 57,7 кН.

При с =3ho, Qb = Qb.min = 0,5Rbtbhо = 0,53·0,75·80·810 = 24300 H = 24,3 кН.

Поперечная сила на расстоянии с = 2430 мм от опоры (черт.3.22) равна

Проверяем условие (3.44)

Qb + Qsw = 24,3 + 57,7 = 82,0 кН > Q = 59,5 кН,

т.е. прочность этого наклонного сечения обеспечена.

Большее значение с не рассматриваем, поскольку при этом поперечная сила резко уменьшается.

Таким образом, длину участка с шагом хомутов swl = 100 мм принимаем равной 1,35 м.

Пример 16. Дано: двухскатная балка пролетом 8,8 м (черт.3.23,а); сплошная равномерно распределенная нагрузка на балку q = 46 кН/м; размеры опорного сечения по черт.3.23,б; бетон класса В20 (Rbt = 0,9 МПа); хомуты из арматуры класса А400 (Rsw = 285 МПа) диаметром 10 мм (Asw = 78,5 мм2) шагом sw = 100 мм.

Требуется проверить прочность наклонного сечения по поперечной силе.

Расчет. Рабочая высота опорного сечения равна ho = 600 - 40 = 560 мм (см. черт.3.23,б). По формуле (3.48) определим интенсивность хомутов

Черт.3.23. К примеру расчета 16

Определим проекцию невыгоднейшего наклонного сечения с согласно п.3.37. Из черт.3.23,а имеем tgβ= 1/12, b = 100 мм,

Rbt b = 0,9·100 = 90 Н/мм; 1 - 2tgβ = 1 - 2 / 12 = 0,833.

Поскольку qsw /(Rbtb) = 223,7/90 = 2,485 > 2(1 - 2tgβ)2 = 2·0,8332 = 1,389, значение с вычисляем по формуле (3.62).

Рабочая высота поперечного сечения ho на расстоянии с = 444 мм от опоры равна

ho = ho1 + с·tgβ = 560 + 444/12 = 597 мм.

Поскольку с = 444 мм < 2ho, сo = с = 444 мм;

Проверим условие (3.44), принимая поперечную силу в конце наклонного сечения равной

Q = Qmax – q1c=(46·8,8)/2 - 46·0,444 = 182,0 кН:

Qb + Qsw = 108,4 + 74,5 = 182,9 кН > Q = 182 кН,

т.е. прочность наклонных сечений по поперечной силе

обеспечена.

Пример 17.Дано: консоль размерами по черт.3.24, сосредоточенная сила на консоли F = 130 кН, расположенная на расстоянии l1 = 0,8 м от опоры; бетон класса В15 (Rbt = 0,75 МПа); хомуты двухветвевые диаметром 8 мм (Asw = 101 мм2) из арматуры класса А240 (Rsw = 170 МПа) шагом sw = 200 мм.

Черт.3.24.К примеру расчет 17

Требуется проверить прочность наклонных сечений по поперечной силе.

Расчет. Согласно п.3.38 проверяем из условия (3.44) невыгоднейшее наклонное сечение, начинающееся от места приложения сосредоточенной силы, при значении с, определенном по формуле (3.62) при q1 = 0 и .

Рабочая высота в месте приложения сосредоточенной силы равна (см. черт.3.24); Rbtb = 0,75·200 = 150Н/мм.

Значение qsw равно

Поскольку , оставляем с = 469,4 мм.

Определим рабочую высоту ho в конце наклонного сечения

h0 = h0l + с·tgβ = 305 + 469·0,369 = 478 мм.

Поскольку с = 469,4 > 2ho, сo = с = 469 мм.

;

Qb + Qsw = 109,6 + 30,2 = 139,8 кН > F = 130 кН,

т.е. прочность наклонных сечений по поперечной силе обеспечена.

Пример 18. Дано: сплошная плита днища резервуара без поперечной арматуры размером 3x6 м толщиной h = 160 мм, монолитно связанная по периметру с балками; полная равномерно распределенная нагрузка 50 кН/м2; бетон класса В15 (Rbt = 0,75 МПа).

Требуется проверить прочность плиты на действие поперечной силы.

Расчет. ho = 160 - 20 = 140 мм. Расчет проводим для полосы шириной b = 1,0 м = 1000 мм, пролетом l = 3 м. Тогда q = 50·1,0 = 50 кН/м, а поперечная сила на опоре равна

Проверим условие (3.64)

2,5Rbtbh0 = 2,5·0,75·1000·140 = 262500 Н > Qmax = 75 кН.

Проверим условие (3.66), принимая q1 = q - 50 кН/м (Н/мм). Поскольку боковые края плиты монолитно связаны с балками, условие (3.66) имеет вид

следовательно, прочность плиты проверяем из условия (3.67а)

0,625Rbtbhо + 2hоq1 = 0,625·0,75·1000·140 + 2,4·140·50 = 82425 Н =

82,4 кН > Qmax = 75 кН,

т.е. прочность плиты по поперечной силе обеспечена.

Пример 19. Дано: панель стенки резервуара консольного типа с переменной толщиной от 262 (в заделке) до 120 мм (на свободном конце) вылетом 4,25 м; боковое давление грунта, учитывающее нагрузку от транспортных средств на поверхности грунта, линейно убывает от qo = 55 кН/м2 в заделке до q = 6 кН/м2 на свободном конце; а = 22 мм; бетон класса В15 (Rbt = 0,75 МПа).

Требуется проверить прочность панели на действие поперечной силы.

Расчет. Рабочая высота сечения панели в заделке равна ho1 = 262-22 = 240 мм.

Определим tgβ (β - угол между растянутой и сжатой гранями):

tgβ =(262-120)/4250 = 0,0334.

Проверим условия п.3.41. Поперечная сила в заделке равна

Qmax =((55+6)/2)·4,25 = 129,6 кН.

Расчет производим для полосы панели шириной b = 1,0 м = 1000 мм.

Проверим условие (3.64), принимая ho = ho1 = 240 мм.

2,5Rbtbhо = 2,5·0,75·1000·240 = 450000 Н = 450 кН > Qmax

т.е. условие выполняется.

Поскольку панели связаны друг с другом, а ширина стенки резервуара заведомо больше 5h, значение cmax определяем по формуле

Средняя интенсивность нагрузки на приопорном участке длиной cmax = 554 мм равна

Поскольку

принимаем с = cmax = 554мм.

Определим рабочую высоту сечения на расстоянии с/2 от опоры (т.е. среднее значение ho в пределах длины с):

.

Поперечная сила на расстоянии с = 554 мм от опоры равна:

Q = Qmax – q1c= 129,6 - 51,8·0,554 = 100,9 кН.

Проверим условие (3.65):

т.е. прочность панели по поперечной силе обеспечена.

Расчет наклонных сечений на действие момента

Пример 20.Дано: свободно опертая балка пролетом l = 5,5м с равномерно распределенной нагрузкой q = 29 кН/м; конструкция приопорного участка балки принята по черт.3.25; бетон класса В15 (Rb = 8,5 МПа); продольная арматура без анкеров класса А400 (Rs =355 МПа) площадью сечения As = 982 мм2 (2Æ25); хомуты из арматуры класса А240 (Rsw =170 МПа) диаметром 8 мм шагом sw =150 мм приварены к продольным стержням.

Требуется проверить прочность наклонных сечений на действие момента.

Расчет. ho = h - а = 400 - 40 = 360 мм. Поскольку растянутая арматура не имеет анкеров, расчет наклонных сечений на действие момента необходим.

Определим усилие в растянутой арматуре по формуле (3.73).

Принимаем начало наклонного сечения у грани опоры. Отсюда ls = lsup - 10 мм = 280 - 10 = 270 мм (см. черт.3.25).

Опорная реакция балки равна

а площадь опирания балки Asup = blsup = 200·280 = 56000 мм2,

откуда ,

следовательно, а = 1,0. Из табл.3.3 при классе бетона В15, классе арматуры А400 и а = 1,0 находим λan = 47. Тогда, длина анкеровки равна lan = λands = 47·25 = 1175 мм.

Ns = RsAs (ls/lan) = 355·982·(270/1175) = 80106 Н.

Черт.3.25. К примеру расчета 20

Поскольку к растянутым стержням в пределах длины ls приварены 4 вертикальных и 2 горизонтальных поперечных стержня (см. черт.3.25), увеличим усилия Ns на величину Nw.

Принимая dw = 8 мм, nw = 6, φw = 150 (см. табл.3.4), получаем

Nw = 0,7nw φw dw2 Rbt = 0,7·6·1502·0,75 = 30,24·103 Н.

Отсюда Ns = 80106 + 30240 = 110346 Н.

Определяем максимально допустимое значение Ns. Из табл.3.3 при а = 0,7 находим λan = 33; тогда , т.е. оставляем Ns = 110346 Н. Определим плечо внутренней пары сил

Тогда момент, воспринимаемый продольной арматурой, равен

Ms = Nszs = 110346·327,5 = 36,1·106 Нмм.

По формуле (3.48) вычислим величину qsw

Определяем длину проекции невыгоднейшего наклонного сечения по формуле (3.76), принимая значение Qmax равным опорной реакции балки, т.е. Qmax = Fsup = 80 кН.

Тогда момент, воспринимаемый поперечной арматуры, равен

Msw =0,5qswc2 = 0,5·114,5·557,52 = 17,8·106 Н мм.

Момент в наклонном сечении определяем как момент в нормальном сечении, расположенном в конце наклонного сечения, т.е. на расстоянии от точки приложения опорной реакции, равной x = lsup/3 + с = 280/3 + 557,5 = 650,8 мм

.

Проверяем условие (3.69)

Ms + Мsw = 36,1 + 17,8 = 53,9 кНм >М = 45,9 кНм,

т.е. прочность наклонных сечений по изгибающему моменту обеспечена.

Пример 21. Дано: ригель многоэтажной рамы с эпюрами моментов и поперечных сил от равномерно распределенной нагрузки q = 228 кН/м по черт.3.26; бетон класса В25; продольная и поперечная арматура класса А400 (Rs = 355 МПа, Rsw = 285 МПа); поперечное сечение приопорного участка - по черт.3.26; хомуты трехветвевые диаметром 10 мм (Rsw = 236 мм2) шагом sw равным 150 мм.

Требуется определить расстояние от левой опоры до места обрыва первого стержня верхней арматуры.

Расчет. Из черт.3.26 имеем: ho = h - a = 800 - 60 = 740 мм; а -50 мм; площадь сечения верхней растянутой арматуры без учета одного обрываемого стержня Æ32 As = 1609 мм2 (2Æ32); As = 2413 мм2 (3Æ32). Определим предельный момент, соответствующий этой арматуре по формуле (3.19), поскольку As < A's, т.е. х < 0:

Mult = RsAs(ho – а') = 355·1609·(740 - 50) = 394,1·106 Н мм = 394,1 кНм.

По эпюре моментов определяем расстояние от опоры до места теоретического обрыва первого стержня из уравнения

откуда , где

Поперечная сила в месте теоретического обрыва равна

Q = Qmax - q·x = 620 - 228·0,355 = 539 кН.

Определим величину qsw,

Поскольку м, длину w, на которую надо завести обрываемый стержень за точку теоретического обрыва, определяем по формуле (3.79)

.

Черт.3.26. К примеру расчета 21

Следовательно, расстояние от опоры до места обрыва стержня может быть принято равным х + w = 355 + 761 = 1116 мм.

Определим необходимое расстояние lan от места обрыва стержня до опорного сечения, предполагая полное использование этого стержня в опорном сечении. Для этого по табл.3.3 при а = 1,0 классе бетона В25, классе арматуры А400 находим λ = 34. Тогда lan = λand = 34·32 = 1088 мм < 1116 мм.

Следовательно, обрываем стержень на расстоянии 1116 мм от опоры.

ВНЕЦЕНТРЕННО СЖАТЫЕ ЭЛЕМЕНТЫ

ОБЩИЕ ПОЛОЖЕНИЯ

1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения; 1/30 высоты сечения; 10 мм.

РАСЧЕТ ПРИ ДЕЙСТВИИ ПОПЕРЕЧНЫХ СИЛ

3.52. Расчет внецентренно сжатых элементов при действии поперечных сил производится аналогично расчету изгибаемых элементов в соответствии с пп.3.29-3.35 и следующих указаний:

а) при N/Nb > 0,5 правая часть условия (3.43) умножается на коэффициент

φn1 = 2(1- N/Nb), (3.83)

где Nb =1,3RbA, но не менее N;

б) значение поперечной силы, воспринимаемой бетоном в наклонном сечении Qb, а также правая часть условия (3.49) умножается на коэффициент

(3.84)

на этот коэффициент φn2 умножается также связанное с Qb значение Мь.

УЧЕТ ВЛИЯНИЯ ПРОГИБА ЭЛЕМЕНТОВ

Допускается производить расчет конструкции по недеформированной схеме, а влияние прогиба элемента учитывать путем умножения моментов на коэффициенты… М = Mvηv + Mhηh + Мt (3.85) где Mv- момент от вертикальных нагрузок, не вызывающих заметных горизонтальных смещений концов;

РАСЧЕТ НОРМАЛЬНЫХ СЕЧЕНИЙ ПО ПРЕДЕЛЬНЫМ УСИЛИЯМ

Прямоугольные сечения с симметричной арматурой

М ≤ Rbbx(hо - 0,5x) + (RscA's - N/2)(hо - а'), (3.91) где М - момент относительно центра тяжести сечения, определяемый с учетом… х - высота сжатой зоны, принимаемая равной

Прямоугольные сечения с несимметричной арматурой

(3.100) при этом, если (см. табл. 3.2), высотусжатой зоны корректируют, вычисляя по… (3.101)

Двутавровые сечения с симметричной арматурой

Если соблюдается условие N ≤ Rbb'fh'f (3.108) (т.е. граница сжатой зоны проходит в полке), расчет производится как для прямоугольного сечения шириной b'f в…

Кольцевые сечения

(3.115) а) при 0,15 < ξcir < 0,6 - из условия (3.116)

Круглые сечения

(3.123) где r - радиус поперечного сечения; ξcir - относительная площадь сжатой зоны бетона, определяемая следующим образом:

Расчет элементов на косое внецентренное сжатие

(3.129) где Мх и Му - моменты от внешней нагрузки относительно центра тяжести сечения… и - предельные моменты в плоскостях симметрии х и у

Примеры расчета

Прямоугольные сечения с симметричной арматурой

Требуется проверить прочность опорного сечения колонны. Расчет. hо = 500 - 40 = 460 мм. Расчет ведем с учетом влияния прогиба согласно… Усилия от всех нагрузок равны М = Mv + Mh = 140 + 73 = 213 кН·м, N = Nv + Nh= 650 + 50 = 700 кН. При этом, т.е.…

Прямоугольные сечения с несимметричной арматурой

Требуется определить площадь сечения арматуры S и S'. Расчет. ho = 500 - 40 = 460 мм. Поскольку момент от ветровой нагрузки… Требуемую площадь сечения арматуры S' и S определяем по формулам (3.102) и (3.103), принимая из табл. 3.2 aR = 0,39,…

Двутавровые сечения

Требуется проверить прочность сечения. Черт.3.34. К примерам расчета 28 и 29

Кольцевые сечения

Требуется проверить прочность сечения Расчет. Внутренний и наружный диаметры равны D1 = 2r1 = 300мм, D2 = Dci r= 2r2… N = 120 кН, М = Mh = 110 кНм

Круглые сечения

Требуется проверить прочность верхнего опорного сечения. Расчет. Поскольку рассматриваемое сечение расположено у податливой заделки,… М = Mv + Mh = 60 + 45 = 105 кНм, N = Nv + Nh = 1700 + 100 = 1800 кН;

Элементы, работающие на косое внецентренное сжатие

Пример 33.Дано: прямоугольное сечение колонны с размерами b = 400 мм, h = 500 мм; бетон класса В25 (Rb = 14,5 МПа); продольная арматура класса А400 (Rs = Rsc = 355 МПа) расположена в сечении согласно черт.3.35; в сечении одновременно действует сила N = 2600 кН и изгибающие моменты: в плоскости, параллельной размеру h, Мх = 150 кНм; в плоскости, параллельной размеру b, Му = 100 кНм; моменты Мх и Му даны с учетом прогиба колонны.

Черт.3.35. К примеру расчета 33

Требуется проверить прочность сечения.

Расчет. Поскольку арматура задана в виде 4-х угловых стержней, прочность сечения проверяем согласно п.3.66. Оси симметрии, параллельные размерам h и b, обозначим х и у. Определим предельные моменты М°x и М°у.

При действии момента в плоскости оси х принимаем b = 400 мм, ho = 500 - 50 = 450 мм. As = A's = 1609 мм2 (2Æ32). Поскольку а = 50мм < 0,15h = 0,15·450 = 67,5 мм, расчет можем производить с помощью графика на черт.3.28. Для этого определяем и

На графике этим значениям соответствует ат = 0,24. Следовательно,

М°x =amRbbho 2= 0,24·14,5·400·4502 = 281,9·106 Нмм = 281,9 кНм.

При действии момента в плоскости оси у принимаем b = 500 мм, ho = 400 - 50 = 350 мм. Поскольку а = 50 мм < 0,15 ho = 0,15 - 350 = 52,5 мм, момент М°у также можно определить с помощью графика на черт.3.28.

Значениям и на графике соответствует ат = 0,23. Следовательно,

М°у = amRbbho 2 = 0,23·14,5·500·3502 = 204,3·106 Нмм = 204,3 кНм.

Определим показатель степени k. Поскольку , используем формулу (3.132), вычислив значения и

Проверяем условие (3.129):

т.е. прочность сечения обеспечена.

Расчет наклонных сечений

Требуется проверить прочность колонны на действие поперечной силы . Расчет. ho = h - а = 600 - 50 = 550 мм. Расчет производим согласно… Поперечная сила в колонне равна

ЦЕНТРАЛЬНО РАСТЯНУТЫЕ ЭЛЕМЕНТЫ

3.67. Расчет по прочности сечений центрально растянутых элементов следует производить из условия

NRsAs, (3.133)

где As- площадь сечения всей продольной арматуры.

ВНЕЦЕНТРЕННО РАСТЯНУТЫЕ ЭЛЕМЕНТЫ

Расчет прямоугольных сечений внецентренно растянутых элементов с арматурой, расположенной у перпендикулярных плоскости изгиба граней элемента, при… 3.69. Проверка прочности прямоугольных сечений внецентренно растянутых… а) если продольная сила N приложена между равнодействующими усилий в арматуре S и S’ (черт.3.36,а), т.е. при е'…

Примеры расчета

Пример 35.Дано: растянутая ветвь двухветвевой колонны с поперечным сечением размерами b = 500 мм, h =200 мм; а = а' = 40 мм; продольная арматура класса А400 (Rs = Rsc =355 МПа); площадь ее сечения As = A's =982 мм2 (2Æ25); бетон класса В25 (Rb = 14,5 МПа); продольная растягивающая сила N = 44 кН; максимальный изгибающий момент М = 43 кН·м.

Требуется проверить прочность нормального сечения

Расчет. ho = 200 - 40 = 160 мм.

Поскольку арматура симметричная, прочность проверим из условия (3.134):

RsAs (ho - a') = 355·982·(160-40) = 41,8·106 Н·мм < Ne' = 44·103·1037 = 45,6·106 Н·мм, т.е. условие (3.134) не выполняется.

Так как e' = 1037 > ho – a' = 120 мм, а высота сжатой зоны х, определенная без учета сжатой арматуры, т.е. равная меньше 2а' = 2·40 = 80 мм, согласно примечанию к п.3.69 проверим прочность из условия (3.136), принимая х = 42 мм и :

Rbbx(h0 - 0,5x) = 14,5·500·42· (160 - 0,5·42) = 42,3·106 Н·мм > Ne = 44·103·917

= 40,4·106 Н·мм,

т.е. прочность обеспечена.

Пример 36. Дано: прямоугольное сечение размерами b = 1000 мм, h = 200 мм; а = а' = 35 мм; бетон класса В15 (Rb = 8,5 МПа); продольная арматура класса А400 (Rs = Rsc = 355 МПа); площадь сечения арматуры A's = 1005 мм (5Æ16); растягивающая сила N = 160 кН; изгибающий момент М = 116 кН·м.

Требуется определить площадь сечения арматуры S.

Расчет. ho = 200 - 35 = 165 мм;

Так как е' = 790 мм > ho - а' =165 - 35 = 130 мм, определим необходимую площадь сечения растянутой арматуры согласно 3.70,б.

Вычислим значение

Так как 0 < am < aR = 0,39 (см. табл. 3.2), значение As определяется по формуле (3.140). Для этого вычисляем .

Принимаем As = 3079 мм2 (5Æ28).

Пример 37. Дано: растянутая ветвь двухветвевой колонны с сечением размерами b = 500 мм, h = 200 мм; а = а' = 40 мм; бетон класса В25 (Rbt = 1,05 МПа); хомуты, расположенные по граням, из арматуры класса А400 (Rsw = 285 МПа); продольная растягивающая сила N = 44 кН; поперечная сила Q = 130 кН; расстояние в свету между перемычками двухветвевой колонны l = 600 мм.

Требуется определить диаметр и шаг хомутов.

Расчет. ho = 200 - 40 =160 мм. Расчет производим согласно п.3.33,а с учетом указаний п.3.71.

По формуле (3.143) определяем коэффициент φnt , принимая А = bh = 500·200 =100000 мм2:

Поскольку в пределах между перемычками поперечная сила постоянна, длину проекции наклонного сечения пригашаем максимально возможной, т.е.

c = cmax = 3ho = 3·160 = 480 мм < l = 600 мм.

При а = c / ho = 3 и ао = 2 < 3 определяем

Следовательно, требуемую интенсивность хомутов определяем по формуле (3.48), при этом величину 1,5, характеризующую значение Qb, делим на φnt = 1,279:

Максимально допустимый шаг, согласно п. 3.35, равен

Принимаем шаг хомутов sw = 100 мм < sw,max и тогда

Принимаем два хомута диаметром по 10 мм (Аsw=157 мм2).

РАСЧЕТ НОРМАЛЬНЫХ СЕЧЕНИЙ НА ОСНОВЕ НЕЛИНЕЙНОЙ ДЕФОРМАЦИОННОЙ МОДЕЛИ

3.72.При расчете по прочности усилия и деформации в нормальном сечении определяют на основе нелинейной деформационной модели, использующей уравнения равновесия внешних сил и внутренних усилий в сечении элементов, а также следующие положения:

- распределение относительных деформаций бетона и арматуры по высоте сечения элемента принимают по линейному закону (гипотеза плоских сечений, см. черт.3.39);

- связь между осевыми сжимающими напряжениями бетона σb и относительными его деформациями εb принимают в виде двухлинейной диаграммы (черт.3.37), согласно которой напряжения σb, определяются следующим образом:

при 0 ≤ εb εb1,redσb = Eb,red εb ;

при εb1,red < εb εb2 σb = Rb;

где Eb,red - приведенный модуль деформации бетона, равный

Eb,red = Rb/ εb1,red

εb1,red = 0,0015;

εb2 = 0,0035;

Rb - см. табл. 2.2;

- сопротивление бетона растянутой зоны не учитывается (т.е. принимается σb = 0) за исключением расчета бетонных элементов, указанных в п.1.4,б, а также бетонных элементов, в которых не допускаются трещины; в этих элементах связь между осевыми растягивающими напряжениями бетона σbt и относительными его деформациями также принимаются в виде двухлинейной диаграммы с заменой εb1,red на εbt1,red = 0,0008; εb2 на εbt2 = 0,00015; Eb,red на Ebt,red = Rbt / εbt1,red, где Rbt -см. табл. 2.2;

Черт.3.37. Двухлинейная диаграмма состояния сжатого бетона

- связь между напряжениями арматуры σs и относительными ее деформациями εs принимают в виде двухлинейной диаграммы (черт. 3.38), согласно которой напряжения σs принимают равными:

при 0 < εs < εs0σs = εsEs;

при εs0εs < εs2σs = Rs

где εs0 = Rs/Es;

Rs - см. табл.2.6;

Es = 2·105 Мпа;

εs2 = 0,025.

Черт.3.38. Диаграмма состояния растянутой арматуры

В общем случае положение нейтральной оси и максимальные деформации (черт.3.39) определяют из уравнений равновесия внешних и внутренних усилий: (3.144) (3.145)

Черт.3.39. Эпюры деформаций и напряжений в сечении формальном к продольной оси железобетонного элемента, в общем случае расчета по прочности

б) - однозначная эпюра деформаций - Abi, Zbxi, Zbyi, σbi - площадь, координаты центра тяжести i-го… - Asj, Zsxj, Zsyj, σsj - площадь, координаты центра тяжести j-го стержня арматуры и напряжение в нем.

ЭЛЕМЕНТЫ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ

Расчет на совместное действие крутящего крутящего и изгибающего моментов

3.77. Расчет по прочности элемента между пространственными сечениями на действие крутящего момента Т производят из условия

T < 0,lRbb2h, (3.152)

где b и h - соответственно меньший и больший размеры поперечного сечения элемента.

3.78. При совместном действии крутящего и изгибающего моментов рассматривается пространственное сечение со сжатой стороной по грани элемента, перпендикулярной плоскости действия изгибающего момента (черт.3.40).

Расчет такого сечения производят из условия

(3.153)

Черт.3.40. Схема усилий в пространственных сечениях при расчете на действие крутящего и изгибающего моментов; растянутая арматура у нижней границы элемента

где Му - предельный изгибающий момент, воспринимаемый нормальным сечением и определяемый согласно п.3.14;

Т0 - предельный крутящий момент, воспринимаемый пространственным сечением и определяемый по формуле

T0 = Tsvl + Ts1, (3.154)

Tsvl - крутящий момент, воспринимаемый поперечной арматурой, расположенной у растянутой грани в пределах пространственного сечения, равный

Tswl= 0,9qswlδ1ch, (3.155)

Ts1 - крутящий момент, воспринимаемый продольной растянутой арматурой пространственного сечения и равный

Tsl = 0,9RsAs1(b/c)h. (3.156)

В формулах (3.155) и (3.156):

с - длина проекции сжатой стороны пространственного сечения на продольную ось элемента;

(3.157)

b и h - соответственно ширина грани, растянутой от изгиба, и грани, ей перпендикулярной (см. черт.3.40);

(3.158)

Asw1 и sw - площадь сечения одного поперечного стержня у растянутой от изгиба грани шириной b и шаг этих стержней;

As1 - площадь сечения продольной арматуры у растянутой от изгиба грани шириной b.

Значение RsAs1 в формуле (3.156) принимается не более значения 2qsw1b, а значение qsw1 в формуле (3.155) принимается не более значения 1,5RsAs1/b.

Крутящий момент Т и изгибающий момент М в условии (3.153) принимаются в поперечном сечении, расположенном в середине длины проекции с вдоль продольной оси элемента.

Расчет в общем случае производят для пространственных сечений с различными значениями с, принимаемыми не более 2h + b и не более .

Пространственные сечения рекомендуется располагать следующим образом:

а) для неразрезных или защемленных на опорах балок (ригелей), а также для консолей пространственное сечение располагается у опоры;

б) для любых элементов, нагруженных сосредоточенными силами и крутящими моментами, пространственные сечения располагаются у мест приложения сил со стороны участка с большими крутящими моментами (черт.3.41).

Для этих случаев при вычислении предельного крутящего момента То рекомендуется использовать в формулах (3.155) и (3.156) значение длины проекции с = сo, соответствующее минимальному значению То, но при этом моменты Т и М определяются исходя из длины проекции равной с = (1,2 - 0,4Mmax/Mo)сo, но не более сo, где Mmax - максимальный изгибающий момент в начале пространственного сечения.

Значение сo определяется по формуле

, (3.159)

с выполнением указанных ограничений по учету величия RsAs1 и qsw1.

Черт.3.41. Расположение расчетных пространственных сечений в балке, нагруженной сосредоточенными силами

M1,T1, Q1 - расчетные усилия для пространственного сечения 1; M2,T2, Q2 - тo же, для пространственного сечения 2 В частности:

Расчет на совместное действие крутящего момента и поперечной силы

(3.162) где Т01 - предельный крутящий момент, воспринимаемый элементом между… Q01- предельная поперечная сила, воспринимавшая бетоном между наклонными сечениями и принимаемая равной правой части…

Примеры расчета

Пример 38.Дано: ригель перекрытия торцевой рамы многоэтажного промышленного здания, нагруженный равномерно распределенной нагрузкой q = 154,4 кН/м и равномерно распределенными крутящими моментами t = 34,28 кН.м/м; поперечное сечение ригеля у опоры - см.черт.3.43,a; эпюра крутящих моментов от вертикальных нагрузок - см. черт.3.43,б эпюры изгибающих моментов и поперечных сил от невыгоднейшей для опорного сечения комбинации вертикальных нагрузок и ветровой нагрузки - см. черт.3.43,в и г; эпюра изгибающих моментов от невыгоднейшей для пролетного сечения комбинации вертикальных нагрузок - см. черт.3.43,д бетон класса В25 (Rb = 14,5 МПа, Rbt = 1,05 МПа), продольная и поперечная арматура класса А400 (Rs = 355 МПа, Rsw = 285 Мпа).

Черт.3.43. К примеру расчета 38

Требуется проверить прочность элемента на действие крутящих и изгибающих моментов, а также на совместное действие крутящих моментов и поперечных сил.

Расчет. Рассматриваем сечение как прямоугольное, не учитывая "в запас" полку ригеля. Размеры этого сечения принимаем равными b = 300 мм, h = 800 мм.

Расчеты производим согласно пп.3.77-3.80.

Проверяем условие (3.152) на действие максимального крутящего момента Т = 84 кНм.

0,1Rbb2h = 0,1·14,5·3002·800 = 104,4·106Н·мм = 104,4 кН·м > T = 84 кНм,

т.е. условие выполняется.

Проверим прочность пространственного сечения со сжатой стороной по нижней грани, расположенной у опорного сечения, на совместное действие крутящих и изгибающих моментов из условия (3.153).

Определяем согласно п.3.19 предельный изгибающий момент.

Из черт.3.43,а находим: As1 = 2413 мм2(3Æ32), А's1 = 1388 мм2 (2Æ20+2Æ22), а' = 68 мм; ho = 800 - 60 = 740 мм. Из формулы (3.16) имеем

.

Тогда

M0 = Rbbx(ho - 0,5х) + RsА's(ho - a') =
=14,5·300·83,6· (740-0,5·83,6) + 355·1388· (740-68) = 585·106 Н·мм.

Определим предельный крутящий момент Тo.

Горизонтальные поперечные стержни согласно черт.3.43,а Æ14 и шагом sw= 100 мм. Тогда

Поскольку RsАs1 = 355·2413 = 856620 H > 2qsw1b = 2·439·300 = 263400 H, значение То определяем по формуле (3.160)

а моменты M и Т определяем при

т.е.

Проверяем условие (3.153):

т.е. прочность на совместное действие изгибающих и крутящих моментов у опоры обеспечена.

Проверяем прочность пространственного сечения со сжатой стороной по боковой грани, на совместное действие крутящих моментов и поперечных сил, располагая это сечение у опоры. Предварительно проверим условие (3.162), принимая, согласно вычисленному выше, T01 = 104,4 кН. м и вычислив из условия (3.43) Q01 = 0,3Rbbho = 0,3·14,5·300·740 = 965700 Н = 965,7 кН.

Значения Т и Q определяем в сечении на расстоянии, а = 2b + h = 2·300 + 800 = 1400 мм = 1,4 м от опоры, т. е

Т = Ton - ta = 84 - 34,3·1,4 = 36 кНм;

Q = Qon - qa = 460-154,4·1,4 = 243,8 кНм.

Тогда

т. е условие (3.162) выполнено.

Из черт.3.43,а находим As2 = 804 + 314 + 380 = 1498 мм2 (Æ32 + Æ20 + Æ22).

Шаг и диаметр вертикальных хомутов тот же, что для горизонтальных стержней, поэтому qsw2 = qsw1 = 439 Н/мм.

Поскольку RsAs2 = 355·1498 = 531790 Н < 2qsw2h = 2·439·800 = 702400 Н, значение. То равно

Определяем согласно п.3.31 значение Q и значение Qo как правую часть условия (3.44).

При двухветвевых хомутах qsw = 2qsw2 = 2·439 = 878 Н/мм.

Определим невыгоднейшее значение с согласно п.3.32, принимая q1 = 100 кН/м. Поскольку , значение с равно .

Принимая сo = с = 584 мм < 2ho, имеем

Проверяем условие (3.163)

т.е. прочность при совместном действии изгибающих моментов и поперечных сил обеспечена.

Как видно из черт.3.43,б и д, в нормальном сечении с наибольшим пролетным изгибающим моментом имеет место крутящий момент, поэтому следует проверить пространственное сечение, середина проекции которого располагается в этом нормальном сечении, на действие моментов М = 321 кНм и

При этом растянутая сторона пространственного сечения располагается по нижней грани.

Определим предельный изгибающий момент Мо. Для этой части ригеля средний верхний стержень Æ32 оборван, и поэтому согласно черт.3.43,а имеем А's1 = 1609 мм2(2Æ32); а' = 60 мм; Аs1 = 1388 мм2 (2Æ20+2Æ22); а = 68 мм; hо = 800 - 68 =732 мм.

Высота сжатой зоны равна

следовательно, значение Мо определяем по формуле (3.19):

Мо = RsAs1(ho - a')= 355·1388· (732-60) = 331,1·106 Нмм = 331,1 кНм

Горизонтальные поперечные стержни Æ14 в этой части ригеля имеют шаг sw = 200 мм; отсюда

Поскольку RsAs1 = 355·1388 = 492740 H > 2qsw1b =2·219,5·300 = 131700 Н,

значение То определяем по формуле (3.160):

Проверяем условие (3.153)

т.е. прочность этого сечения обеспечена.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА МЕСТНОЕ ДЕЙСТВИЕ НАГРУЗОК

РАСЧЕТ НА МЕСТНОЕ СЖАТИЕ

N ≤ ψRb.locAb.loc (3.170) где N - местная сжимающая сила от внешней нагрузки; Ab.loc - площадь приложения сжимающей силы (площадь смятия);

Черт.3.44. Схема для расчета элементов на местное сжатие при расположении местной нагрузки

а - вдали от краев элемента; б - по всей ширине элемента; в - у края (торца) элемента по всей его ширине; г - у угла элемента; д - у одного края элемента; е - вблизи одного края элемента; ж - при наличии нескольких нагрузок

1 - элемент, на который действует местная нагрузка; 2 - площадь смятия Ab.loc; 3 - максимальная расчетная площадь Ab.max; 4 - центр тяжести площадей Ab.loc и Ab.max; 5 - минимальная зона армирования сетками, при которой косвенное армирование учитывается в расчете

3.82.Расчет элементов на местное сжатие при наличии косвенной арматуры в виде сварных сеток производят из условия

NψRbs.locAb.loc, (3.173)

где Rbs.loc - приведенное с учетом косвенной арматуры в зоне местного сжатия расчетное сопротивление бетона сжатию, определяемое по формуле

Rbs.loc = Rb.loc + 2φs,xy Rs,xy μs,xy. (3.174)

Здесь:

; (3.175)

Ab.loc,ef - площадь, заключенная внутри контура сеток косвенного армирования, считая по их крайним стержням и принимаемая в формуле (3.175) не более Ab.max,

Rs,xy - расчетное сопротивление растяжению косвенной арматуры;

μs,xy - коэффициент армирования, определяемый по формуле

(3.176)

пх , Аsx , lx - число стержней, площадь сечения и длина стержня, считая в осях крайних стержней, в направлении х;

пу, Asy, lу - то же, в направлении у:

s - шаг сеток косвенного армирования.

Значения Rb.loc, Аb.loc , ψ и N принимают согласно п.3.81.

Значения местной сжимающей силы, воспринимаемой элементом с косвенным армированием (правая часть условия 3.173), принимают не более удвоенного значения местной сжимающей силы, воспринимаемого элементом без косвенного армирования (правая часть условия 3.170).

Сетки косвенного армирования располагаются в пределах расчетной площади Ab.max. При этом для схем черт.3.44, в и г сетки косвенного армирования располагаются по площади с размерами в каждом направлении не менее суммы двух взаимно перпендикулярных сторон.

Если грузовая площадь располагается у края элемента (см. черт.3.44,б-д, ж), при определении значений Аb.loc и Ab.loc,ef не учитывается площадь, занятая защитным слоем бетона для крайних стержней сеток.

По глубине сетки располагаются:

- при толщине элемента более удвоенного большего размера грузовой площади - в пределах удвоенного размера грузовой площади;

- при толщине элемента менее удвоенного большего размера грузовой площади - в пределах толщины элемента.

- сетки косвенного армирования должны отвечать конструктивным требованиям, приведенным в п.5.27.

Примеры расчета

Пример 39.Дано: стальная стойка, опираемая на фундамент и центрально нагруженная силой N = 1000 кН (черт.3.45); фундамент из бетона класса B10 (Rb = 6,0 МПа).

Черт.3.45.К примеру расчета 39

Требуется проверить прочность бетона под стойкой на местное сжатие.

Расчет производим в соответствии с п.3.81 и п.3.82.

Расчетную площадь Ab.max определим в соответствии с черт.3.44,е. Согласно черт.3.45, имеем с = 200мм < а1 = 300 мм; b1 = 200·2 + 200 = 600 мм; b2 = 200·2 + 300 = 700 мм; Ab.max = b1b2 = 600·700 = 420000 мм2:

Площадь смятия равна Аb.loc = 300·200 = 60000 мм2.

Коэффициент φb равен

Тогда Rb.loc = φbRb = 2,12·6,0 = 12,72 МПа.

Проверяем условие (3.170), принимая ψ = 1,0 как приравномерном распределении местной нагрузки:

ψRbs.locAb.loc = 1·12,72·60000 = 763200 Н = 763,2 кН < N = 1000 кН,

т.е. прочность бетона на местное сжатие не обеспечена, и поэтому необходимо применить косвенное армирование. Принимаем косвенное армирование в виде сеток из арматуры класса В500 диаметром 4 мм с ячейками 100х100 мм и шагом по высоте s = 100 мм

Проверяем прочность согласно п.3.82. Определяем коэффициент косвенного армирования по формуле (3.176). Из черт.3.45 имеем: nx = 8, = 600 мм; пу = 7; ly = 700 мм; Аsx = Аsy = 12,6 мм2 (Æ4); Ab.loc,ef = 600·700 = 420000 мм4; тогда

Коэффициент φs,xy равен

Приведенное расчетное сопротивление бетона Rbs.loc определяем по формуле (3.174)

Rbs.loc = Rb.loc + 2φs,xy Rs,xy μs,xy = 12,72 + 2·2,65·415·0,00291 = 19,12 МПа.

Проверяем условие (3.173)

ψRbs.locAb.loc = 1,0·19,12·60000 = 1147200 Н = 1147,2 кН > N = 1000 кH,

т.е. прочность бетона обеспечена.

Сетки устанавливаем на глубину 2·300 = 600мм.

РАСЧЕТ ЭЛЕМЕНТОВ НА ПРОДАВЛИВАНИЕ

Общие положения

При расчете на продавливание рассматривают расчетное поперечное сечение, расположенное вокруг зоны передачи усилий на элемент на расстоянии hо/2… Действующие касательные усилия по площади расчетного поперечного сечения… Расчетный контур поперечного сечения принимают: при расположении площадки передачи нагрузки внутри плоского элемента -…

Расчет на продавливание элементов без поперечной арматуры

F ≤ Rbtuuho, (3.177) где F - сосредоточенная сила от внешней нагрузки; и - периметр контура расчетного поперечного сечения, расположенного на расстоянии 0,5ho от границы площадки опирания…

Черт. 3.47. Схема для расчета железобетонных элементов без поперечной арматуры на продавливание

/ - расчетное поперечны, сечение; 2 - контур расчетного поперечного сечения; 3 - контур площадки приложения нагрузки,

Сосредоточенная сила F принимается за вычетом нагрузок, приложенных к противоположной грани плиты в пределах площади с размерами, превышающими размеры площадки опирания на ho во всех направлениях.

3.85.Расчет элементов без поперечной арматуры на продавливание при совместном действии сосредоточенных сил и изгибающего момента производят из условия

; (3.182)

где отношение M/Wb принимается не более F/u;

Wb - момент сопротивления контура расчетногопоперечного сечения;

F, и, hо - см.п.3.84.

Сосредоточенный момент М, учитываемый в условии (3.182), равен половине сосредоточенного момента от внешней нагрузки Mloc.

В железобетонном каркасе здания с плоскими перекрытиями момент Mloc равен суммарному изгибающему моменту в сечениях верхней и нижней колонн, примыкающих к перекрытию в рассматриваемом узле, а сила F направлена снизу вверх.

При расположении площадки опирания вблизи свободного края плиты, когда сосредоточенная сила приложена внецентренно относительно контура незамкнутого расчетного поперечного сечения, к моменту М в условии (3.182) следует добавлять (со своим знаком) момент от внецентренного приложения сосредоточенной силы, равный F·eо, где ео - см. формулу (3.181).

При прямоугольной площадке опирания и замкнутом контуре расчетного поперечного сечения значение Wb, определяют по формуле

(3.183)

где а и b - размеры площадки опирания соответственно в направлении действия момента и в направлении, нормальном действию момента.

При незамкнутом контуре расчетного поперечного сечения (см. черт.3.46,в) значение Wb принимается равным Wb = I/у, где I и у - см. п.3.84.

При действии добавочного момента Му в направлении, нормальном направлению действия момента М, левая часть условия (3.182) увеличивается на где Wb,y - момент сопротивления контура расчетного сечения в направлении момента Му ; при этом сумма также принимается не более F/u.

Расчет на продавливание элементов с поперечной арматурой

F ≤ Fb,ult + Fsw,ult, (3.184) где Fb,ult - правая часть условия (3.177); Fsw,ult - предельное усилие, воспринимаемое поперечной арматурой при продавливании и равное

Черт. 3.48 Схема для расчета железобетонных плит с вертикальной равномерно распределенной поперечной арматурой на продавливание

1 - расчетное поперечное сечение; 2 - контур расчетного поперечного сечения; 3 - границы зоны, в пределах которых в расчете учитывается поперечная арматура; 4 - контур расчетного поперечного сечения без учета в расчете поперечной арматуры; 5 - контур площадки приложения нагрузки.

Черт.3.49. Схема расчетного контура поперечного сечения при продавливании и при крестообразном расположении поперечной арматуры

1 - площадь приложения нагрузки; 2 - контур расчетного поперечного сечения при учете поперечного армирования Аsw; 3 - контур расчетного поперечного сечения без учета поперечного армирования

При равномерном расположении поперечной арматуры вдоль контура расчетного поперечного сечения значение Wsw, принимается равным Wb.

При расположении поперечной арматуры сосредоточенно у осей площадки опирания (черт.3.49) момент сопротивления Wsw определяют по тем же правилам, что и момент сопротивления, Wb, принимая фактические длины участков расположения поперечной арматуры Lsw,x и Lsw,y на расчетном контуре продавливания.

При равномерном расположении поперечной арматуры вокруг площади опирания вместо условия (3.187) можно воспользоваться условием (3.182) с увеличением правой части на величину 0,8qsw, принимаемой не более Rbtho

При действии добавочного момента Му в направлении, нормальном направлению момента М, левая часть условия (3.187) увеличивается на , где Мby,ult и Мsw,y,ult -предельные сосредоточенные моменты, воспринимаемые соответственно бетоном и поперечной арматурой в расчетном поперечном сечении в направлении действия момента Му; при этом сумма , также принимается не более , а Msw,y,ult не более Mby,ult .

Примеры расчета

Пример 40.Дано: плита плоского монолитного перекрытия толщиной 220 мм; колонны, примыкающие к перекрытию сверху и снизу, сечением 500x800 мм; нагрузка, передающаяся с перекрытия на колонну N = 800 кН; моменты в сечениях колонн по верхней и по нижней граням плиты равны: в направлении размера колонны 500 мм – Mx,sup = 70 кНм, Mx,inf = 60 кНм, в направлении размера колонны 800 мм - My,sup = 30 кНм, Му, inf = 27 кНм; бетон класса В30 (Rbt = 1,15 МПа)

Требуется проверить плиту перекрытия на продавливание.

Расчет. Усредненную рабочую высоту плиты принимаем равной ho = 190 мм.

За сосредоточенную продавливающую силу принимаем нагрузку от перекрытия F = N = 800 кН; за площадь опирания этой силы - сечение колонны axb = 500х800 мм.

Определим геометрические характеристики контура расчетного поперечного сечения согласно п.3.84 и п.3.85:

периметр и = 2(а + b + 2ho) = 2(500 + 800 + 2·190) = 3360 мм;

момент сопротивления в направлении момента Мх (т.е. при а = 500 мм, b = 800 мм)

момент сопротивления в направлении момента Му (т.е. при а = 800 мм, b = 500 мм)

За расчетный сосредоточенный момент в каждом направлении принимаем половину суммы моментов в сечении по верхней и по нижней граням плиты, т.е.

Мх = (Mx,sup + Mx,inf )/2 = (70 + 60)/2 = 65 кНм;

Му = (My,sup + Му, inf)/2 = (30 + 27)/2 = 28,5 кНм.

Проверяем условие (3.182), принимая М =Мx = 65 кН. м, Wb = Wb,x= 841800 мм2 и добавляя к левой части .

При этом , следовательно, момент не корректируем.

,

т.е. условие (3.182) не выполняется и необходимо установить в плите поперечную арматуру.

Принимаем согласно требованиям п.5.26 шаг поперечных стержней s = 60 мм < ho/3 = 63,3 мм, 1- й ряд стержней располагаем на расстоянии от колонны 75 мм, поскольку 75 мм < ho/2 и 75 мм > ho/3 (черт.3.50). Тогда в пределах на расстоянии 0,5ho = 95 мм по обе стороны от контура расчетного поперечного сечения может разместиться в одном сечении 2 стержня. Принимаем стержни из арматуры класса A240(Rsw =170 МПа) минимального диаметра 6 мм.

Тогда Аsw = 57 мм2 и .

При этом согласно п.3.86 предельное усилие, воспринимаемое поперечной арматурой и равное 0,8qswu = 129,2u, должно быть не менее 0,25Fb,ult = 0,25Rbthou = 0,25·218,5u = 54,6u. Как видим, это требование выполнено.

Проверяем условие (3.182) с добавлением к правой части значения 0,8qsw

,

т.е. прочность расчетного сечения с учетом установленной поперечной арматуры обеспечена.

Проверяем прочность расчетного сечения с контуром на расстоянии 0,5ho за границей расположения поперечной арматуры. Согласно требованиям п.5.26 последний ряд поперечных стержней располагается на расстоянии от грузовой площадки (т.е. от колонны), равном 75 + 4·60 = 315 мм > l,5ho = 1,5·190 = 285 мм. Тогда контур нового расчетного сечения имеет размеры: а = 500 + 2·315+190= 1330 мм; b= 800 + 2·315 + 190 = 1620 мм.

Его геометрические характеристики:

и = 2(1320+1620 + 2·190) = 6640 мм;

Проверяем условие (3.182) с учетом момента Му. При этом пренебрегаем "в запас" уменьшением продавливающей силы F за счет нагрузки, расположенной на участке с размерами (а + ho)х(b + ho) вокруг колонны.

т.е. прочность этого сечения обеспечена.

 

Черт.3.50. К примеру расчета 40

1 - 1-е расчетное сечение, 2 - 2-е расчетное сечение

Пример 41. Дано: плита плоского монолитного перекрытия толщиной 230 мм; колонны, примыкающие к перекрытию сверху и снизу, сечением 400x500 мм; нагрузка, передающаяся с перекрытия на колонну N = 150 кН; моменты в сечениях колонн по верхней и по нижней граням плиты в направлении размера колонны 500 мм - Msup = 80 кHм, Minf = 90 кНм; центр сечения колонны расположен на расстоянии хo = 500мм от свободного края плиты (черт.3.51); бетон класса В25 (Rbt = 1,05 МПа).

Черт.3.51. К примеру расчета 41

1 - точка приложения сипы F; 2 - центр тяжести незамкнутого контура;3 - незамкнутый контур расчетного сечения

Требуется проверить плиту перекрытия на продавливание.

Расчет. Усредненную рабочую высоту плиты принимаем равной = 200 мм.

За сосредоточенную продавливающую силу F, направленной снизу вверх, принимаем нагрузку от перекрытия F = N = 150 кН; за площадь опирания этой силы - сечение колонны ахb = 500х400 мм.

Проверим прочность расчетного сечения незамкнутого контура. Размеры этого контура равны:

Lx = хo + (a+ho)/2 = 500 + (500 + 200) /2 = 850 мм;

Ly = b+ho = 400 + 200 = 600 мм.

Периметр и момент инерции контура равны

и = 2Lx + Ly = 2·850 + 600 = 2300 мм;

Эксцентриситет силы F

При принятых направлениях моментов Мsuр и Mint (см. черт.3.51) наиболее напряженное волокно расчетного сечения расположено по краю сечения, наиболее удаленному от свободного края плиты. Это волокно расположено на расстоянии от центра тяжести равном

Тогда момент сопротивления равен:

Wb = I/у = 1,825·106/314,1 = 581025мм2.

Расчетный момент от колонн равен

М = Mloc/2 = (Мsuр + Мinf)/2=(80+90)/2=85 кНм.

Момент от эксцентричного приложения силы F равен F·eo = 150·0,0359 = 5,4 кНм. Этот момент противоположен по знаку моменту Mloc, следовательно, М = 85 - 5,4 = 79,6 кНм. Проверяем прочность из условия (3.182)

т.е. прочность сечения с незамкнутым контуром обеспечена.

Проверим прочность сечения замкнутого контура. Определяем его геометрические характеристики:

Периметр u = 2(a + b+ 2ho) = 2(500+400+2·200) = 2600 мм;

Момент сопротивления

Момент равен М = Мloc /2 = 85 кНм.

прочность плиты на продавливание обеспечена по всем сечениям.

РАСЧЕТ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО РАСКРЫТИЮ ТРЕЩИН

4.1. Расчет железобетонных элементов производят по непродолжительному раскрытию трещин и продолжительному раскрытию трещин. Непродолжительное раскрытие трещин определяют от совместного действия… 4.2. Расчет по раскрытию трещин производят из условия

Черт.4.3. График коэффициента ζ = zs /ho для определения плеча внутренней пары сил при расчете по раскрытию трещин изгибаемых элементов

 

, δ = h'f /ho для сечений без сжатой полки δ = 2a' /ho

Значение напряжения σs для внецентренно сжатых элементов, а также для внецентренно растянутых элементов при приложении силы N вне расстояния между арматурами S и S' (черт.4.2,б, в)определяют по формуле

(4.14)

где Sred - статический момент относительно нейтральной оси;значение Sred вычисляют по формуле

Sred = Sb + as1(S's - Ss), (4.15)

а высоту сжатой зоны х определяют из решения уравнения

, (4.16)

гдеIred - момент инерции приведенного сечения относительно нейтральной оси.

Для внецентренно растянутых элементов эксцентриситет е в формуле (4.16) принимают со знаком "минус".

Значение напряжения σs для внецентренно растянутых элементов при приложении силы N между центрами тяжести арматуры S и S' (т.е. при е' < ho - а) определяют по формуле

(4.17)

Для центрально растянутых элементов

(4.18)

Для внецентренно сжатых элементов прямоугольного сечения напряжение σs допускается определять по формуле

(4.19)

где φсrс - коэффициент, определяемый по табл.4.2.

Для внецентренно растянутых элементов прямоугольного сечения напряжение σs допускается определять по формулам:

а) при е' > ho – а' и при А's = 0 (4.20)

б) при А's ≥ Аs независимо от е' . (4.21)

При 0 < А's < As значение σs определяется линейной интерполяцией между значениями σs вычисленными по формулам (4.20) и (4.21).

Во всех случаях значение σs не должно превышать Rs,ser.

Таблица 4.2

e/ho Коэффициенты φсrс
при А's≥ As и значениях μas1,равных при А's = 0 и значениях μa1, равных
0,01 0,05 0,10 0,20 0,40 0,01 0,05 0,10 0,20 0,40
≤0,8 0,01 0,06 0,07 0,08 0,08 0,01 0,06 0,10 0,20 0,18
1,0 0,13 0,20 0,23 0,25 0,26 0,13 0,20 0,26 0,31 0,36
1,2 0,25 0,33 0,37 0,39 0,40 0,25 0,33 0,38 0,43 0,49
1,5 0,42 0,48 0,52 0,54 0,55 0,42 0,48 0,53 0,58 0,64
2,0 0,56 0,63 0,66 0,68 0,69 0,56 0,63 0,67 0,72 0,78
3,0 0,73 0,79 0,82 0,84 0,85 0,73 0,79 0,82 0,88 0,93
4,0 0,80 0,86 0,90 0,93 0,93 0,80 0,86 0,91 0,96 1,01
Примечание. При 0 < А's < As коэффициенты φсrс определяются линейной интерполяцией.

4.12. Значение базового расстояния между трещинами ls определяется по формуле

(4.22)

и принимают не менее 10ds и 100 мм и не более 40ds и 400 мм (для элементов с рабочей высотой поперечного сечения не более 1 м).

Здесь Abt - площадь сечения растянутого бетона, определяемая в общем случае согласно указаниям п.4.7. При этом высота растянутой зоны бетона принимается не менее 2а и не более 0,5h. Для прямоугольных, тавровых и двутавровых сечений высоту растянутой зоны бетона допускается определять по формуле (4.23) с учетом указанных ограничений:

y = ytk (4.23)

где yt - высота растянутой зоны бетона, определяемая как для упругого материала при коэффициенте приведения арматуры к бетону, а = Еs/Еь;

к - поправочный коэффициент, равный:

для прямоугольных сечений и тавровых с полкой в сжатой зоне - 0,90;

для двутавровых (коробчатых) сечений и тавровых с полкой в растянутой зоне - 0,95. Значение yt принимается равным:

для изгибаемых элементов

для внецентренно нагруженных элементов

гдеSred - статический момент полного приведенного сеченияотносительно растянутой грани;

Аred - см. формулу (4.8);

знак "плюс" принимается при сжимающей продольной силе N,

знак "минус" - при растягивающей силе N.

При различных диаметрах стержней растянутой арматуры значение ds принимается равным

, (4.24)

где ds1... dsk - диаметры стержней растянутой арматуры;

n1...nk - число стержней диаметрами соответственно ds1... dsk.

4.13. Значение коэффициента ψs определяют по формуле

, (4.25)

где σs,crc - напряжение в продольной растянутой арматуре в сечении сразу после образования нормальных трещин, определяемое по указаниям п.4.11, принимая в соответствующих формулах М = Mcrc , и , где ур и yc - расстояния соответственно от центра тяжести растянутой и сжатой арматуры до оси, проходящей через центр тяжести приведенного сечения, принятого при определении Mcrc; при этом знак " плюс" принимается при внецентренном сжатии, знак "минус" - при внецентренном растяжении; Mcrc - см. пп.4.4-4.8; N -продольная сила при действии рассматриваемой нагрузки;

σs - напряжение в продольной растянутой арматуре, при действии рассматриваемой нагрузки.

Если σs,crc > σs, принимают ψs = 0,2.

Для изгибаемых элементов значение коэффициента ψs, допускается определять по формуле

, (4.26)

и принимать не менее 0,2.

4.14. Ширину раскрытия трещин принимают равной: при продолжительном раскрытии

acrc = acrc1 ; (4.27)

при непродолжительном раскрытии

acrc = acrc,1 + acrc,2 - acrc,3, (4.28)

где acrc,1 - ширина раскрытия трещин, определяемая согласно п.4.10 при φ1 = 1,4 и при действии постоянных и длительных нагрузок;

acrc,2 - то же, при φ1 = 1,0 и действии всех нагрузок (т.е. включая кратковременные);

acrc,3 - то же, при φ1 = 1,0 и действии постоянных и длительных нагрузок.

Ширину непродолжительного раскрытия трещин можно также определять по формуле

(4.28а)

где значения σsl и σs определяются согласно п.4.11 при действии соответственно суммы постоянных и длительных нагрузок и всех нагрузок;

σs,crc. – см.п.4.13.

При отсутствии требований к конструкции по ограничению проницаемости и при выполнении условия

(4.29)

можно проверять только продолжительное раскрытие трещин, а при невыполнении условия (4.29) - только непродолжительное раскрытие.

Для изгибаемых элементов в формулах (4.28а) и (4.29) значения σs,crc, σs и σsl можно заменить соответственно Mcrc, M и Ml - момент от действия постоянных и длительных нагрузок.

Примеры расчета.

Пример 42. Дано: железобетонная плита перекрытия с размерами поперечного сечения (для половины сечения плиты) по черт.4.4; бетон класса В25 (Rbt,ser = 1,55 МПа, Rb,ser = 18,5 МПа, Еb = 30000 МПа); площадь сечения растянутой арматуры класса А400 Аs = 760 мм2 (2Æ22); полный момент в середине пролета М = 69 кНм; все нагрузки постоянные и длительные.

Черт.4.4. К примеру расчета 42

Требуется произвести расчет по раскрытию нормальных трещин

Расчет. Из черт.4.4 имеем: b = 85 мм, h = 400 мм, а = 58 мм, b'f = 725мм; h'f = 50мм.

Определим момент образования трещин Мсrс согласно п.4.5. Для этого определяем геометрические характеристики приведенного сечения при и A's = 0;

Ared = А + aAs = bh + (b'f - b)h'f + aAs = 85·400 + (725 - 85)50 + 6,67·760 = 34000 + 32000 + 5069 = 71069 мм2;

уt = Sred / Ared = [34000·400/2 + 32000(400-50/2) + 5069·58]/71069 = 268,7 мм;

Учтем неупругие деформации растянутого бетона путем умножения W на коэффициент γ, равный согласно табл.4.1 1,30, т.е. W = 4,49·106·1,3 = 5,84·106 мм3. Тогда Мсrс = Rbt,ser W = 1,55·5,84·106 = 9,052·106 Нмм = 9,05 кНм < М = 69 кНм. т.е. трещины образуются и расчет по раскрытию трещин необходим.

Определим напряжение в арматуре σs по формуле (4.13). Рабочая высота сечения ho = h - а = 400 - 58 = 342 мм; коэффициент приведения . Тогда при и из графика на черт.4.2 находим коэффициент ζ = 0,9 и плечо внутренней пары сил равно zs = ζ·ho = 0,9·342 = 308 мм.

Определим расстояние между трещинами ls по формуле (4.22).

Поскольку высота растянутого бетона, равная у = ytk = 268,7·0,9 = 247,8 мм > h/2 = 200 мм, площадь сечения растянутого бетона принимаем равной

Аbt =b·0,5h = 85·200 = 17000 мм2.

Тогда

что меньше 40ds = 880 мм и меньше 400 мм, поэтому оставляем ls = 246 мм.

Значение ψs определим по формуле (4.26)

.

Определяем по формуле (4.10) ширину продолжительного раскрытия трещин, принимая φ1 = 1,4, φ2 = 0,5 и φ3 = 1,0,

что меньше предельно допустимой ширины продолжительного раскрытия трещин, равной согласно п.4.2 acrc,ult = 0,3 мм.

Пример43. Дано: железобетонная плита фундамента с размерами поперечного сечения h = 300 мм, b = 1150 мм; а = 42 мм; бетон класса В15 (Rbt,ser = 1,1 МПа, Rb,ser = 11 МПа); рабочая арматура класса А400 с площадью сечения Аs = 923 мм2 (6Æ14); момент в расчетном сечении от постоянных и длительных нагрузок Мl = 50 кНм, от кратковременных нагрузок Msh = 10 кНм; фундамент эксплуатируется в неагрессивных условиях (выше верхнего уровня грунтовых вод).

Требуется произвести расчет по раскрытию нормальных трещин.

Расчет. Определим момент образования трещин Мсrс согласно пп.4.5-4.8. Поскольку , упругий момент сопротивления W определим без учета арматуры ,т.е.

Учтем неупругие деформации растянутого бетона путем умножения W на коэффициент γ равный согласно табл.4.1 1,30, т.е. W = 1,3·1,725·107 = 2,24·107 мм3. Тогда Mcrc = Rbt,ser W = 1,1·2,24·107 = 24,67·106 Нмм = 24,67 кНм < М = Ml + Msh = 50 + 10 = 60 кНм. т.е. трещины при действии полной нагрузки образуются и расчет по раскрытию трещин необходим.

Проверим условие (4.29) с заменой напряжений σs соответствующими моментами

следовательно, проверяем только продолжительное раскрытие трещин. Определяем напряжение в арматуре σs по формуле (4.13), принимая М = Мl. Рабочая высота сечения ho = h - а = 300 - 42 = 258 мм; коэффициент приведения . Тогда при и γ = 0,0 из графика на черт.4.3 находим ζ = 0,89. Плечо внутренней пары сил равно zs = ζ·ho = 0,89·258 = 229,6мм.

Для прямоугольного сечения высота растянутой зоны бетона с учетом неупругих деформаций равна у = 0,5hk = 0,5·300·0,9 = 135 мм > 2h = 2·42 = 84 мм и, кроме того, у = 135 мм < 0,5h = 150 мм поэтому оставляем у = 135 мм и тогда Abt = b·у = 1150·135 = 155250 мм2. Расстояние между трещинами определим по формуле (4.22) , что больше 40ds = 40·14 = 560 мм и более 400 мм, поэтому принимаем ls = 400 мм.

Значение ψs определяем по формуле (4.26), принимая М = Ml = 50 кН м.

.

Определяем по формуле (4.10) ширину продолжительного раскрытия трещин, принимая φ1 = 1,4, φ2 = 0,5 и φ3 = 1,0:

что меньше предельно допустимой ширины продолжительного раскрытия трещин, равной аcrc,ult = 0,3 мм.

Пример 44.Дано: железобетонная колонна промышленного здания, с размерами поперечного сечения h = 500 мм, b = 400 мм; а = а' = 50 мм; бетон класса В15 (Еb = 24000 МПа, Rb,ser = 11 МПа, Rbt,ser = 1,1 МПа); рабочая арматура класса А400 с площадью сечения As = А's = 1232 мм2 (2Æ28); усилия от постоянных и длительных нагрузок: Nl = 500 кН, Мl = 150 кНм; усилия от кратковременной (ветровой) нагрузки: Nsh = 0,0; Msh = 90 кНм.

Требуется рассчитать колонну по раскрытию трещин

Расчет. Определяем момент образования трещин Мсrс согласно пп.4.5-4.8.

Поскольку , определяем значения W и ея с учетом арматуры при коэффициенте приведения . Для прямоугольного сечения с симметричной арматурой yt = h/2 = 250 мм, а момент инерции Ired равен

Тогда .

Площадь приведенного сечения равна

Тогда .

Учитываем неупругие деформации растянутого бетона путем умножения W на коэффициент γ = 1,3 (см.табл.4.1), т.е. W = 19,95·106 ·1,3 = 25,94·106 мм,

Определяем момент Мсrc по формуле (4.4), принимая N = Nl = 500 кН,

Mcrc = Rbt,serW + Neя = 1,1·25,94·106 + 500000·90,5 = 73,76·106 Hмм = 73,76 кНм < M = Ml + Msh = 150 + 90 = 240 кНм,

т.е. трещины при действии всех нагрузок образуются и расчет по раскрытию трещин необходим.

Определяем напряжение в растянутой арматуре при действии всех нагрузок по формуле (4.19).

ho = h - а = 500 - 50 = 450 мм = 0,45 м.

При и из табл.4.2 находим φсrс = 0,54. Тогда

Аналогично определяем напряжение σs при действии постоянных и длительных нагрузок, т.е. принимая M = Ml = 150 кНм и N = Nl = 500 кН.

При и из табл.4.2 находим φсrс = 0,32.

Определим также напряжение σs при действии момента М = Мcrc = 73,76 кНм и силы N = 500 кН.

; по и находим φсrс = 0,08;

Проверим условие (4.29)

т.е. условие (4.29) не выполняется, следовательно, проверяем только непродолжительное раскрытие трещин, определяя асrс по формуле (4.28а). Для этого предварительно определяем acrc,2 по формуле (4.10) при φ1 = 1,0 и σs = 331,2 МПа.По формуле (4.25) имеем

Определяем расстояние между трещинами ls согласно п.4.12. Для этого вычислим высоту растянутой зоны бетона по формуле (4.23), принимая к = 0,90, а y = ytk = 81,7·0,9 = 73,5 мм < 2а = 2·50 = 100 мм.

Принимаем у = 100 мм и тогда площадь сечения растянутого бетона равна Аbt = уb = 100·400 = 40000 мм2

a .

Принимаем ls = 400 м.

что меньше предельно допустимой ширины непродолжительного раскрытия трещин, равной 0,4 мм.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ДЕФОРМАЦИЯМ

4.15.Расчет элементов железобетонных конструкции по деформациям производят с учетом эксплуатационных требований, предъявляемых к конструкции. Расчет по деформациям следует производить на действие: - постоянных, временных длительных и кратковременных нагрузок при ограничении деформаций технологическими или…

Черт.4.5. Эпюра кривизны в железобетонном элементе при общем случае определения прогиба

4.19. Для изгибаемых элементов постоянного сечения, имеющих трещины на каждом участке, в пределах которого изгибающий момент не меняет знак, допускается вычислять кривизну для наиболее напряженного сечения и принимать для остальных сечений такого участка кривизны изменяющимися пропорционально значениям изгибающего момента (черт.4.6).

Черт.4.6. Эпюры изгибающих моментов и кривизны в железобетонном элементе постоянного сечения

В этом случае для свободно опертых и консольных элементов максимальный прогиб определяют по формуле , (4.33) где - полная кривизна в сечении с наибольшим изгибающим моментом, от нагрузки, при которой определяется погиб;

ОБЩИЕ ПОЛОЖЕНИЯ

а) для элементов или участков элемента, где в растянутой зоне не образуются нормальные к продольной оси трещины, согласно п.4.23; б) для элементов или участков элемента, где в растянутой зоне имеются трещины,… Элементы или участки элементов рассматривают без трещин, если трещины не образуются (т.е. выполняется условие 4.2) при…

КРИВИЗНА ЖЕЛЕЗОБЕТОННОГО ЭЛЕМЕНТА НА УЧАСТКЕ БЕЗ ТРЕЩИН В РАСТЯНУТОЙ ЗОНЕ

(4.39) где М - изгибающий момент от внешней нагрузки (включая момент от продольной… Ired - момент инерции приведенного сечения относительно его центра тяжести, определяемый как для сплошного тела по…

КРИВИЗНА ЖЕЛЕЗОБЕТОННОГО ЭЛЕМЕНТА НА УЧАСТКЕ С ТРЕЩИНАМИ В РАСТЯНУТОЙ ЗОНЕ

(4.42) где Ired - момент инерции приведенного сечения относительно его центра… Eb.red - приведенный модуль деформации сжатого бетона, принимаемый равным , где значение εb1,red равно:

ОПРЕДЕЛЕНИЕ КРИВИЗНЫ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ НЕЛИНЕЙНОЙ ДЕФОРМАЦИОННОЙ МОДЕЛИ

при двухзначной эпюре деформации по сечению - ; при однозначной эпюре деформаций сжатого бетона по сечению - где εb,max и εb,min - максимальные и минимальные деформации бетона, определяемые на основе положений,…

Черт.4.8.Трехлинейная диаграмма состояния сжатого бетона

Кривизна на основе нелинейной деформационной модели определяется с помощью компьютерных программ.

При расчете статически неопределимых конструкций с учетом физической нелинейности для отдельных участков элементов используются жесткости, равные , где М - максимальный момент относительно геометрической оси элемента на рассматриваемом участке, - соответствующая кривизна, определяемая согласно п.4.27.

ОПРЕДЕЛЕНИЕ УГЛОВ СДВИГА ЖЕЛЕЗОБЕТОННОГО ЭЛЕМЕНТА

(4.51) где Qx - поперечная сила в сечении х от действия внешней нагрузки; φb - коэффициент, учитывающий влияние ползучести бетона и принимаемый равным: при продолжительном действии…

Примеры расчета

Пример 45. Дано: железобетонная плита перекрытия гражданского здания прямоугольного сечения размерами h = 200 мм, b = 1000 мм; ho = 173 мм; пролет l = 5,6 м; бетон класса В15 (Еb = 24000 МПа; Rb,ser = 11 МПа, Rbt,ser =1,1 МПа); растянутая арматура класса А400 (Es = 2·106 МПа) с площадью поперечного сечения As = 769 мм2 (5Æ14); полная равномерно распределенная нагрузка q = 7,0 кН/м, в том числе ее часть от постоянных и длительных нагрузок ql = 6,5 кН/м; прогиб ограничивается эстетическими требованиями.

Требуется рассчитать плиту по деформациям.

Расчет. Определим кривизну в середине пролета от действия постоянных и длительных нагрузок, так как прогиб ограничивается эстетическими требованиями.

Момент в середине пролета равен

Принимаем без расчета, что плита имеет трещины в растянутой зоне, в связи с чем кривизну определим по формуле (4.45). Коэффициент армирования равен

При продолжительном действии нагрузки коэффициент приведения арматуры равен . Из табл.4.5 при и находим φ1 = 0,43, а из табл.4.6 при и находим соответствующий продолжительному действию нагрузки коэффициент φ2 = 0,13.

Тогда

Прогиб определим по формуле (4.33), принимая согласно табл.4.3 ;

Согласно СНиП 2.01.07-85* табл.19, поз.5 определим предельно допустимый прогиб по эстетическим требованиям для пролета 5,6 м путем линейной интерполяции , т.е. условие (4.30) не выполняется.

Уточним прогиб плиты за счет учета переменной жесткости на участке с трещинами путем определения его по формуле (4.34). Для этого определяем момент трещинообразования Mcrc согласно пп.4.5 и 4.8.

Вычисляем геометрические характеристики приведенного сечения при коэффициенте приведения :

Заменяя в формуле (4.4) значение W на Wpl = Wγ, где согласно табл.4.1 γ = 1,3, определим значение Мсrс

Мсrс = Rbt,serWγ = 1,1·7,16·106·1,3 = 10,24·106 Нмм.

Момент в середине пролета от полной нагрузки равен

Тогда при Мсrс/Мтах = 10,24 / 27,44 = 0,373 вычисляем

Определим кривизну при М = Мl без учета трещин при продолжительном действии нагрузки, принимая из табл.4.4 для класса бетона В15 φb,cr = 3,4 и следовательно,

Поскольку влияние значения на прогиб незначительно, определяем эту кривизну по формуле (4.38), не пересчитывая значение Ired:

Тогда

т.е. уточненный прогиб также превышает допустимое значение.

Пример 46. Дано: железобетонная плита покрытия с расчетным пролетом 5,7 м; размеры сечения (для половины сечения плиты) по черт.4.9; бетон класса В25 (Еb = 30000 МПа, Rb,ser = 18,5 МПа, Rbt,ser = 1.55 МПа); рабочая арматура класса А400 с площадью сечения As = 380 мм2(1Æ22); постоянная и длительная равномерно распределенная нагрузка ql = 11 кН/м; прогиб плиты ограничивается эстетическими требованиями; влажность окружающего воздуха пониженная (w < 40%).

Требуется рассчитать плиту по деформациям.

Расчет. Поскольку приближенная формула для кривизны (4.45) не распространяется на конструкции, эксплуатируемые при влажности воздуха менее 40%, кривизну определяем по общей формуле (4.42) как для элементов с трещинами в растянутой зоне.

Момент в середине плиты от постоянных и длительных нагрузок для половины сечения плиты равен:

 

Черт.4.9. К примеру расчета 46

Предварительно определяем момент трещинообразования Мcrc согласно пп.4.5 и 4.8. Определим геометрические характеристики приведенного сечения при коэффициенте приведения :

Упругий момент сопротивления .

Заменяя в формуле (4.9) значение W на Wpl = Wγ, где γ = 1,3 (см. табл.4.1), определяем значение Мcrc:

Мсrс = Rbt,serWγ = 1,55·2,095·106 ·1,3 = 4,22·106 Нмм = 4,22 кНм.

По формуле (4.26) определим коэффициент ,

Приведенный модуль деформации при продолжительном действии нагрузки и при w < 40% равен

и тогда

Определяем высоту сжатой зоны по формуле (4.44), принимая усредненную ширину ребра 85 мм и площадь сжатых свесов равную Асв = (b'f - b)h'f = 635·30 = 19050 мм2, и рабочую высоту ho = 300 - 31 = 269 мм:

Из формулы (4.42) имеем

Прогиб определяем по формуле (4.33), принимая согласно табл.4.3 :

.

Согласно СНиП 2.01.07-85* табл.19, поз.3 предельно допустимый прогиб по эстетическим требованиям для пролета 5,7 м равен fult = 29 мм > f = 22,3 мм, т.е. условие (4.30) выполняется.

КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

ОБЩИЕ ПОЛОЖЕНИЯ

5.1. Для обеспечения несущей способности, пригодности к нормальной эксплуатации и долговечности бетонных и железобетонных конструкций помимо требований, определяемых расчетом, следует выполнять конструктивные требования:

- по геометрическим размерам элементов конструкций;

- по армированию (содержанию и расположению арматуры, толщине защитного слоя бетона, анкеровке и соединениям арматуры);

- по защите конструкций от неблагоприятного влияния воздействий среды.

ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ КОНСТРУКЦИЙ

- возможность надлежащего размещения арматуры (расстояния между стержнями, защитный слой бетона и т.д.), ее анкеровки и совместной работы с… - достаточную жесткость конструкций; - необходимую огнестойкость, водонепроницаемость конструкций, тепло- и звукоизоляцию, коррозионную стойкость,…

АРМИРОВАНИЕ

5.6. Арматура, расположенная внутри сечения конструкции, должна иметь защитный слой бетона (расстояние от поверхности арматуры до соответствующей… - совместную работу арматуры с бетоном; - анкеровку арматуры в бетоне и возможность устройства стыков арматурных элементов;

Черт.5.1. Установка конструктивной продольной арматуры по высоте сечения балки

В железобетонных стенах диаметр продольных стержней рекомендуется назначать не менее 8 мм. ПОПЕРЕЧНОЕ АРМИРОВАНИЕ 5.18. Поперечную арматуру следует устанавливать исходя из расчета на восприятие усилий, а также с целью ограничения…

Черт.5.2. Конструкция отгибов арматуры

Расстояние от грани свободной опоры до верхнего конца первого отгиба (считая от опоры) должно быть не более 50 мм. Угол наклона отгибов к продольной оси элемента следует принимать в пределах 30… 5.23. Во внецентренно сжатых линейных элементах, а также в изгибаемых элементах при наличии необходимой по расчету…

Черт.5.3. Конструкция пространственных арматурных каркасов в сжатых элементах

При насыщении продольной арматуры железобетонных стен более 2% поперечные стержни должны располагаться на расстояниях по вертикали не более 15d и не… В этом пункте d - диаметр вертикальных стержней. 5.26. Поперечную арматуру в плитах в зоне продавливания в направлении, перпендикулярном сторонам расчетного контура,…

Черт.5.4. Анкеровка арматуры путем устройства на концах специальных анкеров, в виде

а - приваренной пластины; б - обжатой пластины; в - высаженной головки; г - высаженной головки с шайбой; д - приваренного стержня к уголку; е - гайки с шайбой снаружи; ж - гайки внутри

Черт.5.5. Анкеровка арматуры путем отгиба

5.37.Для соединения арматуры принимают один из следующих типовстыков: а) стыки внахлестку без сварки: - с прямыми концами стержней периодического профиля;

Черт.5.6 Расположение стержней, стыкуемых внахлестку, и самих стыков

В качестве одного расчетного сечения элемента, рассматриваемого для определения относительного количества стыкуемой арматуры в одном сечении,… Допускается увеличивать относительное количество стыкуемой в одном расчетном… При наличии дополнительных анкерующих устройств на концах стыкуемых стержней (приварка поперечной арматуры, загиба…

Черт. 5.7. Закругления в фаски

5.44. Отверстия в железобетонных элементах для пропуска коммуникаций, строповки и т. п. следует принимать по возможности небольшими и располагать в… 5.45. При проектировании бетонных и железобетонных конструкций их очертание… При применении форм с откидными бортами очертание изделия не должно препятствовать повороту борта (черт.5.8,а) при…

Черт.5.8. Технологические уклоны

1 - изделие; 2 - форма; 3 - откидной борт; 4 - выпрессовщик; 5 - вкладыш; 6 - формующая рамка При использовании форм с одним неподвижным и одним откидным бортом для… Применение выпрессовывания и немедленной распалубки должно согласовываться с изготовителем изделия.

Черт.5.9. Примеры строповочных устройств без петель

а - при строповке блока; б - строповочные отверстия в колонне; в сочетание двух разных строповочных устройств в одном изделии

1 - грузовые стропы; 2 - вырез для захвата; 3 - отверстия для захвата; 4 - петли для захвата при извлечении из формы

Черт.5.10. Типы строповочных петель

Таблица 5.3 Петли Обозначения размеров Размеры d 6-12 14-16 18-22 … Таблица 5.4 Диаметр стержня петли, мм Масса изделия т, кг,… При подъеме за три петли и более, расположенных на одном торце изделия (например, на стеновой панели), масса изделия…

Черт.5.12. Фиксаторы однократного использования, обеспечивающие требуемую толщину S защитного слоя бетона

а-в - с большой поверхностью контакта с формой, изготовляемые из цементного раствора; г -с малой поверхностью контакта с формой, изготавливаемый из цементно-песчаногораствора; д - тоже, из асбестоцемента; е-з - то же, из пластмасс (перфорированные); и - то же, из алюминиевой перфорированной полосы; к-м - то же, из арматурной стали;

1 -рабочая поверхность формы; 2 - фиксатор; 3 - фиксируемая арматура; 4 - скрутка из вязальной проволоки; 5 - вязальная проволока, заделанная в фиксатор; 6 - возможное эластичное кольцо; 7 - упоры, привариваемые к арматуре

Вид фиксатора для обеспечения толщины защитного слоя бетона у лицевых граней элементов следует выбирать согласно требованиям табл.5.6. Не допускается применять в качестве фиксаторов обрезки арматурных стержней, пластин и т. п.

Черт.5.13. Фиксаторы однократного использования, обеспечивающие требуемое расстояние

1 - разделитель из арматурной стали, устанавливаемый между рядами сеток; 2 - фиксатор-подкладка для обеспечения защитного слоя бетона; 3 -… В растянутой зоне бетона элементов, эксплуатируемых в условиях агрессивной… 5.54. В случае применения фиксаторов однократного использования следует в соответствии с требованиями табл.5.6…

Черт.5.14. Фиксаторы однократного использования, обеспечивающие одновременно требуемую толщину защитного слоя бетона и расстоянияm между отдельными арматурными элементами

а - в плоских плитах; б и в - в балках прямоугольного сечения; г - в элементах кольцевого сечения

1 - фиксатор типа П-образного каркаса; 2 - арматурные сетки; 3 –рабочая поверхность формы; 4 - фиксатор типа каркаса-гребенки; 5 - плоский арматурный каркас; 6 - фиксаторы-стержни, дополнительно привариваемые к каркасами; 7 - фиксатор типа накладной скобы из арматурной проволоки; 8 - концентрически расположенные каркасы; 9-место связки

Для фиксаторов однократного использования, выполняемых из арматурной стали, следует выполнять чертежи. На рабочих чертежах арматурных изделий и в случае необходимости на чертежах общих видов армирования железобетонных элементов следует показывать расположение этих фиксаторов или опорных стержней, а в спецификациях предусматривать расход стали на их изготовление.

Расположение и число неметаллических фиксаторов-подкладок в рабочих чертежах допускается не приводить.

Таблица 5.6

Условия эксплуатации элемента Вид лицевой грани элемента Вид фиксаторов
Растворные, бетонные, асбестоцементные Пластмассовые (полиэтиленовые) Стальные
РМ РБ ПМ ПБ СЗ СН
На открытом воздухе Чистая бетонная под окраску; облицованная в процессе бетонирования керамической плиткой и др. + - + - + -
Обрабатываемая механическим способом + - - - - -
В помещениях снормальным влажностным режимом Чистая бетонная + - + - + -
Бетонная под окраску водными составами + ´ + ´ + ´
Бетонная под окраску масляными, эмалевыми и синтетическими красками; бетонная под облицовку + + + + + +
Бетонная под оклейку обоями + + + + + -
Примечания: 1.Условные обозначения: Р - растворные, бетонные, асбестоцементные фиксаторы; П - пластмассовые, полиэтиленовые фиксаторы; С - стальные фиксаторы; М - малая поверхность контакта фиксатора с формой (опалубкой); Б - большая поверхность контакта фиксатора с формой (опалубкой); 3 - фиксаторы, защищенные от коррозии; Н -фиксаторы, незащищенные от коррозии. 2.Знак „+" допускается; знак „-" - не допускается; знак „´" - допускается, но не рекомендуется.


ПРИЛОЖЕНИЕ 1

СОРТАМЕНТ АРМАТУРЫ

ПРИЛОЖЕНИЕ 2

ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ

УСИЛИЯ ОТ ВНЕШНИХ НАГРУЗОК И ВОЗДЕЙСТВИЙ В ПОПЕРЕЧНОМ СЕЧЕНИИ ЭЛЕМЕНТА

М - изгибающий момент;

N - продольная сила;

Q - поперечная сила;

Т - крутящий момент.

ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ

Rb.n, - нормативное сопротивление бетона осевому сжатию;

Rb, Rb.ser - расчетные сопротивления бетона осевому сжатию для предельных состояний соответственно первой и второй групп;

Rbt,n - нормативное сопротивление бетона осевому растяжению;

Rbt, Rbt.ser - расчетные сопротивления бетона осевому растяжению для предельных состояний соответственно первой и второй групп;

Rs, Rs.ser - расчетные сопротивления арматуры растяжению для предельных состояний соответственно первой и второй групп;

Rsw - расчетное сопротивление поперечной арматуры растяжению;

Rsc - расчетное сопротивление арматуры сжатию для предельных состояний первой группы;

Еb - начальный модуль упругости бетона при сжатии и растяжении;

Es - модуль упругости арматуры.

ХАРАКТЕРИСТИКИ ПОЛОЖЕНИЯ ПРОДОЛЬНОЙ АРМАТУРЫ

В ПОПЕРЕЧНОМ СЕЧЕНИИ ЭЛЕМЕНТА

S - обозначение продольной арматуры:

а) при наличии сжатой и растянутой от действия внешней нагрузки зон сечения - расположенной в растянутой зоне;

б) при полностью сжатом от действия внешней нагрузки сечении - расположенной у менее сжатой грани сечения;

в) при полностью растянутом от действия внешней нагрузки сечении: для внецентренно растянутых элементов расположенной у более растянутой грани сечения; для центрально растянутых элементов - всей в поперечном сечении элемента;

S' - обозначение продольной арматуры:

а) при наличии сжатой и растянутой от действия внешней нагрузки зон сечения - расположенной в сжатой зоне;

б) при полностью сжатом от действия внешней нагрузки сечении - расположенной у более сжатой грани сечения,

в) при полностью растянутом от действия внешней нагрузки сечении внецентренно растянутых элементов расположенной у менее растянутой грани сечения.

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

bf, b'f - ширина полки таврового и двутаврового сечений соответственно в растянутой и сжатой зонах; h - высота прямоугольного, таврового и двутаврового сечений; hf, h'f - высота полки таврового и двутаврового сечений соответственно в растянутой и сжатой зонах;

– Конец работы –

Используемые теги: пособие, проектированию, бетонных, железобетонных, конструкций, тяжелого, бетона, без, предварительного, напряжения0.133

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ПОСОБИЕ ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЗ ТЯЖЕЛОГО БЕТОНА БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Лекция: Уровни абстракции ОС. ОС с архитектурой микроядра. Виртуальные машины. Цели проектирования и разработки ОС. Генерация ОС В лекции рассматриваются следующие вопросы: методы проектирования и реализации ОС: уровни абстракции ОС; ОС с архитектурой мик
В лекции рассматриваются следующие вопросы методы проектирования и реализации... Содержание Введение Уровни абстракции ОС Операционные системы с микроядром Виртуальные машины другой распространенный подход к...

Лекция 1 Цели и задачи водохозяйственного проектирования 1.Введение в водохозяйственное планирование к проектирование
Лекция Цели и задачи водохозяйственного проектирования... Вопросы Введение в водохозяйственное планирование к проектирование...

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ДОМАШНЕМУ ЗАДАНИЮ НА ТЕМУ: «Технологическое проектирование участка цеха по изготовлению авиационных деталей размерной обработкой», по дисциплине «Проектирование цехов авиационного производства»
КАФЕДРА ТЕХНОЛОГИИ ПРОИЗВОДСТВА... ЛЕТАТЕЛЬНЫХ АППАРАТОВ... ПОЯСНИТЕЛЬНАЯ ЗАПИСКА...

Курсовое проектирование по дисциплине Технология разработки программных продуктов является неотъемлемой частью подготовки специалистов в среднем профессиональным образованием. Курсовое проектирование является завершающим этапом в изучении дисциплины Техно
Актуальность данной темы обусловлена тем что студенту предоставляется... Курсовое проектирование по дисциплине Технология разработки программных продуктов является неотъемлемой частью...

Рациональное использование бетона и железобетонных изделий в строительстве
Экономия материальных ресурсов является залогом успеха как отдельного предприятия, так и экономики страны в целом.Значение экономии как средства… Уменьшение материальных затрат оказывает непосредственное влияние на снижение… Все это обуславливает постоянное и все более возрастающие внимание, уделяемое в нашей стране проблеме экономии…

Задание на проектирование. Проектирование промышленных предприятий
При подготовке задания на проектирование должна быть также выбрана площадка для строительства в том районе или пункте, которые установлены на основе… Технико-экономические обоснования разрабатываются отраслевыми проектными… Оптимальной наивыгоднейшей считается такая производственная мощность предприятия, при которой в процессе его…

Расчет и проектирование деревянных ферм И распорных деревянных конструкций
На сайте allrefs.net читайте: "Расчет и проектирование деревянных ферм И распорных деревянных конструкций"

СОЦИАЛЬНАЯ РАБОТА: КУРСОВОЕ И ДИПЛОМНОЕ ПРОЕКТИРОВАНИЕ УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ
Государственное образовательное учреждение... Высшего профессионального образования... Казанский государственный технологический университет...

ПОСОБИЕ ПО ОБСЛЕДОВАНИЮ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ЗДАНИЙ
ПОСОБИЕ ПО ОБСЛЕДОВАНИЮ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ЗДАНИЙ... Москва... АО ЦНИИПРОМЗДАНИЙ...

Расчет и конструирование железобетонных конструкций
Принимаем сетку колонн 6х6м. Тогда здание будет иметь в поперечном направлении три пролета по 6м и в продольном направлении семь пролетов по 6м.… В продольном направлении по ригелям укладывают плиты перекрытия. Ширина… Рядовые плиты укладывают свободно на полки ригелей, которые имеют подрезку по торцам.

0.032
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам