рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Химия. Основные понятия органической химии

Химия. Основные понятия органической химии - раздел Химия, Химия Органическая Химия Основные Понятия Органическо...

Химия

ОРГАНИЧЕСКАЯ ХИМИЯ

Основные понятия органической химии

Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучению которых посвящена целая область — органическая химия (сформировалась в 60-е годы 19-ого века).

Несколько причин обусловили проявление углеродом выше отмеченных свойств. Доказано, что энергия связи (прочность связи) С—С (348 кДж/моль) сопоставима с прочностью связей С—О (344 кДж/моль). Углерод обладает возможностью проявлять не одну, а целых три разновидности гибридизации орбиталей: в случае sр3-гибридизации образуются четыре гибридных орбитали, имеющие тетраэдрическую ориентацию; с их помощью образуются простые ковалентные связи; в случае sp2-гибридизации образуются три гибридные орбитали, ориентированные в одной плоскости, и с их помощью образуются двойные кратные связи; наконец, с помощью двух sp-гибридизованных орбиталей, имеющих линейную ориентацию, между атомами углерода возникают тройные кратные связи. Сейчас хорошо известно, что атомы углерода способны образовывать простые, двойные и тройные связи не только друг с другом, но также и с другими элементами.

Теория химического строения А. М. Бутлерова. (вопрос №4)

Крупнейшим событием в развитии органической химии было создание в 1961 г. великим русским ученым А.М. Бутлеровым теории химического строения органических соединений.

До А.М. Бутлерова считалось невозможным познать строение молекулы, т. е. порядок химической связи между атомами. Многие ученые даже отрицали реальность атомов и молекул.

А.М. Бутлеров опроверг это мнение. Он исходил из правильных материалистическихи философских представлений о реальности существования атомов и молекул, о возможности познания химической связи атомов в молекуле. Он показал, что строение молекулы можно установить опытным путем, изучая химические превращения вещества. И наоборот, зная строение молекулы, можно вывести химические свойства соединения.

Теория химического строения объясняет многообразие органических соединений. Оно обусловлено способностью четырехвалентного углерода образовывать углеродные цепи и кольца, соединяться с атомами других элементов и наличием изомерии химического строения органических соединений. Эта теория заложила научные основы органической химии и объяснила ее важнейшие закономерности. Основные принципы своей теории А.М. Бутлеров изложил в докладе «О теории химического строения»

Основные положения этой теории (иногда ее называют структурной):

1) атомы в молекулах соединены между собой в определенном порядке химическими связями согласно их валентности так,что свободных валентностей не остаётся. Эта последовательность межатомных связей называется химическим строением и отражается одной структурной формулой;

2) свойства вещества определяются не только качественным составом, но и его химическим строением, взаимным влиянием атомов, как связанных между собой химическими связями, так и непосредственно не связанных;

3) хим. строение молекул может быть установлено на основе изучения их химических свойств, химическими методами на основе тех реакций, в которые вступает это вещество;

4) зная свойства вещества можно предвидеть строение;

5) атомы и группы атомов оказывают др. на др. влияние. Др. на др. влияют не только связанные атомы, но и дистанцированные.

Важным следствием теории строения был вывод о том, что каждое органическое соединение должно иметь одну химическую формулу, отражающую ее строение. Такой вывод теоретически обосновывал хорошо известное уже тогда явление изомерии,— существование веществ с одинаковым молекулярным составом, но обладающих различными свойствами.

Строение атома кислорода.

Любой природный атом кислорода содержит 8 протонов в ядре, но число нейтронов может быть равно 8, 9 или 10. Наиболее распространенный из трех изотопов кислорода (99,76%) – это 168O (8 протонов и 8 нейтронов). Содержание другого изотопа, 188O (8 протонов и 10 нейтронов), составляет всего 0,2%. Этот изотоп используется как метка или для идентификации некоторых молекул, а также для проведения биохимических и медико-химических исследований (метод изучения нерадиоактивных следов). Третий нерадиоактивный изотоп кислорода 178O (0,04%) содержит 9 нейтронов и имеет массовое число 17. После того как в 1961 масса изотопа углерода 126C была принята Международной комиссией за стандартную атомную массу, средневзвешенная атомная масса кислорода стала равна 15,9994. До 1961 стандартной единицей атомной массы химики считали атомную массу кислорода, принятую для смеси трех природных изотопов кислорода равной 16,000. Физики за стандартную единицу атомной массы принимали массовое число изотопа кислорода 168O, поэтому по физической шкале средняя атомная масса кислорода составляла 16,0044(

В атоме кислорода 8 электронов, при этом 2 электрона находятся на внутреннем уровне, а 6 электронов – на внешнем. Поэтому в химических реакциях кислород может принимать от доноров до двух электронов, достраивая свою внешнюю оболочку до 8 электронов и образуя избыточный отрицательный заряд.

Строение атома азота

Строение молекулы. Молекула NH3 имеет почти пирамидальное строение. Угол связи H-N-H составляет 107°, что близко к величине тетраэдрического угла 109°. Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра.

Характерные свойства

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.

1.Различная типологиятипология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерииизомерии .

Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологовгомологов ) отличается на одну и ту же группу (чаще всего CH2). Целый ряд физико-химических свойствфизико-химических свойств в первом приближении изменяется симбатно по ходу гомологического ряда. Это важное свойство используется в материаловеденииматериаловедении при поиске веществ с заранее заданными свойствами.

Изомерами называются вещества, имеющие одну и ту же молекулярную массу и формулу, но разные свойства.

Формулы огранических соединений:

1. Молекулярная-показывает истинное количество атомов (брутто ф-ла)

2. Структурная-показывает количество и порядок соединения атомов в молекуле.

3. Простейшая-показывает низшее целочисленное соотношение между числом атомов эл-тов. Устанавливается по результатам химического элементного анализа.

Структурные формулы. Существование изомеров потребовало использования не только простых молекулярных формул, но и структурных формул, отражающих порядок связи атомов в молекуле каждого изомера. В структурных формулах ковалентная связь обозначается черточкой. Как и в структурных формулах неорганических веществ, каждая черточка означает общую электронную пару, связывающую атомы в молекуле.

Структурная формула — изображение химических связей между атомами в молекуле с учетом их валентности.

Классификация органических соединений. Для классификации органических соединений по типам и построения их названий в молекуле органического соединения принято выделять углеродный скелет и функциональные группы.

Углеродный скелет представляет собой последовательность химически связанных между собой атомов углерода. Функциональные группы образуют все атомы, кроме водорода, или группы атомов, связанные с атомом углерода.

Типы углеродных скелетов. Углеродные скелеты разделяют на ациклические (не содержащие циклов), циклические и гетероциклические.

органические соединения

ациклические циклические

предельные нециклические карбоциклические гетороциклические

алициклич. ароматич.соед.

В гетероциклическом скелете в углеродный цикл включается одни или несколько атомов, отличных от углерода. Исторически сложилась традиция не рассматривать такие гетероатомы как функциональные группы, а считать их частью углеродного скелета.

В самих углеродных скелетах нужно классифицировать отдельные атомы углерода по числу химически связанных с ними атомов углерода. Если данный атом углерода связан с одним атомом углерода, то его называют первичным, с двумя — вторичным, тремя — третичным и четырьмя —четвертичным.

Поскольку атомы углерода могут образовывать между собой не только одинарные, но и кратные (двойные и тройные) связи, то соединения, содержащие только одинарные связи углерод—углерод, называют насыщенными, соединения с кратными углеродѕ углеродными связями называют ненасыщенными. Соединения, в которых атомы углерода связаны только с атомами водорода, называют углеводородами.

Углеводороды признаны в органической химии родоначальными. Разнообразные соединения рассматриваются как производные углеводородов, полученные введением в них функциональных групп.

В отличие от неорганических веществ органические вещества имеют ряд характерных особенностей:

1) атомы углерода способны соединяться друг с другом;

2) образуют цепи и кольца, что не так типично для неорганических соединений. Это одна из причин многообразия органических соединений;

3) одной из важных особенностей органических соединений, которая накладывает отпечаток на все их химические свойства, является характер связей между атомами в их молекулах.

Эти связи имеют ярко выраженный ковалентный характер. Органические вещества в большинстве не электролиты, не диссоциируют в растворах на ионы и сравнительно медленно взаимодействуют друг с другом.

Время, необходимое для завершения реакций между органическими веществами, измеряется часами, а иногда и днями.

Если ионные (неорганические) соединения легко диссоциируют в воде на ионы и реакции между ними протекают весьма быстро, то органические вещества, содержащие простые (одинарные) С – С и С – Н связи, взаимодействуют между собой с большим трудом.

При нагревании в пределах 400–600 °C органические соединения полностью разлагаются и обугливаются, а в присутствии кислорода сгорают. Это объясняется сравнительно небольшой прочностью связи между атомами углерода (355,6 кДж/моль);

4) важной особенностью органических соединений является и то, что среди них широко распространено явление изомерии;

5) имеется множество соединений углерода, которые обладают одинаковым качественным и количественным составом и одинаковой молекулярной массой, но совершенно различными физическими и даже химическими свойствами;

6) многие органические соединения являются непосредственными носителями, участниками или продуктами процессов, которые протекают в живых организмах, – ферменты, гормоны, витамины.

Особенности атома углерода объясняются его строением:

1) он имеет четыре валентных электрона;

2) атомы углерода образуют с другими атомами, а также друг с другом общие электронные пары. При этом на внешнем уровне каждого атома углерода будет восемь электронов (октет), четыре из которых одновременно принадлежат другим атомам.

В органической химии обычно пользуются структурными формулами, поскольку атомы имеют пространственное расположение в молекуле.

Структурные формулы– это язык органической химии.

В структурных формулах ковалентная связь обозначается черточкой. Как и в структурных формулах неорганических веществ, каждая черточка означает общую электронную пару, связывающую атомы в молекуле. Используются также эмпирическиеи электронныеформулы.

Функциональные группы. В большинстве органических соединений, кроме атомов углерода и водорода, содержатся атомы других элементов (не входящие в скелет). Эти атомы или их группировки, во многом определяющие химические и физические свойства органических соединений, называют функциональными группами.Функциональная группа оказывается окончательным признаком, по которому соединения относятся к тому или иному классу.

 

Соединения, которые содержат несколько функциональных групп, называют полифункциональными.

Примером гомологического ряда может служить ряд предельных углеводородов (алканов). Простейший его представитель — метан СН4. Гомологами метана… Состав молекул всех членов гомологического ряда может быть выражен одной общей… Гомологические ряды могут быть построены для всех классов органических соединений. Зная свойства одного из членов…

Структурная

Пространственная

Динамическая

Все изомеры делят на два больших класса— структурные изомеры и пространственные изомеры.   Структурными называют изомеры, отвечающие различным структурным формулам органических соединений (с разным порядком…

Электронными эффектами называют смещение электронной плотности в молекуле под влиянием заместителей. Электронный эффект — когда атом или группа атомов влияют на распространение плотности в молекуле.(лекции).

Атомы, связанные полярной связью, несут частичные заряды, обозначаемые греческой буквой “дельта” (d ). Атом, “оттягивающий” электронную плотность s -связи в свою сторону, приобретает отрицательный заряд d - . При рассмотрении пары атомов, связанных ковалентной связью, более электроотрицательный атом называют электроноакцептором. Его партнер по s -связи соответственно будет иметь равный по величине дефицит электронной плотности, т. е. частичный положительный заряд d +, и будет называться электронодонором.

Смещение электронной плотности по цепи s -связей называется индуктивным эффектом и обозначается I.

Индуктивный эффект — смещение эл. плотности по цепи сигма связей под влиянием различных атомов с различной электроотрицательностью(например смещение эл.плотности). Индуктивный эффект передается по цепи с затуханием. Направление смещения электронной плотности всех s -связей обозначается прямыми стрелками. В зависимости от того, удаляется ли электронная плотность от рассматриваемого атома углерода или приближается к нему, индуктивный эффект называют отрицательным (-I) или положительным (+I). Знак и величина индуктивного эффекта определяются различиями в электроотрицательности между рассматриваемым атомом углерода и группой, его вызывающей.

 

Электроноакцепторные заместители, т.е. атом или группа атомов, смещающие электронную плотность s -связи от атома углерода, проявляют отрицательный индуктивный эффект (-I-эффект).

Электронодонорные заместители, т. е. атом или группа атомов, смещающие электронную плотность к атому углерода, проявляют положительный индуктивный эффект (+I-эффект).

+I-эффект проявляют алифатические углеводородные радикалы, т. е. алкильные радикалы (метил, этил и т. д.).

Большинство функциональных групп проявляют -I-эффект: галогены, аминогруппа, гидроксильная, карбонильная, карбоксильная группы.

Индуктивный эффект проявляется и в случае, когда связанные атомы углерода различны по состоянию гибридизации. Так, в молекуле пропена метильная группа проявляет +I-эффект, поскольку атом углерода в ней находится в sp3-гибридном состоянии, а sp2-гибридизованный атом (при двойной связи) выступает в роли электроноакцептора, так как имеет более высокую электроотрицательность

При передаче индуктивного эффекта метильной группы на двойную связь в первую очередь ее влияние испытывает подвижная p -связь.

Влияние заместителя на распределение электронной плотности, передаваемое по p -связям, называют мезомерным эффектом (М). Мезомерный эффект также может быть отрицательным и положительным. В структурных формулах его изображают изогнутой стрелкой, начинающейся у центра электронной плотности и завершающейся в том месте, куда смещается электронная плотность.

Наличие электронных эффектов ведет к перераспределению электронной плотности в молекуле и появлению частичных зарядов на отдельных атомах. Это определяет реакционную способность молекулы.

 

Классификация органических реакций. В ходе реакции в молекулах реагирующих веществ разрываются одни химические связи и образуются другие. Органические реакции классифицируются по типу разрыва химических связей в реагирующих частицах. Из их числа можно выделить две большие группы реакций — радикальные и ионные.

Радикальные реакции — это процессы, идущие с гомолитическим разрывом ковалентной связи. При гомолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гомолитического разрыва образуются свободные радикалы.

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

Ионные реакции — это процессы, идущие с гетеролитическим разрывом ковалентных связей, когда оба электрона связи остаются с одной из ранее связанных частиц.

В результате гетеролитического разрыва связи получаются заряженные частицы: нуклеофильная и электрофильная.

Нуклеофильная частица (нуклеофил) — это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь.

Электрофильная частица (электрофил) — это частица, имеющая незаполненный внешний электронный уровень. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той частицы, с которой он взаимодействует.

В органической химии все структурные изменения рассматриваются относительно атома (или атомов) углерода, участвующего в реакции. Наиболее часто встречаются следующие типы превращений (реакций):

1. присоединение

2. замещение

3. отщепление (элиминирование)

4. полимеризация

В соответствии с вышеизложенным хлорирование метана под действием света классифицируют как радикальное замещение, присоединение галогенов к алкенам — как электрофильное присоединение, а гидролиз алкилгалогенидов — как нуклеофильное замещение.

(вопрос №9)

Ковалентная связь (атомная связь, гомеополярная связь)—химическая связьхимическая связь , образованная перекрытием (обобществлением) парывалентныхвалентных электронных облаковэлектронных облаков . Обеспечивающие связь электронные облака (электроны) называются общей электронной парой. Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электроновэлектронов . Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Электроны тем подвижнее, чем дальше они находятся от ядер.

σ-связь и π-связь

Сигма (σ)- , пи (пи (πпи (π)-связи — приближенное описание видов ковалентных связей в молекулах различных соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании π-связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этиленэтилен , ацетиленацетилен и бензолбензол .

В молекуле этилена С2Н4 имеется двойная связь СН2=СН2, его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвертого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют π-связью.

В линейной молекуле ацетилена

Н—С≡С—Н (Н : С ::: С : Н)

имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две π-связи между этими же атомами углерода. Две π-связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.

Все шесть атомов углерода циклической молекулы бензола С6H6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвертых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные π-связи, а единая π-электронная система из шести электронов, общая для всех атомов углерода. Связи между атомами углерода в молекуле бензола совершенно одинаковые.

Вопрос №14.

Ароматичность— особое свойство некоторых химических соединений, благодаря которому сопряженное кольцо ненасыщенных связей проявляет аномально высокую стабильность; большую чем та, которую можно было бы ожидать только при одном сопряжении .

Ароматичность не имеет непосредственного отношения к запаху органических соединений, и является понятием, характеризующим совокупность структурных и энергетических свойств некоторых циклических молекул, содержащих систему сопряженных двойных связей. Термин «ароматичность» был предложен потому, что первые представители этого класса веществ обладали приятным запахом. К ароматическим соединениям относят обширную группу молекул и ионов разнообразного строения, которые соответствуют критериям ароматичности . Правило Хюккеля:

Ароматическими являются молекулы, подчиняющиеся правилу Хюккеля : ароматической является плоская моноциклическая сопряженная система, содержащая (4n + 2)π-электронов (где n = 0,1,2…). Ароматические соединения

Кроме бензольного кольца и его конденсированных аналогов ароматические свойства проявляют многие гетероциклы — гетарены: пиррол , фуран , тиофен , пиридин , индол , оксазол и другие. При этом в шестичленные циклы гетероатом отдает свои валентные электроны, а в 5-атомных — неподеленную электронную пару.

Одним из простейших ароматических соединений является бензол . Эти соединения играют большую роль в органической химии и обладают многими химическими свойствами, свойственными только этому классу соединений.

 

Карбоциклические соединения— класс органических соединений, характеризующихся наличием колец (циклов) из атомов углерода . Карбоциклические соединения отличаются отгетероциклических соединений отсутствием в кольцах каких-либо других атомов, помимо атомов углерода. Карбоциклические соединения подразделяются на алициклические — насыщенные (циклопарафины ), ненасыщенные и ароматические.

Гетероциклические соединения(гетероциклы) — органические соединения , содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами ) в цикле. Наиболее разнообразны и хорошо изучены ароматические азотсодержащие гетероциклические соединения. Предельные случаи гетероциклических соединений — соединения, не содержащие атомов углерода в цикле, например, пентазол .

 

(Вопрос №15) Направляющее (ориентирующее) действие заместителей в бензольном кольце. Классификация заместителей.

Заместитель — это любой атом или группа атомов, замещающих атом водорода в родоначальной структуре. При изучении реакций замещения в бензольном ядре было обнаружено, что если в бензольном ядре уже содержится какая-либо замещающая группа, то вторая группа вступает в определенное положение в зависимости от характера первого заместителя. Таким образом, каждый заместитель в бензольном ядре обладает определенным направляющим, или ориентирующим, действием.

На положение вновь вводимого заместителя также оказывает влияние природа самого заместителя, т. е. электрофильная или нуклеофильная природа действующего реагента. Подавляющее большинство наиболее важных реакций замещения в бензольном кольце – это реакции электрофильного замещения (замена атома водорода, отщепляющегося в виде протона, положительно заряженной частицей) – реакции галогенирования, сульфирования, нитрования и др.

Все заместители по характеру своего направляющего действия делятся на две группы:

1.Заместители первого рода в реакциях электро-фильного замещения направляют последующие вводимые группы в орто– и параположение.

К заместителям этого рода относятся, например, следующие группы, расположенные в порядке убывания своей направляющей силы: —NH2, —OH, – CH3.

2.Заместители второго рода в реакциях электро-фильного замещения направляют последующие вводимые группы в метаположение.

К заместителям этого рода относятся следующие группы, расположенные в порядке убывания своей направляющей силы: —NO2, —C≡N, – SO3H.

Заместители первого рода содержат одинарные связи; для заместителей второго рода характерно наличие двойных или тройных связей.

Заместители первого рода в подавляющем большинстве случаев облегчают реакции замещения. Например, для нитрования бензола нужно нагревать его со смесью концентрированных азотной и серной кислот, тогда как фенол С6Н5ОН можно успешно нитровать разбавленной азотной кислотой при комнатной температуре с образованием орто– и паранитрофенола.

Заместители второго рода обычно вообще затрудняют реакции замещения. Особенно затруднено замещение в орто– и параположении и относительно легче происходит замещение в мета-положении.

В настоящее время влияние заместителей объясняют тем, что заместители первого рода являются электронодонорными (отдающими электроны), т. е. их электронные облака смещаются в сторону бензольного ядра, что повышает реакционную способность атомов водорода.

Повышение реакционной способности атомов водорода в кольце облегчает течение электрофильных реакций замещения. Так, например, при наличии ги-дроксила свободные электроны кислородного атома сдвигаются в сторону кольца, что повышает электронную плотность в кольце, причем особенно повышается электронная плотность у атомов углерода в орто-и параположениях к заместителю.

 

(Вопрос№18)

Классификация реакций по конечному результату

В основе этой классификации лежит сопоставление числа, состава и строения исходных и конечных продуктов по уравнению реакции. В соответствии с конечным результатом различают следующие типы органических реакций:

• разложение;

соединение;

замещение;

• перегруппировки (изомеризация).

Если процесс сопровождается изменением степени окисления атома углерода в органическом соединении, то выделяют также реакции окисления и восстановления. Окисление и восстановление органических веществ может проходить по какому-либо из названных выше типов реакций.

1.Разложение.

В результате из 1-ого сложного вещества образуются 2 простых.

Реакции Крекинга (крекинг)-расщепление углеродного скелета на 2 равнозначных углеродных фрагмента. С16Н34=t'=С8Н18+С8Н16

Е(отщепление)-отрыв от молекулы исходного орг.соединения отдельных атомных групп при сохранении углеродного скелета.

Соединение.

Молекула орг. и молекула простого или сложного вещества объединяются в одну. А+В=С

Замещение.

КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ РЕАКЦИЙ И РЕАГЕНТОВ План 1.Классификация по конечному результату.

Гетеролитические реакции - реакции, в которых разрыв связи происходит несимметрично, так что пара электронов связи остается у одного из образующихся фрагментов.

A : B ® A: + B

В ходе таких реакций часто образуются ионные интермедиаты (промежуточные частицы) – карбокатионы и карбоанионы, например:

Карбкатионы представляют собой положительно заряженные частицы с тремя заместителями при центральном атоме углерода, имеющем одну вакантную несвязывающую орбиталь. Карбанионы – отрицательно заряженные частицы с тремя заместителями при центральном атоме углерода, имеющем несвязывающую орбиталь с парой электронов.

Гомолитические реакции – реакции, в которых разрыв связи происходит симметрично, так что каждому из образующихся фрагментов отходит по одному электрону.

A : B ® A + B

В ходе гомолитических реакций в качестве интермедиатов образуются свободные радикалы – частицы, содержащие неспаренный электрон, например:

Синхронные реакции – это особый тип реакций, в которых разрыв старых и образование новых связей происходят одновременно за счет согласованного перемещения электронов в циклическом комплексе. Примером таких реакций может служить реакция Дильса-Альдера:

Взаимодействующие в органической реакции вещества подразделяют на реагент и субстрат. При этом считается, что реагент атакует субстрат. Субстратом, как правило, считают молекулу, которая предоставляет атом углерода для новой связи. Например, в реакции (1) алкен является субстратом, а молекула брома реагентом. По типу реагента реакции делятся на электрофильные (Е), нуклеофильные (N) и радикальные (R).

В нуклеофильных реакциях реагент (нуклеофил) имеет на одном из атомов свободную пару электронов и является нейтральной молекулой или анионом (Hal-, OH-, RO-, RS-, RCOO-, R-, CN-, H2O, ROH, NH3, RNH2 и др.). Все нуклеофилы – основания Льюиса. Нуклеофил атакует в субстрате атом с наименьшей электронной плотностью (т.е. с частичным или полным положительным зарядом). При этом новая связь образуется за счет электронной пары нуклеофила, а старая претерпевает гетеролитический разрыв. Примером нуклеофильной реакции может служить нуклеофильное замещение (символ SN) у насыщенного атома углерода:

В электрофильных реакциях атакующий реагент (электрофил) имеет вакантную орбиталь и является нейтральной молекулой или катионом (Cl2, SO3, BF3, H+, Br+, R+, NO2+, и др.). Все электрофилы – кислоты Льюиса. Электрофил атакует в субстрате атом с наибольшей электронной плотностью, причем старая связь претерпевает гетеролитический распад, а образование новой связи происходит за счет пары электронов субстрата. Пример электрофильной реакции – электрофильное присоединение (символ AdE) к С=С связи:

В радикальных реакциях реагент имеет неспаренный электрон и является свободным радикалом (Cl , R и др.). В ходе радикальных реакций связь в субстрате разрывается гомолитически, а новая связь образуется за счет неспаренного электрона свободного радикала и одного из электронов старой связи. Примером радикальных реакций может служить радикальное замещение (символ SR) в алканах:

R-H + Cl• ® R• + HCl

R• + Cl-Cl ® R-Cl + Cl•

В зависимости от числа частиц, участвующих в элементарных реакциях, различают мономолекулярные ибимолекулярные реакции. Часто разные способы классификации используют в сочетании друг с другом. Например, далее будут рассмотрены реакции мономолекулярного и бимолекулярного нуклеофильного замещения (символы SN1 и SN2), мономолекулярного и бимолекулярного элиминирования (символы Е1 и Е2 ) и др.

Лишь незначительное число органических реакций являются элементарными. Большинство из них являются сложными и состоят из нескольких последовательных или параллельных элементарных стадий.

В последовательных реакциях продукт одной элементарной реакции является исходным веществом для другой, например:

 

 

(Вопрос№19)

Карбокатионом называют заряженную частицу, имеющую свободную р-орбиталь на атоме углерода. Один из атомов углерода в карбокатионе несет на себе положительный заряд. Примерами карбокатионов могут служить частицы СН3-СН2+, CH3-CH+-CH3. Карбокатионы образуются на одной из стадий в реакциях присоединения к алкенам галогенов и галогеноводородов к алкенам, а также в реакциях замещения с участием ароматических углеводородов.

Карбкатион— частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь.

Способы получения:

1.Действие электрофильного реагента на кратную связь.

2.Протонирование гетероатома с последующим отщеплением «малых молекул» (напр. H2O)

3.Сольволиз — расщепление под действием растворителя

4.Специфические методы:

• последовательный α,β-распад тритированного метана (CH3T)

• ионизация электронным пучком в масс-спектрометре

Химические свойства

1.Взаимодействие с нуклеофилами.

2.Способность к β-элиминированию — отщеплению протона с образованием кратной связи.

Перегруппировка в более стабильный карбкатион — изомеризация первичного в более стабильный вторичный или третичный карбкатион.

Карбанион— частица с отрицательным (по крайней мере, формально) зарядом на атоме углерода. Карбанионы являются сопряженными основаниями для углеводородов, выступающих в роли кислот Льюиса.
Карбанионный центр находится в состоянии sp3-гибридизации и в отсутствие сопряженных с ним заместителей имеет пирамидальную конфигурацию.

Способы получения:

1.Ионизация под действием растворителя для металл-органических соединений.

2.Действие сильных оснований на достаточно кислую (поляризованную) связь C-H.

Химические свойства:

1.Взаимодействие с электрофилами.

2.Окисление до радикалов .

 

 

(Вопрос№23)Реакционная способность органических соединений. Классификация реагентов. Примеры.
Органические соединения отличаются от неорганических рядом характерных особенностей:

• почти все органические вещества горят или легко разрушаются при нагревании с окислителями, выделяя СО2 (по этому признаку можно установить принадлежность исследуемого вещества к органическим соединениям);

в молекулах органических соединений углерод может быть соединен почти с любым элементом периодической системы;

• органические молекулы могут содержать последовательность атомов углерода, соединенных в цепи (открытые или замкнутые);

молекулы большинства органических соединений не диссоциируют на достаточно устойчивые ионы;

• реакции органических соединений протекают значительно медленнее и в большинстве случаев не доходят до конца;

среди органических соединений широко распространено явление изомерии ;

органические вещества имеют более низкие температуры фазовых переходов (т. кип., т. пл.).

Органических соединений насчитывается гораздо большее количество, чем неорганических.

 

Классификация реагентов органических реакций. В настоящее время кислоты Льюиса называют электрофилами, а основаниями Льюиса - нуклеофилами.

Электрофилы: H+, HNO3, H2SO4, HNO2, (т.Е. Соответственно +NO2, +SO3, +NO), phn2+, BF3, alcl3, zncl2, fecl3, br2, i*-cl, H2O2, O3,

Нуклеофилы: H-, H2N-, HO-, RO-, RS-, RCOO-, Hal-, HSO3-, -CN, RC?C-, -CH(COOEt)2, R*MgBr, R*Li, LiAlH*4.

– Конец работы –

Используемые теги: Химия, основные, понятия, органической, химии0.083

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Химия. Основные понятия органической химии

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Этапы развития органической химии. Объект и предмет органической химии как науки. Значение органической химии
По результатам реакции делятся на следующие типы... реакция присоединения Характерна для непредельных органических соединений... СН СН Br СН связь вниз Br СН связь вниз Br...

Предмет органической химии. Органическая химия как основа создания новых материалов. Связь органической химии с биологией и медициной
Предмет органической химии Органическая химия как основа создания новых материалов Связь органической химии с биологией и... Классификация реакций по характеру изменения химической связи и по... Химическая реакция превращение одних веществ в другие процесс связанный с разрывом одних и образованием других...

Предмет органической химии. История развития органической химии. Основные положения и значение теории химического строения
Программа по органической химии включает ознакомление не только с основными классами и типами органических веществ но также с основными положениями... Программа составлена с учетом современных достижений теоретической... В течение семестра рекомендуется проводить контрольных работ позволяющих проверить усвоение текущего материала...

Основные понятия термодинамики. Предмет термодинамики. Основные параметры состояния термодинамической системы
На сайте allrefs.net читайте: Конспект лекций Дисциплина по учебному плану направления подготовки: 260901 Технология швейных изделий. Омск СОДЕРЖАНИЕ...

Основные макроэкономические понятия. Список основных макроэкономических элементов. Классическая теория
В литературе можно найти много определений экономической теории Вот одно из них Экономическая теория исследует проблемы эффективного... Объект исследования экономической теории называется экономикой... Понятно что составление модели является очень важной частью исследования Вопрос о том что существенно и...

ОСНОВНЫЕ ПОНЯТИЯ О РЕАКЦИОННОЙ СПОСОБНОСТИ ОРГАНИЧЕСКИХ МОЛЕКУЛ
Концепция теории мезомерии... Делокализацию электронов изображают стрелками...

Основные понятия химии
ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ... Основные понятия химии... Все химические вещества состоят из частиц классификация которых в химии и физике достаточно сложна химические...

Основные понятия в химии
Все вещества состоят из химических элементов Например составными частями серной кислоты Н SO являются элементы водород сера и кислород... Химические элементы составные части простых и сложных веществ каждый... Число нейтронов содержащихся в ядрах данного элемента в отличие от числа протонов может быть различным Атомы...

Основные понятия и законы химии
Российской Федерации... Федеральное государственное АВТОНОМНОЕобразовательное учреждение высшего профессионального образования...

Основные понятия химии
Химия это наука о веществах и законах их превращения Объект изучения химии являются хим элементы и их соединения Хим элементом назыв вид атомов... Закон... Порядок заполнения орбиталей электронами...

0.038
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам