рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные положения Максвелла.

Основные положения Максвелла. - раздел Право, ГЛАВА III Электрическое смещение Настоящая Глава Посвящена Изучению Всякого Рода Динамиче­ских Проявлений Того...

Настоящая глава посвящена изучению всякого рода динамиче­ских проявлений того электромагнитного процесса, который про­исходит в системе электрических токов. Мы будем при этом следовать пути, который был указан Максвеллом, и заключается в следую­щем. Как было достаточно разъяснено выше, в особенности в главе V, электрический ток есть явление кинетического характера. Таким образом, система проводников, по которым текут электрические токи, может быть рассматриваема, с общей точки зрения, в каче­стве совокупности частей, обладающих кинетической энергией как вследствие возможного движения материальных масс, из которых состоят проводники, так и в связи с электрокинетическим процес­сом. К такой системе, согласно Максвеллу, могут быть приме­нены общие уравнения механики и таким путем получены выра­жения как для всех сил механического характера, так и для всех возникающих в системе электродвижущих сил.

Обоснованию этой точки зрения Максвелл посвятил главы IV и VI второго тома своего „Трактата об электричестве и магнитизме".

Мы приведем ниже в переводе несколько наиболее интересных отрывков из этого трактата. Сделать это необходимо, с одной стороны, потому, что никакое переложение не может заменить оригинальных формулировок Максвелла, являющихся класси­ческими по глубине высказываемых в них мыслей и по удиви­тельной точности выражения всех оттенков этих мыслей; с другой стороны, чрезвычайно поучительно проследить ход развития идей Максвелла, одного из величайших мастеров теоретического анализа явлений.

Главу IV второго тома своего трактата Максвелл начинает с описания некоторых явлений, наблюденных Фарадеем и не­которыми другими физиками, явлений, хорошо нам теперь извест­ных под именем явлений самоиндукции. Максвелл подчеркивает, что эти явления свидетельствуют о присущем электрическому

 

току „количестве движения", или „инерции". Для пояснения своей мысли он пользуется аналогией с движением воды в трубке, строго устанавливая вместе с тем границы этой аналогии. Обратимся к извлечениям из трактата Максвелла:

546. „Девятую серию своих исследований Фарадей посвятил рассмотрению группы явлений, имеющих место при прохождении тока по проволоке, образующей катушку электромагнита".

„Дженкин заметил следующее: непосредственным действием вольтаической системы, состоящей только из одной пары пластин, невозможно произвести чувствительный физиологический удар: если же заставить ток (от той же системы) проходить через ка­тушку электромагнита и размыкать цепь, держа в руках соответ­ствующие концы проволок, то ощущается сильный удар. При замыкании цепи подобного удара не замечается".

„Фарадей показал, что это и другие описываемые им явления вызваны тем же самым индуктивным действием тока на соседние проводники, которое он наблюдал ранее. В этом случае, однако, ток оказывает индуктивное действие на несущий его проводник, и это действие сказывается в том отношении сильнее, что этот проводник ближе к различным элементам данного тока по сравне­нию с каким-либо другим проводником".

547. „Он (Фарадей) замечает, однако, что „первое, что при­ходит в голову, это что движению электричества в проволоке присуще нечто подобное количеству движения или инерции". В самом деле, когда мы рассматриваем отдельный проводник, явление совершенно аналогично тому, что происходит в трубке, заполненной непрерывно текущей струей воды. Если при этом внезапно закрыть конец трубки, то инерция воды создаст внезап­ное повышение давления, которое значительно больше гидростатитического и которое может оказаться достаточным, чтобы разру­шить трубку".

„Если при закрытом главном выходе вода имеет возможность вытекать через какое-нибудь узкое отверстие, она проникнет через него со скоростью значительно большей, чем скорость опре­деляемая гидростатическим давлением; если ей открывается путь через клапан в какую-нибудь камеру, то вода проникнет в эту камеру, даже если давление в последней выше гидростатического давления в трубе".

„На этом принципе конструируется гидравлический таран, по­средством которого малое количество воды может быть поднято на большую высоту с помощью большого потока невысокого напора".

548. „Эти проявления инерции жидкости в трубе зависят лишь от количества жидкости, протекающей по трубке, длины и попереч­ного сечения трубки в различных ее участках. Они не зависят от чего-либо находящегося вне трубки так же, как и от формы,

 

которую трубке можно придать, если только длина ее остается прежней".

„Для проводника, несущего ток, дело обстоит не так: если длинный проводник сложен вдвое, то получаемый эффект очень слаб; если две части провода раздвинуты, то он сильнее; для про­вода, свитого в спираль, он еще сильнее, а самое сильное действие получается, если внутрь свитого спиралью провода поместить кусок мягкого железа".

„Кроме того, когда на первый проводник намотан второй, изолированный от него, то, если вторичный проводник не образует замкнутой цепи, явление происходит, как и в предыдущем случае, если же вторичный проводник образует замкнутую цепь, то в нем индуктируется ток, и действия самоиндукции в, первичном про­воднике замедляются".

549. „Такие результаты ясно показывают, что если (указанные) явления вызываются наличием количества движения, то это количе­ство движения, наверное, присуще не электричеству в проводнике, так как некоторый проводник, несущий один и тот же ток, об­наруживает различные свойства в зависимости от своей формы; даже если форма проводника остается той же самой, присутствие посторонних тел, как, например, куска железа или замкнутого металлического контура, изменяет результат".

В этом кратком параграфе и сформулирована, собственно говоря, та новая точка зрения, которая отличает воззрения Фарадея — Максвелла от воззрений, господствовавших в физике до них. Используя установленное на основе явлений самоиндукции положе­ние о присущем электрическому току „количестве движения" с одной стороны, и то отличие электрического тока от движения, например жидкости, о котором свидетельствует другая группа явлений (влияние формы проводников, присутствие „внешних" тел и контуров и т. д.), Максвелл делает чрезвычайно смелое, но оказавшееся столь плодотворным заключение, что количество дви­жения присуще не электричеству в проводнике, тем самым перенося внимание в окружающее проводник пространство.

Это положение сделалось краеугольным камнем максвелловской теории, устойчивым ее основанием, до сих пор являющимся не­уязвимым и незаменимым при всяких попытках построения теории электромагнитных явлений.

Следующий параграф характеризует ту принципиальную основу воззрений Максвелла, в силу которой всякая возможность свести исследуемое явление к некоторому виду движения является реаль­ным приобретением нашего знания.

550. „Трудно, однако, нашему сознанию, заметив однажды ана­логию между явлениями самоиндукции и движением материальных тел, отказаться совершенно от помощи подобной аналогии или при­знать ее совершенно поверхностной или даже обманчивой. Основное динамическое понимание материн, как чего-то способного благо­даря своему движению становиться носителем количества движе­ния и энергии, настолько переплетается с формами нашего мышле-

 

ния, что если мы где-нибудь можем уловить намек на эти свой­ства в некоторых явлениях природы, мы чувствуем, что перед нами открывается путь, рано или поздно приводящий нас к полному пониманию предмета".

Наконец, в параграфах 551 и 552 Максвелл подчеркивает, что энергия электрического тока, или, лучше сказать, энергия того происходящего в пространстве явления, осью которого служит „проводник с током", есть энергия кинетическая,

551. „В случае электрического тока мы находим, что когда электродвижущая сила начинает действовать, она не создает сразу полного тока, но что ток возрастает постепенно. В чем заклю­чается действие электродвижущей силы в течение того времени, когда противодействующее сопротивление не способно ее уравно­весить? Она в течение этого времени увеличивает силу тока".

„Обыкновенная сила, действуя на тело в направлении его движения, увеличивает его количество движения и сообщает ему кинетическую энергию, или способность произвести работу за счет его движения".

„Аналогично, неуравновешенная сопротивлением часть электро­движущей силы идет на увеличение силы тока. Обладает ли элек­трический ток, подобным образом созданный, количеством движения или кинетической энергией?".

„Мы уже показали, что он обладает чем-то, весьма похожим на количество движения, что он оказывает противодействие при попытке внезапно его прервать и что он может создать на корот­кое время значительную электродвижущую силу".

„Далее, проводящий контур, несущий ток, обладает способностью производить работу именно благодаря наличию этого тока, и эта способность не может быть названа чем-то подобным энергии, так как она и есть действительная и подлинная энергия".

„Итак, если ток предоставлен самому себе, он будет продол­жать существовать, пока его не прекратит сопротивление цепи. Однако, прежде чем ток прекратится, он разовьет некоторое количество тепла, равное в единицах работы первоначальной энергии электрического тока".

„Ток, предоставленный самому себе, может произвести также механическую работу, перемещая магниты, и индуктивное действие подобных движений, согласно закону Ленца, прекратит ток скорее, чем это сделало бы одно сопротивление. Таким путем часть энергии тока может быть преобразована, вместо тепла, в механическую работу".

552. „Таким образом, оказывается, что система, содержащая электрический ток, является вместилищем энергии некоторого рода, и поскольку мы можем мыслить электрический ток только как явление кинетического характера, его энергия должна быть кинетической энергией, т. е. энергией, которою обладает движущееся тело в силу своего движения".

 

 

„Мы уже показали, что электричество внутри проводника нельзя рассматривать как движущееся тело, являющееся носителем этой энергии, так как энергия движущегося тела не зависит от чего-либо внешнего по отношению к нему, тогда как присутствие посторонних тел вблизи тока изменяет его энергию".

„Мы приходим, таким образом, к вопросу, нет ли некоторого движения вне проводника в пространстве, которое не занято током но в котором обнаруживаются электромагнитные действия тока".

„Я не буду сейчас входить в рассмотрение причин, в силу которых это движение можно было бы отнести к одному месту скорее, чем к другому, или давать предпочтение одному роду движения перед другим".

„Все, что я предполагаю сделать, это исследовать следствия, вытекающие из предположения, что явления электрического тока суть явления движущейся системы, при чем движения передаются от одной части системы к другой посредством сил, природу и за­коны которых мы еще даже не пытаемся определить, так как мы можем исключить эти силы из уравнений движения, пользуясь методом, данным Лагранжем для связанной системы".

„В ближайших пяти главах настоящего трактата я предполагаю вывести основные положения теории электричества, исходя из такого рода динамической гипотезы, вместо того, чтобы следовать пути, который привел Вебера и других исследователей ко многим замечательным открытиям и экспериментам, а также к концепциям, некоторые из которых красивы своей смелостью. Я избрал этот метод потому, что хочу показать, что имеются другие пути рас­смотрения явлений, кажущиеся мне более удовлетворительными и в то же время более соответствующие принятому в предыдущих частях этой книги методу исследования, чем метод, основанный на гипотезе непосредственного действия на расстоянии".

К вопросу о кинетической природе электрического тока Макс­велл вновь возвращается в главе VI, озаглавленной так: .Ди­намическая теория электромагнитизма". Из этой главы мы при­водим параграфы 568, 569 и 570.

568. „Мы показали в § 552, что когда электрический ток суще­ствует в проводящей цепи, он обладает способностью совершать некоторое определенное количество механической работы, притом совершенно независимо от всякой внешней электродвижущей силы поддерживающей ток. Всякая же способность совершать работу есть не что иное, как энергия, а все виды энергии имеют одну и ту же природу, хотя и могут отличаться по форме. Энергия электрического тока может быть отнесена или к той форме энергии которая определяется действительным движением материи, или к той, которая определяется способностью материи притти в движе­ние под влиянием сил, действующих между телами, находящимися в определенных положениях одно относительно другого".

„Первый вид энергии, энергия движения, носит название энергии кинетической; и если однажды углубиться в понимание этого вида энергии, он представляется столь фундаментальным

 

фактом природы, что нам трудно вообразить себе возможность разложения его на что-нибудь другое. Второй вид энергии — энер­гия, зависящая от положения—называется энергией потенциаль­ной; она обусловливается действием того, что мы называем силами, т. е. того, что имеет стремление изменять относительное положе­ние. Что касается этих сил, то хотя мы и можем - принять их существование как опытный факт, однако, неизменно сознаем, что всякое объяснение механизма, приводящего тело в движение, представляет собою реальный вклад в наше знание".

569. „Электрический ток не может быть рассматриваем иначе, как явление кинетическое. Даже Фарадей, который постоянно стремился освободить свою мысль от влияния представлений, не­вольно вызываемых выражениями „электрический ток" и „электрическая жидкость", говорит об электрическом токе как „о чем-то продвигающемся, а не о простом расположении".

„Такие действия тока, как электролиз и перенесение электриче­ства с одного тела на другое, являются процессами, протекающими во времени, и имеют, таким образом, природу движения".

„Что касается скорости тока, то мы показали, что мы о ней ничего но знаем: она может быть равна десятой доле дюйма в час или сотне тысяч миль в секунду. Мы настолько далеки от зна­ния ее абсолютной величины в отдельных случаях, что мы даже не осведомлены, является ли направление, называемое нами по­ложительным, действительным направлением движения".

„Все допущение, которым мы здесь ограничиваемся, заключается в том, что процесс электрического тока включает в себе движение некоторого рода. То, что вызывает электрические токи, называется электродвижущей силой: это название уже с давних пор было с успехом употребляемо и никогда не привносило в научный язык никаких противоречий. Электродвижущую силу нужно всегда пони­мать как нечто, действующее только на электричество, но не на несущие его тела. Никогда не следует смешивать ее с механиче­ской силой, действующей только на тела, но не на электричество. Если мы когда-нибудь узнаем формальное соотношение, которое существует между электричеством и обыкновенной материей, то, вероятно, мы узнаем и соотношение между силой электродвижущей и обычной (механической) силой".

570. „Когда обыкновенная сила действует на тело и тело усту­пает действию, работа, совершенная силой, измеряется произведе­нием силы На величину, характеризующую произведенное силой изменение. Так, например, если нагнетать воду по трубе, то работа, произведенная в некотором отрезке трубы, равна произведению потери давления на количество жидкости, протекшей чрез этот отрезок".

„Точно так же и работа электродвижущей силы равна про­изведению ее на количество электричества, которое протекает через сечение проводника под действием этой электродвижущей силы".

 

 

„Работа, совершенная электродвижущей силой, в точности той же природы, что и работа обычной механической силы, и измеряется теми же единицами".

„Часть работы, которую совершает электродвижущая сила, действующая в проводниковой цепи, идет на преодоление сопроти­вления цепи, и эта часть работы обращается в тепло. Другая часть ее идет на создание электромагнитных явлений, наблюденных Ампером, которые состоят в движении проводников под влиянием электромагнитных сил. Остальная часть тратится на увеличение кинетической энергии тока, и действие этой последней части про­является в явлениях индукции токов, открытых Фарадеем".

„Мы, таким образом, знаем достаточно об электрическом токе, чтобы признать в системе материальных проводников, несущих токи, динамическую систему, которая является вместилищем энергии, быть может, частью кинетической, частью потенциальной".

„Мы ничего не знаем о природе связей, которые существуют между частями этой системы; но мы имеем в динамике методы исследования, которые не требуют знания механизма системы, и мы применим их к этому случаю".

 

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА III Электрическое смещение

На сайте allrefs.net читайте: "ГЛАВА III Электрическое смещение"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные положения Максвелла.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая характеристика электромагнитных процессов.
В предыдущих главах мы коснулись одной стороны электромаг­нитных явлений, а именно, рассмотрели некоторые общие свойства магнитного потока и магнитного поля. Теперь сосредоточим наше внимание на др

Электрическое смещение. Основные положения Максвелла.
Известно, что между заряженными телами создается электрическое поле. Это поле деформирует диэлектрик, приводит его в некоторое напряженное состояние, называемое обычно электрической поляризацией

Мера электрического смещения.
Допустим, что мы имеем некоторый диэлектрик, и пусть действующая в нем в точке А электрическая сила Б направлена, как указано стрелкой (рис. 105).

Ток смещения.
Когда мы говорим об электрическом смещении, не следует, во­обще говоря, смешивать этого понятия с электрическим током. Термин „электрическое смещение" мы должны понимать как меру деформации, п

Теорема Максвелла.
Представим себе замкнутую поверхность s, внутри которой как-либо распределены электрические заряды q1,q2, q3 и т. д. Пусть ds представля

Природа электрического смещения.
Максвелл в своих рассуждениях относительно электрического смещения совершенно не касается природы электричества и того, как надо понимать его движение. Все это не имеет значения в фор­мальных постр

Формулировки.
Возвратимся к формулировке теоремы Максвелла: Взяв от обеих частей этого равенства производную по s, получим:

Механическая аналогия.
Остановимся теперь на одной простой механической схеме с целью лучшего уяснения принципа замкнутости тока, а также для того, чтобы наглядно показать значение введенного Максвеллом в науку представл

Непрерывность тока в случае электрической конвекции.
Переход электричества из одного места в другое путем движе­ния заряженных тел вообще и, в частности, заряженных элемен­тарных частиц называется электрической конвекцией и предста­вляет собою

Связь электрического поля с электромагнитными процес­сами. Область электростатики.
В самом начале предыдущей главы (§ 45) мы касались в общих чертах вопроса об электрическом поле и указывали, что его сле­дует рассматривать как одну из сторон того основного электро­магнитного проц

Закон Кулона и вытекающие из него определения и соотношения.
В настоящем параграфе мы даем краткую сводку основных определений и соотношений, относящихся к электрическому полю я вытекающих из закона Кулона. В первую очередь, конечно, напомним формулировку эт

Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
Рассмотрим в некотором электрическом поле две точки, А и В. Линейный интеграл электрической силы вдоль некоторого пути перехода от точки А к точке В, т. е.:

Электрическая деформация среды.
С точки зрения Фарадея и Максвелла, участие промежу­точной среды в передаче электрических действий от одного наэлек­тризованного тела к другому, а также во всех вообще процессах, совершающихся в эл

Линии смещения.
Линиями электрического смещения, или просто линиями сме­щения называются такие линии, построенные в электрическом поле, все элементы которых совпадают по направлению с векторами

Трубка смещения.
Трубкою смещения называется объем диэлектрика имеющий форму трубки, образующими которой служат линии смещения. Рассмотрим некоторую трубку смещения в промежутке между двумя наэлектр

Фарадеевские трубки.
В связи с тем, что было изложено в предыдущем параграфе об особых свойствах трубок смещения, оказывается целесообразным так подбирать размеры этих трубок, чтобы величина полного элек­трического сме

Фарадеевская трубка и количество электричества, с нею связанное.
В дальнейшем мы будем мыслить все электрическое поле за­полненным фарадеевскими трубками. Совершенно подобно тому, как это было в случае магнитного поля в отношении магнитных линий, можно рассматри

Вторая формулировка теоремы Максвелла.
Так как электрическое смещение сквозь поперечное сечение фарадеевской трубки равно единице, то, следовательно, каждая такая трубка, пересекая некоторую поверхность, привносит в вели­чину полного эл

Электризация через влияние. Теорема Фарадея.
Так называемая электризация через влияние, т. е. возникновение электрических зарядов на нейтральном до того проводящем теле в случае поднесения его к какому-либо другому заряженному телу, представл

Энергия электрического поля.
Выше было в достаточной степени выяснено (§§ 1 и 47), что, согласно воззрениям Фарадея и Максвелла, в пространстве, в котором существует электрическое поле, среда находится в особом вынужденном сос

Механические проявления электрического поля.
Механические взаимодействия, наблюдаемые в электрическом поле между наэлектризованными телами и формально описываемые при помощи закона Кулона, могут быть объяснены, с точки зрения &nbs

Преломление фарадеевских трубок.
При переходе фарадеевских трубок (и вообще линий смещения) из одной диэлектрической среды в другую обычно мы имеем дело с изменением направления у са­мой поверхности раздела ди­электриков. Это явле

Электроемкость и диэлектрическая постоянная.
Допустим, что потенциал какого-либо проводящего тела есть U, а потенциалы всех других проводников, находящихся в электриче­ском поле, равны нулю. В этом случае между потенциалом данного тела

Свойства диэлектриков.
В заключение настоящей главы мы дадим краткий обзор неко­торых основных свойств изолирующих материалов (диэлектриков): а) Диэлектрическая постоянная e. Она является главной ха­ракте

Общие соображения о природе тока.
В настоящей главе мы в самых общих чертах ознакомимся с современным состоянием вопроса о природе электрического тока. Хотя вопрос этот по существу относится к области чистой физики, однако,

Движение электричества внутри проводников.
Шестьдесят лет тому назад, говоря об электрическом токе как о явлении кинетического характера, Максвелл не мог не отме­тить того обстоятельства, что он ничего больше не в состоянии сказать о природ

Участие электрического поля в процессе электрического тока.
Основная мысль Фарадея относительно роли проводника, по которому течет ток, заключается, как было отмечено в предыдущем параграфе, в том, что проводник служит своего рода осью, вокруг которой надле

Участие магнитного поля в процессе электрического тока.
Представление о механизме того процесса, который происходит в пространстве вокруг проводника с током и который органически связан с магнитным полем, можно получить из картины преобразо-

Общие соображения.
В предыдущей главе мыпознакомились с общей характеристи­кой того сложного электромагнитного комплекса, который воспри­нимается нами, как электрический ток. Мы видели, что основной

Ионизирующие агенты.
Ионизирующим агентом называется всякий физический деятель, обусловливающий ионизацию газа, или, в более широком смысле этого термина, всякий деятель, обусловливающий появление в дан­ном объе

Заряд и масса иона.
Из сказанного в предыдущих параграфах следует прежде всего, что заряды, несомые положительными и отрицательными ионами, бу­дучи обратными по знаку, должны быть тождественными по абсо­лютной величин

Влияние давления газа на характер разряда.
Общий характер явлений, наблюдаемых при прохождении элек­трического тока через газ, т. е. при так называемом разряде через газ, зависит от целого ряда обстоятельств, как это уже отчасти должно быть

При атмосферном давлении.
Остановимся теперь на случае прохождения электрического тока через газ при атмосферном давлении. Ради простоты предпо­ложим, что мы имеем дело с воздухом. Представим себе (рис. 134) некоторый генер

Основные соотношения, характеризующие ток через газы.
Обратимся к схеме, изображенной на рис. 134, и допустим, что газ в промежутке между электродами В к С ионизируется не­которым неизменно действующим агентом, интенсивность которого будем хара

Тихий разряд. Корона.
Как уже было разъяснено выше (см. §§ 78, 81 и 82), стадия тихого разряда через газы возникает всякий раз, когда электриче­ская сила достигает такого значения, при котором начинается иони­зация газа

Разрывной разряд.
Интенсивная ионизация газа под влиянием сильного электриче­ского поля, характеризующая стадию тихого разряда, может, как мы знаем, завершаться разрывным разрядом, если только в системе нет ограниче

Вольтова дуга.
Мы уже имелислучай указывать выше (см. § 81), что при достаточной мощности генератора, питающего цепь, и при доста­точно малом общем сопротивлении цепи — разряд через газообраз­ную среду между двум

Дуговые выпрямители.
Дуговые выпрямители основаны на использовании неодинако­вой роли положительного и отрицательного электродов вольтовой дуги. В то время, как положительный электрод играет пассивную роль в осн

Давлениях.
В случаях, когда стадия „тихого разряда" (см. § 81) имеет место в газообразной среде при достаточной степени разряжения (порядка 0,1 мм ртутного столба), с большой отчетливостью вы­явля

Прохождение электрического тока через пустоту.
Если в условиях опыта, о котором мы говорили в конце преды­дущего параграфа, после достижения стадии развития катодных лучей при высоком разрежении газа мы будем продолжать откачи­вать газ, достига

Пустотные электрон­ные приборы.
При практическом исполь­зовании накаленного катода для проведения электриче­ского тока через пустотные приборы в настоящее время применяются самые разно­образные конструкции катода и самые разнообр

Вторая форма уравнений Лагранжа.
Обоснование положения, что электрический ток есть явление кинетического характера, позволило Максвеллу дать стройное математическое исследование этого явления с помощью второй формы уравнений Лагра

Координатах.
Так как обобщенные координаты, как было выше указано, вполне определяют положение всех частей системы, то они должны быть связаны некоторыми зависимостями с декартовыми координатами всех точек сист

Выбор обобщенных координат для электродинамической системы.
Всякая электродинамическая система, вообще говоря, предста­вляет собою совокупность проводящих цепей, по которым проте­кают электрические токи, т. е. механическую систему, совмещенную с системой эл

Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
По аналитическому строению выражения для кинетической энергии (Т) электродинамической системы можно судить и о фи­зическом характере этой энергии. В самом деле, выражение для кинетической эн

Общее обследование сил, действующих в электродинами­ческой системе.
При наличии в системе процессов механических и электриче­ских мы должны иметь в виду соответственно два рода сил: силы механические и силы электродвижущие. Если известна полная кинетическая энергия

Электрокинетическая энергия.
После общего обследования всех сил, могущих обнаруживаться в системе проводников с токами, сосредоточим наше внимание на электрокинетической энергии Te и рассмотрим более подробно

Электродвижущая сила самоиндукции.
Рассмотрим сначала простейшую систему, состоящую из одного проводящего контура (рис. 153). Если к этому контуру п

Коэффициент самоиндукции.
Для количественного определения коэффициента самоиндукции некоторого контура мыможем воспользоваться любым из соотно­шений, характеризующих в той или иной степени электрокинетическ

Электродвижущая сила взаимной индукции.
Остановимся теперь на рассмотрении системы, состоящей из каких-либо двух проводящих цепей, по которым протекают элек­трические токи i1 и i2 (рис. 158).

Коэффициент взаимной индукции.
Совершенно подобно тому, что мы имели при определении коэффициента самоиндукции (см. соотношения 85 — 89 в § 99), и в случае количественного определения коэффициента взаимной индукции мы, вообще го

Индукции.
Обследуем теперь некоторые количественные соотношения между коэффициентами L1, L2 и М. Будем исходить из основного выраже­ния для электрокинетической энер

Общие выражения для магнитных потоков, сцепляю­щихся с отдельными контурами системы.
Рассмотрим теперь самый общий случай системы из n электри­ческих цепей. В этом случае, т. е. при наличии любого числа отдельных цепей, мы имеем:

Общие выражения для электродвижущих сил, индукти­руемых в отдельных цепях системы.
На основании всего вышеизложенного мы можем, подводя итоги, написать ряд нижеследующих соотношений для электродвижущих сил, индуктируемых в отдельных цепях рассматриваемой системы:

Роль короткозамкнутой вторичной цепи.
При рассмотрении явлений самоиндукции и взаимной индукции мы видели, что величина полной ЭДС, возникающей в некотором проводящем контуре в качестве реакции на производимое изменение общих электрома

Действующие коэффициенты самоиндукции и взаимной индукции.
Выше было в достаточной степени разъяснено, что коэффициент самоиндукции цепи есть функция исключительно геометрических размеров контура данной цепи. Приведенные выше примеры под­тверждают это поло

Электромагнитная сила. Общие соображения.
При анализе связи между кинетической энергией, присущей элек­тродинамической системе, и силами, возникающими в такой системе, было получено (см, § 96) общее выражение для так называемой э

Условия возникновения электромагнитной силы.
Рассмотрим некоторый круговой контур (рис. 164), по которому идет постоянный ток, поддерживаемый с помощью внешнего источ­ника.

Случай сверхпроводящнх контуров.
Для иллюстрации только-что сказанного рассмотрим некоторые случаи, когда токи в системе не сохраняются постоянными. В этом отношении особенный интерес представляют случаи сверхпроводящих цепей, соп

Случай контура с током во внешней магнитном поле.
Рассмотрим еще один пример, именно, движение контура во внешнем постоянном магнитной поле. Допустим, для простоты, что это поле создается постоянным магнитом NS (рисунки 167, 168, 169), а ко

Основная роль бокового распора и продольного тяжения магнитных линий.
Из рассмотренных нами примеров ясно, что все приведенные выше формулировки закона движений в электродинамической системе по существу являются именно лишь различными формулировками одного и того

Случай прямолинейного проводника во внешнем магнит­ном поле.
Однако, иногда применяется и другой подход к анализу и ра­счету сил, действующих в электромагнитных механизмах. Именно, иногда исходят из рассмотрения сил действующих на отдельный участок пр

Электромагнитные взаимодействия в асинхронном двигателе.
При совершенной справедливости формулировки, говорящей о стремлении всякого контура с током охватить наибольший внеш­ний поток, интересно отметить, что в некоторых практических случаях это стремлен

Величина и направление электромагнитной силы в случае одного контура с током.
Рассмотрев физическую природу явления возникновения дви­жений в электродинамической системе, обратимся к определению величины и направления электромагнитной силы в различных ча­стных случаях.

Величина и направление силы электромагнитного взаимо­действия двух контуров с током.
Рассмотрим теперь случай двух контуров, по которым проте­кают токи i1 и i2. Электрокинетическая анергия такой системы определяется выражением:

Контуров с током.
Обратимся к общему случаю системы, состоящей из произволь­ного числа контуров. Электрокинетическая энергия системы равна:

Электромагнитная сила, дей­ствующая на участок проводника с током, расположенный во внешней магнитном поле.
В тех случаях, когда вычисление внешнего потока, связанного с данным контуром, а следовательно, и опреде­ление приращения этого потока, оказывается затруднительным, удобнее пользоваться выражением,

Электромагнитное поле.
В главе III (§ 45) было уже указано, что явления электрического поля и явления магнитного поля ни в коем случае не следует рас­сматривать как совершенно самостоятельные совокупности явлений. Мы име

Основные уравнения электромагнитного поля.
Обратимся к выводу основных соотношений, характеризующих явления электромагнитного поля. Исходным пунктом этого вывода служат два соотношения, уже известные из предыдущих глав, именно? закон магнит

Распространение электромагнитной энергии.
Уравнения (133) и (134) по существу являются общим математическим выражением того факта, что при одновременном существовании взаимно связанных электрического и магнитного полей, т. е. при существов

Опытные данные, подтверждающие теорию Максвелла.
Переходя к вопросу об экспериментальном подтверждении уста­новленных Максвеллом законов распространения электромагнитной энергии, следует отметить, что соответствующий опытный материал настолько ве

Опыты Герца.
Как уже сказано в предыдущем параграфе, экспериментальные подтверждения теории Максвелла представлены в настоящее время в виде всех достижений радиотехники таким количеством материала, что доказыва

Пойнтинга.
Вопрос о механизме распространения электромагнитных воз­мущений и связанного с этим движения электромагнитной энергии представляет глубокий интерес. На этом предмете останавливали свое внимание мно

Распространение тока в металлических массах. Поверхностный аффект.
В предыдущих параграфах настоящей главы были обследованы общие законы распространения электромагнитной энергии. Остано­вимся теперь на более детальном рассмотрении процесса движения энергии в прово

Размерности электрических в магнитных величин.
1. Всякое электрическое и магнитное количество может быть выражено при посредстве основных единиц длины, массы и времени и специальных коэффициентов — диэлектрической постоянной e и магнитной прони

Предметный указатель.
Абсолютная электромагнитная еди­ница: количества электричества 193, коэффициента взаимной индукции 354, коэффициента самоиндукции 342,343, магнитного потока 47,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги