рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Найпростіші задачі квантової механіки

Найпростіші задачі квантової механіки - Реферат, раздел Физика, Реферат На Тему:”Найпростіші Задачі Квантової Механіки” План 1. Рух Вільної ...

РЕФЕРАТ на тему:”Найпростіші задачі квантової механіки” План 1. Рух вільної частинки 2. Частинка в одновимірному потенціальному ящику 3. Гармонічний квантовий осцилятор 4. Проходження частинки крізь потенціальний бар’єр. Тунельний ефект 1. Рух вільної частинки Найпростішим рухом квантової частинки є вільний рух. Прикладом такого руху є рух електронів в металах і напівпровідниках.В цьому випадку потенціальна енергія частинок дорівнює нулю. При вільному русі повна енергія частинки збігається з кінетичною, а її швидкість є сталою величиною.

Такому рухові в класичній механіці відповідає рівномірний і прямолінійний рух. Нехай рівномірний рух квантової частинки відбувається в напрямі осі х, яка збігається з напрямком вектора швидкості. Стаціонарне рівняння Шредінгера для вільної частинки запишеться: (1.3.15) де m ― маса частинки; Е ― повна енергія частинки.Рівняння (1.3.15) є диференціальним рівнянням другого порядку зі сталими коефіцієнтами, розв’язком якого може бути функція (1.3.16) де А і к ― сталі величини; і ― уявна одиниця.

Підстановка (1.3.16) в (1.3.15) дасть тотожність звідки (1.3.17) У співвідношенні (1.3.17) к - хвильове число хвиль де Бройля; Е ― повна енергія частинки; m ― маса частинки.Енергія вільної частинки з рівності (1.3.17) дорівнює (1.3.18) Хвильове число к може набувати довільних значень, тому що вільні частинки в системі можуть мати практично будь-які постійні швидкості. Це говорить про те, що енергетичний спектр вільних частинок є суцільним.

Густина імовірності перебування вільної частинки в довільних точках осі х дорівнює де - комплексно спряжена хвильова функція. Звідки Густина імовірності вільної частинки в будь-якій точці осі х є сталою величиною.Невизначеності вільної частинки в координаті в такому випадку дорівнюють безмежності. Цей висновок є добрим підтвердженням співвідношення невизначеностей Гейзенберга. 2. Частинка в одновимірному потенціальному ящику Розглянемо приклад просторово-обмеженого одновимірного руху квантової частинки в глибокому потенціальному ящику з вертикальними стінками, шириною l. Потенціальна енергія електрона зовні і всередині такого ящика має наступні значення: U(x)=0 при 0<x<l, (1.3.19) U(x)=&#61605; при x&#61603;0 й x&#61619; l. Графік залежності потенціальної енергії частинки U(x) від х показаний на рис 5. Частинка в такому ящику може вільно рухатись на ділянці 0&#61500;х&#61500;l. На кінцях цього інтервалу вона стикається з абсолютно твердими стінками.

Непрозорість цих стінок визначається необмеженим ростом потенціальної енергії U(x) в точках х=0 і х=l. Рис. 1.5 Прикладом руху електрона в потенціальному ящику може бути рух колективізованих електронів усередині металу.

Як відомо, у класичній електронній теорії вважали, що поза металом потенціальна енергія електрона дорівнює нулю, а всередині металу &#8213; вона від’ємна і чисельно дорівнює роботі виходу електрона з металу. Інакше кажучи, вважали, що рух електронів обмежений потенціальним бар’єром прямокутної форми з плоским дном. У нашому випадку потенціальний ящик значно простішої форми ніж реальний випадок електрона в металі. Оскільки частинка не виходить за межі ділянки 0 &#61500; х &#61500; l, то імовірність знайти її за межами цієї ділянки дорівнює нулю. Це означає, що рівняння Шредінгера для стаціонарних станів можна доповнити граничними умовами і Запишемо рівняння Шредінгера для частинки в потенціальному ящику (1.3.20) де m &#8213; маса частинки; &#8213; стала Дірака; Е &#8213; повна енергія частинки; &#61529;(х) &#8213; хвильова функція. Введемо позначення (1.3.21) де к &#8213; хвильове число хвиль де Бройля для електрона, який перебуває всередині потенціального ящика.

Рівняння (1.3.20) набуде вигляду . (1.3.22) Знайдемо розв’язок рівняння (1.3.22), подібно до аналогічних диференціальних рівнянь гармонічних коливань, у тригонометричній формі (1.3.23) де А, В і С &#9472; сталі величини.

З граничних умов одержуємо: а) &#61529;(0)=0; 0=АcosB.0+CsinB.0, звідки А=0; В&#61625;0 і С&#61625;0. б) &#61529;(l)=0; 0=CsinB.l, звідки при С&#61625;0, Вl=n&#61552;, або де n = 1,2,3 Хвильова функція з урахуванням граничних умов набуде вигляду: (1.3.24) Константу С у формулі (1.3.24) знайдемо з умови нормування , (1.3.25) або . (1.3.26) Другий інтеграл у виразі (1.3.26) для будь-яких значень n дорівнює нулю, тому Хвильова функція, яка описує квантовий рух частинки в потенціальному ящику, має вигляд: (1.3.27) При підстановці (1.3.27) у (1.3.22) одержуємо тотожність , звідки (1.3.28) Енергія Е електрона в потенціальному ящику не може бути довільною.

Вона набуває лише дискретних власних значень Е(n). Імовірність виявити в межах потенціального ящика електрон з іншою енергією, ніж (1.3.28) дорівнює нулю. Що ми одержали в результаті розв’язування рівняння Шредінгера? По-перше, набір псі-функцій, які залежать від квантового числа n. По-друге, значення енергії Е, при яких розв’язок рівняння Шредінгера має фізичний зміст. По-третє, розподіл імовірності виявлення частинки в різних точках осі x усередині ящика.

Подібні ж результати виходять при розв’язуванні рівняння Шредінгера й в інших випадках, наприклад, для атома водню.

Енергетичний спектр і густина імовірності частинки в потенціальному ящику показана на рис. 1.6. Рис. 1.6 Число n у формулі (1.3.28) визначає вид хвильової функції й енергію частинки в стані з цією хвильовою функцією і називається квантовим числом.

Покажемо, що для частинки в потенціальному ящику можливі лише такі енергетичні рівні, на яких на ширині ящика вкладається лише ціле число півхвиль де Бройля. При аналізі граничних умов було показано, що kl=n&#61552;, де &#8213; хвильове число хвиль де Бройля.З урахуванням останнього маємо: (1.3.29) Співвідношення (1.3.29) показує, що в потенціальному ящику можливі лише такі стани частинки, при яких на ширині потенціального ящика l вкладається ціле число півхвиль де Бройля (рис. 1.7). Рис. 1.7 Незбуреному стану частинки (n=1) відповідає енергія (1.3.30) Значення цієї енергії Еl&#61502;0 свідчить про те, що частинка в потенціальному ящику ніколи не зупиняється і що невизначеність &#61508;Рх імпульсу частинки не може бути меншою за величину (1.3.31) В потенціальному ящику шириною l положення частинки визнача-ється похибкою, яка сумірна з його шириною &#61508;х&#61627;l, тому що перебуває у повній відповідності із співвідношенням невизначеностей імпульс - координата.

Покажемо, як залежить ширина енергетичного інтервалу &#61508;Е від розмірів потенціального ящика.

У потенціальному ящику з розмірами l=10-9 м власні значення енергії електрона утворюють послідовність енергетичних рівнів, енергетична відстань між якими дорівнює &#61508;E=En+1-En, або Дж. В електрон-вольтах ця енергія буде дорівнювати Цей розрахунок показує, що коли ширина потенціального ящика сумірна з розмірами атома (10-10м), енергетичний інтервал між сусідніми енергетичними рівнями досить значний, а спектр є дискретним.

У випадку, коли потенціальний ящик має макроскопічні розміри l&#61627;10-2 м, енергетичний інтервал між сусідніми рівнями буде дорівнювати Дж=0,34.10-14(2n+1) eB. Для такого потенціального ящика квантуванням енергії можна знехтувати. Вона нічим не відрізняються від значень енергії, одержаних класичними методами.

Аналогічні результати можна одержати для великих квантових чисел n. У цьому випадку проявляється принцип відносності, встановлений Бором у 1923 р. При великих квантових числах висновки й результати квантової механіки збігаються з відповідними класичними результатами. 3. Гармонічний квантовий осцилятор Просторово-обмеженим є також рух квантового осцилятора.З класичної точки зору осцилятором може бути будь-яка матеріальна точка, яка здійснює гармонічні коливання під дією квазіпружної сили F=-kx, де k=m . (1.3.33) Потенціальна енергія класичного осцилятора знаходиться за формулою (1.3.34) де m &#8213; маса частинки; &#8213; циклічна частота осцилятора.

Графічна залежність потенціальної енергії класичного осцилятора показана на рис. 1.8. Рис. 1.8 З рисунка видно, що осцилятор може мати практично довільну енергію, навіть рівну нулю. В точках -а і +а кінетична енергія осцилятора дорівнює нулю, а потенціальна енергія досягає свого максимуму.

За межі області (-а, +а) класичний осцилятор вийти не може. Квантовим осцилятором може бути лише елементарна частинка, яка поряд із корпускулярними властивостями проявляє і хвильові властивості. Прикладом квантового осцилятора може бути коливний рух атомів і молекул у вузлах кристалічної гратки.Потенціальна енергія квантового осцилятора має ту ж математичну залежність, що і класичний осцилятор (1.3.34). Стаціонарне рівняння Шредінгера для лінійного гармонічного осцилятора має вигляд: (1.3.35) де m &#8213; маса квантової частинки; &#8213; власна циклічна частота; Е &#8213; повна енергія частинки. Знаходження хвильових функцій квантового осцилятора є досить складною математичною задачею.

Тому, опускаючи такі розв’язки, наводимо енергетичний спектр квантового осцилятора.Він має вигляд (1.3.36) де n= 0,1,2,3 &#8213; будь-яке ціле число, починаючи з нуля; &#8213; власна циклічна частота осцилятора; &#8213; стала Дірака. Аналіз рівняння (1.3.36) показує, що енергетичний спектр квантового осцилятора є дискретним і що власні значення енергії дорівнюють: В енергетичному спектрі (1.3.36) проміжки між енергетичними рівнями не залежать від квантового числа n, а є однаковими (1.3.37) Як показано на рис. 1.9, де енергетичний спектр квантового осцилятора суміщається з аналогічним спектром класичного осцилятора, квантовий осцилятор не має значень енергії рівних нулю. Рис.1.9 Найменше значення енергії квантового осцилятора дорівнює . (1.3.38) Меншої енергії квантовий осцилятор не може мати навіть при абсолютному нулі температур.

Покажемо наближеним способом, що енергія квантового осцилятора квантується. З рис 1.10 видно, що на відрізку l=2х0 вкладається ціле число півхвиль де Бройля, тобто (1.3.39) де &#8213; середнє значення довжини хвилі де Бройля.

Звідки (1.3.40) Рис. 1.10 Середнє значення імпульсу кванта хвилі де Бройля (1.3.41) Середня кінетична енергія такого осцилятора (1.3.42) Відомо, що повна енергія Е перевищує середнє значення кінетичної енергії у два рази, тобто (1.3.43) З іншої точки зору повна енергія квантового осцилятора дорівнюватиме максимальній потенціальній енергії (1.3.44) Перемножимо рівності (1.3.43) і (1.3.44), одержимо (1.3.45) або (1.3.46) В межах точності наших міркувань &#61627;1, тому (1.3.47) де n =1,2,3 &#8213; цілі числа. Наближений розрахунок показує, що енергія квантового осцилятора набуває ряду дискретних значень, тобто квантується. Точне значення енергії для не збудженого квантового осцилятора нульового рівня можна одержати з рівняння Шредінгера (1.3.35), якщо згідно з рис. 1.10 скористатись функцією Гаусса, яка дорівнює (1.3.48) де а &#8213; стала величина, яку слід визначити.

Другу похідну від (1.3.48) підставимо в (1.3.35) звідки . (1.3.49) Тотожність (1.3.49) має місце у випадку рівності коефіцієнтів при х2 і вільних членів, тобто (1.3.50) Система рівнянь (1.3.50) дає можливість одержати значення енергії Е і сталої величини а . (1.3.51) Таким чином функція Гаусса є розв’язком рівняння Шредінгера (1.3.35) лише за умови коли . В цьому випадку . (1.3.52) Слід відмітити, що оскільки відстань між суміжними рівнями енергії квантового осцилятора дорівнює то з урахуванням одержуємо енергетичний спектр квантового осцилятора у вигляді (1.3.53) де n = 0,1,2,3 4. Проходження частинки крізь потенціальний бар’єр. Тунельний ефект Класична частинка не може перебувати в тих місцях, де її потенціальна енергія U(x) перевищувала б повну енергію частинки E. Щодо квантової частинки, то вона має таку властивість через те, що існує відмінна від нуля імовірність проникнення її крізь потенціальний бар’єр, тобто в область, де U(x) &#61502; E. Проведемо оцінку цієї імовірності шляхом розв’язування такої задачі. Нехай квантова частинка з масою m, рухаючись в напрямі осі х, вдаряється в потенціальний бар’єр кінцевої висоти U0, тобто причому енергія частинки Е менша висоти бар’єра U0, (рис. 1.11). Рис. 1.11 В області потенціального бар’єра рівняння Шредінгера для стаціонарних станів набуде вигляду (1.3.54) Якщо позначити вираз через , то рівняння (1.3.54) перепишеться . (1.3.55) Розв’язком рівняння (1.3.55) може бути функція , (1.3.56) де А і В &#9472; деякі константи.

Експонента з додатним знаком фізичного змісту не має й може бути відкинута, тому що не повинно бути зростання імовірності в області потенціального бар’єра. Тому в області потенціального бар’єра (х&#61502;&#61488;), хвильова функція частинки &#61529;x визначається рівністю &#61529;x = Аe- x. (1.3.57) Коефіцієнт А у виразі (1.3.57) пов’язаний з інтенсивністю променя частинок, які рухаються у напрямі бар’єра, а тому задається довільно. Як правило для х&#61502;&#61488; координати частинок розподіляються з густиною імовірності , (1.3.58) де &#61559;&#61480;0&#61481; дорівнює значенню &#61564;& #61529;x&#61564;2 при х=0. Рівняння (1.3.58) показує, що із збільшенням глибини проникнення в область потенціального бар’єра, густина імовірності &#61559;&#61480;х&#61481; зменшується експоненційно. Це зменшення буде тим швидше, чим більша різниця енергій U0 - E. Знайдемо глибину проникнення елементарної частинки в область потенціального бар’єра при умові, що m = 9,1 10-31 кг (електрон), U0 - E = 10-4 eB, а густина імовірності &#61559;(х&#61481; на цій відстані зменшується в е разів Ця відстань перевищує на два порядки діаметр атома водню.

Глибина проникнення зменшується на порядок, якщо різниця енергій U0 - E зросте до 10-2 еВ. Здатність квантових частинок проникати в область потенціального бар’єра приводить до тунельного ефекту.

Його суть полягає в проникненні частинки з однієї області в іншу область, які поділені потенціальним бар’єром навіть в тих випадках, коли енергія частинки Е менша висоти потенціального бар’єра U0. Таке проходження частинки виявляється можливим дякуючи існуванню під бар’єром хвильової функції, яка «прокладає» шлях частинці на будь-яку відстань.

Тунельний ефект є головною причиною &#61537;-розпаду радіоактивних ядер.

– Конец работы –

Используемые теги: Найпростіші, задачі, квантової, механіки0.074

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Найпростіші задачі квантової механіки

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Предмет теоретичної механіки Теоретична механіка – це одна з дисциплін науки Механіка
Теоретична механіка це одна з дисциплін науки Механіка Саме слово механіка грецького походження і в прямому перекладі означає хитрість Цей... Механіка це наука про найпростішу форму руху матерії механічний... Механічним рухом називається переміщення одного матеріального об єкта або його частини відносно іншого іншої його...

ПРЕДМЕТ І ЗАДАЧІ ФІЗИКО-ХІМІЧНОЇ МЕХАНІКИ Навколишній світ та дисперсні системи
ПРЕДМЕТ І ЗАДАЧІ ФІЗИКО ХІМІЧНОЇ МЕХАНІКИ... Навколишній світ та дисперсні системи... Фізико хімічна механіка як наукова дисципліна її задачі...

Основні поняття квантової механіки
Установити фізичний зміст квантового стану допомогло відкриття корпускулярно-хвильового дуалізму матерії. У квантовій фізиці стан частинки задається… Рівняння хвилі де Бройля елементарної частини називається хвильовою функцією і… Це підтверджується незалежністю інтерференції від інтенсивності частинок в пучку. Інтерференція спостерігається навіть…

Задачі, зміст і структура дисципліни. 2.Поняття мистецтва, його видів
План... Задачі зміст і структура дисципліни... Поняття мистецтва його видів Класифікація видів мистецтва за головними ознаками...

Опорний конспект лекцій з дисципліни Вступ до фаху 6.050502 – Інженерна механіка; 6.050503 - Машинобудування
Факультет технології автоматизації та комп ютеризації машинобудування... Кафедра металорізальних верстатів та обладнання... автоматизованого виробництва...

КОНСПЕКТ ЛЕКЦІЙ З ТЕОРЕТИЧНОЇ МЕХАНІКИ
Міністерство освіти і науки України... ХАРКІВСЬКИЙ ДЕРЖАВНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ БУДІВНИЦТВА ТА АРХІТЕКТУРИ...

Предмет, метод і задачі дисципліни „Основи теорії систем і системний аналіз”
Предмет метод і задачі курсу... uuml Предмет метод і задачі дисципліни Основи теорії систем і системний аналіз...

МЕТОДИЧНІ ВКАЗІВКИ ДО ВИКОНАННЯ ЛАБОРАТОРНИХ РОБІТ З ФІЗИКИ РОЗДІЛ “МЕХАНІКА”
ХАРКІВСЬКА НАЦІОНАЛЬНА АКАДЕМІЯ... МІСЬКОГО ГОСПОДАРСТВА... МЕТОДИЧНІ ВКАЗІВКИ ДО ВИКОНАННЯ...

Фінанси. Бухгалтер в сучасних умовах: Предмет і задачі курсу
Предмет і задачі курсу... Зміст і зв язок з іншими спеціальними дисциплінами... Законодавчі і нормативні документи...

САМОСТІЙНА РОБОТА СТУДЕНТІВ З ВИВЧЕННЯ МЕХАНІКИ
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ... ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ В Н КАРАЗІНА...

0.029
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам