рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные уравнения электромагнитного поля.

Основные уравнения электромагнитного поля. - раздел Право, ГЛАВА III Электрическое смещение Обратимся К Выводу Основных Соотношений, Характеризующих Явления Электромагни...

Обратимся к выводу основных соотношений, характеризующих явления электромагнитного поля. Исходным пунктом этого вывода служат два соотношения, уже известные из предыдущих глав, именно? закон магнитодвижущей силы (10):

и закон электродвижущей силы (45):

где оба интеграла взяты по замкнутым контурам. Отметим, кстати, что написанные соотношения по существу именно и выражают собою взаимную зависимость величин Е и Н, о которой мы гово­рили в предыдущем параграфе. Дальнейшие математические опе­рации имеют целью более отчетливое выявление этой зависимости, а также изучение главнейших результатов, из нее вытекающих.

При обследовании явлений электромагнитного поля будем поль­зоваться декартовыми координатами. Векторы Е и Н будем для каждой точки пространства определять их проекциями на оси координат.

Расположение координатных осей примем, по Максвеллу, соответствующее системе правого винта (штопора). При этом будет соблюдаться основное геометрическое соотношение между напра­влениями тока и магнитного поля (правило штопора). Для переме­щения винта штопора вдоль одной из координатных осей нужно будет вращать его рукоятку в плоскости двух других осей в на­правлении циклической перестановки букв х, у, z, т. е. от преды­дущей буквы алфавита к последующей (так как осей три: OX, OY, OZ, то буквой, следующей за z, следует считать х). Таким образом,

 

для движения винта штопора вдоль оси OZ необходимо рукоятке его сообщить вращение от оси ОХ к оси OY; для движения вдоль оси ОХ—вращение От OY к OZ; для движения вдоль оси OY— вращение от OZ к ОХ. Если, следовательно, ось ОХ направлена к востоку и ось OY—к северу, то ось OZ должна быть направлена вверх. Такому условию удовлетворяет расположение осей, предста­вленное на рисунке 177.

Обозначим составляющие векторов: силы электрического поля Е, силы магнитного поля Н, магнитной ин­дукции В и плотности тока J, па­раллельные трем координатным осям, соответственно через:

Векторы Е, Н, В и J в каждой данной точке являются, вообще говоря, функциями координат этой точки и времени, т. е.:

Очевидно, что и составляющие Е, Н, В и J по координатным осям являются также функциями х, у, ,z, t.

Для получения дифференциальных урав­нений, выражающих теорию Максвелла и характеризующих процессы, происхо­дящие в электромагнитом поле, обратимся к упомянутым законам: закону магнито­движущей силы и закону электродвижущей силы. Рассмотрим в электромагнитном поле какую-нибудь элементарную площадку прямоугольной формы со сторонами dy и dz (рис. 178).

Применим к контуру kmns, охватывающему ату площадку, закон магнитодвижущей силы (10):

Обратимся сначала к правой части этого равенства. Составляю­щую, параллельную оси ОХ, плотности тока (J), проходящего через данную площадку, мы обозначили через Jх. Стало быть, полный ток через площадку dydz будет равен

Jxdydz.

Далее остановимся на левой части исходного равенства (10). Найдем сумму произведений:

Hcosadl

по сторонам взятого прямоугольника. Так как стороны прямоуголь­ника kmns параллельны осям OY и OZ, то величина Нcosa Для каждой из сторон прямоугольника равна составляющей силы ма­гнитного поля вдоль оси OY или OZ. Пусть в точке k сила ма­гнитного поля равна Н и, следовательно, соответствующие со­ставляющие Н вдоль сторон km и ks равны Н и Нz. Далее, в точке т сила магнитного поля и ее составляющие выразятся по схеме:

а в точке s:

Тогда произведение Нcosadl для стороны прямоугольника km можно выразить (отбрасывая бесконечно-малые, исключающиеся при обходе контура kmns, и пренебрегая бесконечно малыми высших порядков) через составляющую силы магнитного поля вдоль оси ОY таким образом:

Hydy.

Для стороны mn это произведение окажется равным

При дальнейшем обходе прямоугольника kmns знаки при про­изведениях Нcosadl необходимо переменить на обратные, так как приходится итти в направлении, противоположном положительному направлению осей OY и OZ. Таким образом, для стороны ns имеем:

и, наконец, для стороны sk:

-Hzdz.

Суммируя эти слагаемые, получим:

Раскроем скобки:

 

 

По сокращении в левой части имеем:

откуда получаем окончательно:

Совершенно аналогичными рассуждениями получим для некото­рой площадки, параллельной плоскости XOZ, уравнение:

и для площадки, параллельной плоскости XOY, уравнение:

Полученные уравнения не выражают еще ничего принципиально нового. Они представляют собою лишь одну из возможных форм (в данном случае дифференциальную) общеизвестного закона, что нет элек­трического тока без магнитного поля. Представляет интерес такое пре­образование полученных уравнений, в результате которого в правой части вместо плотности тока J входит сила электрического поля Е. Для выполне­ния этого преобразования выразим плот­ность тока J через величину Е. Так как мы не делали при выводе уравне­ний никаких оговорок относительно свойств среды, в которой происходит электромагнитный процесс, то можем себе представить, что протекающий по этой среде электрический ток состоит из двух слагаемых: проводникового тока и тока смещения.

Сила проводникового тока равна, согласно закону Ома, электродвижущей силе, деленной на сопротивление. Чтобы определить ЭДС в данном случае, построим на нашей площадке рисунка 178 параллелепипед dxdydz (рис. 179).

Тогда, если составляющая силы электрического поля в направлении оси ОХ равна Eх, то ЭДС, действующая вдоль ребра dx рассматриваемого параллелепипеда, равна Exdx.

Сопротивление параллепипеда dxdydz будет

 

 

где r— удельное сопротивление среды. Следовательно, проводни­ковый ток сквозь площадку dydz выразится так:

Плотность тока смещения равна, как известно, производной от электрического смещения по времени, т. е. в данном случае, по­лагая e=const, получим:

Следовательно, ток смещения сквозь площадку dydz равен

Полный ток сквозь площадку dydz выразится суммою токов проводникового и тока смещения; т. е.

Следовательно,

Аналогично получим:

Подставляя полученные значения в выведенные выше уравнения, получаем:

Такова окончательная форма первой группы уравнений электро­магнитного поля. Именно в такой форме эти уравнения были даны Максвеллом.

Аналогичную систему уравнений дает закон электродвижущей силы (45):

Взяв в электромагнитном поле элементарную площадку со сторонами dy и dz, пронизываемую некоторым магнитным потоком Ф,

 

и составляя для ее сторон сумму выражений Ecosadl, получим, совершенно аналогично предыдущему, для левой части уравнения электродвижущей силы выражение:

Что касается правой части уравнения, то поток Ф, пронизы­вающий площадку dydz, мы можем определить, умножая нормальную составляющую магнитной индукции Вх (для площадки, параллель­ной плоскости YOZ) на площадь dydz, т. е.

Фx=Bxdydz.

Таким образом, получаем уравнение:

которое по сокращении на dydz принимает вид:

Взяв площадки, параллельные координатным плоскостям ZOX и XOY, получим два другие уравнения, выражающие зависимость между составляющими силы электрического поля и составляющими магнитной индукции. Для плоскости XOZ получаем:

и для плоскости XOY:

Наконец, для случая m=const, вторая группа интересующих нас уравнений принимает вид:

Таким образом, мы получили систему из шести дифференциаль­ных уравнений электромагнитного поля, или так называемых уравнений Максвелла, для случая e=const и m=const. Собственно говоря, вторая группа этих уравнений, т. е. уравнения (134), не была дана Максвеллом именно в той форме, как мы их напи­сали. Но так как содержание этих уравнений по существу входит в общие дифференциальные уравнения электромагнитного поля, данные Максвеллом, то мы и будем называть максвелловыми уравнениями всю совокупность уравнений (133) и (134).

§ 120. Общий характер дифференциальных уравнений электро­магнитного поля,

Остановимся вкратце на некоторых сторонах физического со­держания уравнений (133) и (134). Основное, что выражают собой эти уравнения электромагнитного поля, — это взаимная связанность векторов, характеризующих электрическое и магнитное поля.

Всякое изменение силы магнитного поля Н во времени влечет за собою изменения в пространственном распределении вектора электрической силы Е и, обратно, всякое изменение Е во времени обусловливает, вообще говоря, изменения в пространственном распределении вектора Н,

Кроме того, так как в уравнения (133) и (134) входят соста­вляющие Е и Н по координатным осям, то эти уравнения дают возможность судить не только о количественных соотношениях между Е и H, но и о взаимной ориентировке их взаимно связанных изменений. Например, изменение во времени составляющей силы магнитного поля вдоль оси ОХ вызывает изменения в распреде­лении составляющих силы электрического поля в плоскости, па­раллельной YOZ, т. е. в плоскости, перпендикулярной оси ОХ, и т. д.

Мы сказали, что всякое изменение вектора Н (или Е) во вре­мени связано с изменением распределения вектора Е (или H) в пространстве. В связи с этим, вообще говоря, изменение одного влечет за собой появление другого или, следовательно, появление одного связано с появлением другого.

Остановимся еще на том, как в написанных уравнениях отра­жается разница между характером электромагнитного процесса в случае диэлектрика и в случае проводника.

Если мы имеем абсолютный диэлектрик, то r=¥ и, следо­вательно, проводникового тока не существует. Уравнения (133) принимают вид (для простоты выпишем только одно из них):

Следовательно, в случае абсолютного диэлектрика, для появле­ния такого магнитного поля, в котором могут иметь место замкну­тые контуры с магнитодвижущей силой, не равной нулю, иными словами, для возникновения электрического тока, необходимо изме­нение В во времени. Указанное обстоятельство, между прочим, является математическим выражением того, что передача энергии постоянным током, т. е. при постоянной электродвижущей силе, невозможна в случае отсутствия проводника, так как при этом в системе не может возникнуть постоянный электрический ток.

Рассмотрим другой предельный случай, когда r, конечно и про­водниковый ток существует. Допустим еще, что

Е=const.

 

 

То же самое уравнение принимает тогда вид:

Иными словами, в этом случае для появления Н, т. е. для воз­никновения электрического тока, достаточно самого факта сущест­вования Е, хотя бы и неизменного во времени. Таким образом, вводя в систему проводник, мы создаем такие условия, при которых в ней может возникнуть электрический ток и при постоянном зна­чении электродвижущей силы.

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА III Электрическое смещение

На сайте allrefs.net читайте: "ГЛАВА III Электрическое смещение"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные уравнения электромагнитного поля.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая характеристика электромагнитных процессов.
В предыдущих главах мы коснулись одной стороны электромаг­нитных явлений, а именно, рассмотрели некоторые общие свойства магнитного потока и магнитного поля. Теперь сосредоточим наше внимание на др

Электрическое смещение. Основные положения Максвелла.
Известно, что между заряженными телами создается электрическое поле. Это поле деформирует диэлектрик, приводит его в некоторое напряженное состояние, называемое обычно электрической поляризацией

Мера электрического смещения.
Допустим, что мы имеем некоторый диэлектрик, и пусть действующая в нем в точке А электрическая сила Б направлена, как указано стрелкой (рис. 105).

Ток смещения.
Когда мы говорим об электрическом смещении, не следует, во­обще говоря, смешивать этого понятия с электрическим током. Термин „электрическое смещение" мы должны понимать как меру деформации, п

Теорема Максвелла.
Представим себе замкнутую поверхность s, внутри которой как-либо распределены электрические заряды q1,q2, q3 и т. д. Пусть ds представля

Природа электрического смещения.
Максвелл в своих рассуждениях относительно электрического смещения совершенно не касается природы электричества и того, как надо понимать его движение. Все это не имеет значения в фор­мальных постр

Формулировки.
Возвратимся к формулировке теоремы Максвелла: Взяв от обеих частей этого равенства производную по s, получим:

Механическая аналогия.
Остановимся теперь на одной простой механической схеме с целью лучшего уяснения принципа замкнутости тока, а также для того, чтобы наглядно показать значение введенного Максвеллом в науку представл

Непрерывность тока в случае электрической конвекции.
Переход электричества из одного места в другое путем движе­ния заряженных тел вообще и, в частности, заряженных элемен­тарных частиц называется электрической конвекцией и предста­вляет собою

Связь электрического поля с электромагнитными процес­сами. Область электростатики.
В самом начале предыдущей главы (§ 45) мы касались в общих чертах вопроса об электрическом поле и указывали, что его сле­дует рассматривать как одну из сторон того основного электро­магнитного проц

Закон Кулона и вытекающие из него определения и соотношения.
В настоящем параграфе мы даем краткую сводку основных определений и соотношений, относящихся к электрическому полю я вытекающих из закона Кулона. В первую очередь, конечно, напомним формулировку эт

Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
Рассмотрим в некотором электрическом поле две точки, А и В. Линейный интеграл электрической силы вдоль некоторого пути перехода от точки А к точке В, т. е.:

Электрическая деформация среды.
С точки зрения Фарадея и Максвелла, участие промежу­точной среды в передаче электрических действий от одного наэлек­тризованного тела к другому, а также во всех вообще процессах, совершающихся в эл

Линии смещения.
Линиями электрического смещения, или просто линиями сме­щения называются такие линии, построенные в электрическом поле, все элементы которых совпадают по направлению с векторами

Трубка смещения.
Трубкою смещения называется объем диэлектрика имеющий форму трубки, образующими которой служат линии смещения. Рассмотрим некоторую трубку смещения в промежутке между двумя наэлектр

Фарадеевские трубки.
В связи с тем, что было изложено в предыдущем параграфе об особых свойствах трубок смещения, оказывается целесообразным так подбирать размеры этих трубок, чтобы величина полного элек­трического сме

Фарадеевская трубка и количество электричества, с нею связанное.
В дальнейшем мы будем мыслить все электрическое поле за­полненным фарадеевскими трубками. Совершенно подобно тому, как это было в случае магнитного поля в отношении магнитных линий, можно рассматри

Вторая формулировка теоремы Максвелла.
Так как электрическое смещение сквозь поперечное сечение фарадеевской трубки равно единице, то, следовательно, каждая такая трубка, пересекая некоторую поверхность, привносит в вели­чину полного эл

Электризация через влияние. Теорема Фарадея.
Так называемая электризация через влияние, т. е. возникновение электрических зарядов на нейтральном до того проводящем теле в случае поднесения его к какому-либо другому заряженному телу, представл

Энергия электрического поля.
Выше было в достаточной степени выяснено (§§ 1 и 47), что, согласно воззрениям Фарадея и Максвелла, в пространстве, в котором существует электрическое поле, среда находится в особом вынужденном сос

Механические проявления электрического поля.
Механические взаимодействия, наблюдаемые в электрическом поле между наэлектризованными телами и формально описываемые при помощи закона Кулона, могут быть объяснены, с точки зрения &nbs

Преломление фарадеевских трубок.
При переходе фарадеевских трубок (и вообще линий смещения) из одной диэлектрической среды в другую обычно мы имеем дело с изменением направления у са­мой поверхности раздела ди­электриков. Это явле

Электроемкость и диэлектрическая постоянная.
Допустим, что потенциал какого-либо проводящего тела есть U, а потенциалы всех других проводников, находящихся в электриче­ском поле, равны нулю. В этом случае между потенциалом данного тела

Свойства диэлектриков.
В заключение настоящей главы мы дадим краткий обзор неко­торых основных свойств изолирующих материалов (диэлектриков): а) Диэлектрическая постоянная e. Она является главной ха­ракте

Общие соображения о природе тока.
В настоящей главе мы в самых общих чертах ознакомимся с современным состоянием вопроса о природе электрического тока. Хотя вопрос этот по существу относится к области чистой физики, однако,

Движение электричества внутри проводников.
Шестьдесят лет тому назад, говоря об электрическом токе как о явлении кинетического характера, Максвелл не мог не отме­тить того обстоятельства, что он ничего больше не в состоянии сказать о природ

Участие электрического поля в процессе электрического тока.
Основная мысль Фарадея относительно роли проводника, по которому течет ток, заключается, как было отмечено в предыдущем параграфе, в том, что проводник служит своего рода осью, вокруг которой надле

Участие магнитного поля в процессе электрического тока.
Представление о механизме того процесса, который происходит в пространстве вокруг проводника с током и который органически связан с магнитным полем, можно получить из картины преобразо-

Общие соображения.
В предыдущей главе мыпознакомились с общей характеристи­кой того сложного электромагнитного комплекса, который воспри­нимается нами, как электрический ток. Мы видели, что основной

Ионизирующие агенты.
Ионизирующим агентом называется всякий физический деятель, обусловливающий ионизацию газа, или, в более широком смысле этого термина, всякий деятель, обусловливающий появление в дан­ном объе

Заряд и масса иона.
Из сказанного в предыдущих параграфах следует прежде всего, что заряды, несомые положительными и отрицательными ионами, бу­дучи обратными по знаку, должны быть тождественными по абсо­лютной величин

Влияние давления газа на характер разряда.
Общий характер явлений, наблюдаемых при прохождении элек­трического тока через газ, т. е. при так называемом разряде через газ, зависит от целого ряда обстоятельств, как это уже отчасти должно быть

При атмосферном давлении.
Остановимся теперь на случае прохождения электрического тока через газ при атмосферном давлении. Ради простоты предпо­ложим, что мы имеем дело с воздухом. Представим себе (рис. 134) некоторый генер

Основные соотношения, характеризующие ток через газы.
Обратимся к схеме, изображенной на рис. 134, и допустим, что газ в промежутке между электродами В к С ионизируется не­которым неизменно действующим агентом, интенсивность которого будем хара

Тихий разряд. Корона.
Как уже было разъяснено выше (см. §§ 78, 81 и 82), стадия тихого разряда через газы возникает всякий раз, когда электриче­ская сила достигает такого значения, при котором начинается иони­зация газа

Разрывной разряд.
Интенсивная ионизация газа под влиянием сильного электриче­ского поля, характеризующая стадию тихого разряда, может, как мы знаем, завершаться разрывным разрядом, если только в системе нет ограниче

Вольтова дуга.
Мы уже имелислучай указывать выше (см. § 81), что при достаточной мощности генератора, питающего цепь, и при доста­точно малом общем сопротивлении цепи — разряд через газообраз­ную среду между двум

Дуговые выпрямители.
Дуговые выпрямители основаны на использовании неодинако­вой роли положительного и отрицательного электродов вольтовой дуги. В то время, как положительный электрод играет пассивную роль в осн

Давлениях.
В случаях, когда стадия „тихого разряда" (см. § 81) имеет место в газообразной среде при достаточной степени разряжения (порядка 0,1 мм ртутного столба), с большой отчетливостью вы­явля

Прохождение электрического тока через пустоту.
Если в условиях опыта, о котором мы говорили в конце преды­дущего параграфа, после достижения стадии развития катодных лучей при высоком разрежении газа мы будем продолжать откачи­вать газ, достига

Пустотные электрон­ные приборы.
При практическом исполь­зовании накаленного катода для проведения электриче­ского тока через пустотные приборы в настоящее время применяются самые разно­образные конструкции катода и самые разнообр

Основные положения Максвелла.
Настоящая глава посвящена изучению всякого рода динамиче­ских проявлений того электромагнитного процесса, который про­исходит в системе электрических токов. Мы будем при этом следовать пути, которы

Вторая форма уравнений Лагранжа.
Обоснование положения, что электрический ток есть явление кинетического характера, позволило Максвеллу дать стройное математическое исследование этого явления с помощью второй формы уравнений Лагра

Координатах.
Так как обобщенные координаты, как было выше указано, вполне определяют положение всех частей системы, то они должны быть связаны некоторыми зависимостями с декартовыми координатами всех точек сист

Выбор обобщенных координат для электродинамической системы.
Всякая электродинамическая система, вообще говоря, предста­вляет собою совокупность проводящих цепей, по которым проте­кают электрические токи, т. е. механическую систему, совмещенную с системой эл

Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
По аналитическому строению выражения для кинетической энергии (Т) электродинамической системы можно судить и о фи­зическом характере этой энергии. В самом деле, выражение для кинетической эн

Общее обследование сил, действующих в электродинами­ческой системе.
При наличии в системе процессов механических и электриче­ских мы должны иметь в виду соответственно два рода сил: силы механические и силы электродвижущие. Если известна полная кинетическая энергия

Электрокинетическая энергия.
После общего обследования всех сил, могущих обнаруживаться в системе проводников с токами, сосредоточим наше внимание на электрокинетической энергии Te и рассмотрим более подробно

Электродвижущая сила самоиндукции.
Рассмотрим сначала простейшую систему, состоящую из одного проводящего контура (рис. 153). Если к этому контуру п

Коэффициент самоиндукции.
Для количественного определения коэффициента самоиндукции некоторого контура мыможем воспользоваться любым из соотно­шений, характеризующих в той или иной степени электрокинетическ

Электродвижущая сила взаимной индукции.
Остановимся теперь на рассмотрении системы, состоящей из каких-либо двух проводящих цепей, по которым протекают элек­трические токи i1 и i2 (рис. 158).

Коэффициент взаимной индукции.
Совершенно подобно тому, что мы имели при определении коэффициента самоиндукции (см. соотношения 85 — 89 в § 99), и в случае количественного определения коэффициента взаимной индукции мы, вообще го

Индукции.
Обследуем теперь некоторые количественные соотношения между коэффициентами L1, L2 и М. Будем исходить из основного выраже­ния для электрокинетической энер

Общие выражения для магнитных потоков, сцепляю­щихся с отдельными контурами системы.
Рассмотрим теперь самый общий случай системы из n электри­ческих цепей. В этом случае, т. е. при наличии любого числа отдельных цепей, мы имеем:

Общие выражения для электродвижущих сил, индукти­руемых в отдельных цепях системы.
На основании всего вышеизложенного мы можем, подводя итоги, написать ряд нижеследующих соотношений для электродвижущих сил, индуктируемых в отдельных цепях рассматриваемой системы:

Роль короткозамкнутой вторичной цепи.
При рассмотрении явлений самоиндукции и взаимной индукции мы видели, что величина полной ЭДС, возникающей в некотором проводящем контуре в качестве реакции на производимое изменение общих электрома

Действующие коэффициенты самоиндукции и взаимной индукции.
Выше было в достаточной степени разъяснено, что коэффициент самоиндукции цепи есть функция исключительно геометрических размеров контура данной цепи. Приведенные выше примеры под­тверждают это поло

Электромагнитная сила. Общие соображения.
При анализе связи между кинетической энергией, присущей элек­тродинамической системе, и силами, возникающими в такой системе, было получено (см, § 96) общее выражение для так называемой э

Условия возникновения электромагнитной силы.
Рассмотрим некоторый круговой контур (рис. 164), по которому идет постоянный ток, поддерживаемый с помощью внешнего источ­ника.

Случай сверхпроводящнх контуров.
Для иллюстрации только-что сказанного рассмотрим некоторые случаи, когда токи в системе не сохраняются постоянными. В этом отношении особенный интерес представляют случаи сверхпроводящих цепей, соп

Случай контура с током во внешней магнитном поле.
Рассмотрим еще один пример, именно, движение контура во внешнем постоянном магнитной поле. Допустим, для простоты, что это поле создается постоянным магнитом NS (рисунки 167, 168, 169), а ко

Основная роль бокового распора и продольного тяжения магнитных линий.
Из рассмотренных нами примеров ясно, что все приведенные выше формулировки закона движений в электродинамической системе по существу являются именно лишь различными формулировками одного и того

Случай прямолинейного проводника во внешнем магнит­ном поле.
Однако, иногда применяется и другой подход к анализу и ра­счету сил, действующих в электромагнитных механизмах. Именно, иногда исходят из рассмотрения сил действующих на отдельный участок пр

Электромагнитные взаимодействия в асинхронном двигателе.
При совершенной справедливости формулировки, говорящей о стремлении всякого контура с током охватить наибольший внеш­ний поток, интересно отметить, что в некоторых практических случаях это стремлен

Величина и направление электромагнитной силы в случае одного контура с током.
Рассмотрев физическую природу явления возникновения дви­жений в электродинамической системе, обратимся к определению величины и направления электромагнитной силы в различных ча­стных случаях.

Величина и направление силы электромагнитного взаимо­действия двух контуров с током.
Рассмотрим теперь случай двух контуров, по которым проте­кают токи i1 и i2. Электрокинетическая анергия такой системы определяется выражением:

Контуров с током.
Обратимся к общему случаю системы, состоящей из произволь­ного числа контуров. Электрокинетическая энергия системы равна:

Электромагнитная сила, дей­ствующая на участок проводника с током, расположенный во внешней магнитном поле.
В тех случаях, когда вычисление внешнего потока, связанного с данным контуром, а следовательно, и опреде­ление приращения этого потока, оказывается затруднительным, удобнее пользоваться выражением,

Электромагнитное поле.
В главе III (§ 45) было уже указано, что явления электрического поля и явления магнитного поля ни в коем случае не следует рас­сматривать как совершенно самостоятельные совокупности явлений. Мы име

Распространение электромагнитной энергии.
Уравнения (133) и (134) по существу являются общим математическим выражением того факта, что при одновременном существовании взаимно связанных электрического и магнитного полей, т. е. при существов

Опытные данные, подтверждающие теорию Максвелла.
Переходя к вопросу об экспериментальном подтверждении уста­новленных Максвеллом законов распространения электромагнитной энергии, следует отметить, что соответствующий опытный материал настолько ве

Опыты Герца.
Как уже сказано в предыдущем параграфе, экспериментальные подтверждения теории Максвелла представлены в настоящее время в виде всех достижений радиотехники таким количеством материала, что доказыва

Пойнтинга.
Вопрос о механизме распространения электромагнитных воз­мущений и связанного с этим движения электромагнитной энергии представляет глубокий интерес. На этом предмете останавливали свое внимание мно

Распространение тока в металлических массах. Поверхностный аффект.
В предыдущих параграфах настоящей главы были обследованы общие законы распространения электромагнитной энергии. Остано­вимся теперь на более детальном рассмотрении процесса движения энергии в прово

Размерности электрических в магнитных величин.
1. Всякое электрическое и магнитное количество может быть выражено при посредстве основных единиц длины, массы и времени и специальных коэффициентов — диэлектрической постоянной e и магнитной прони

Предметный указатель.
Абсолютная электромагнитная еди­ница: количества электричества 193, коэффициента взаимной индукции 354, коэффициента самоиндукции 342,343, магнитного потока 47,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги