рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Історія навчання фізики

Історія навчання фізики - раздел Физика, План Вступ Розділ 1. Роль Історизму І Шляхи Його Використання В Навчанні Фізи...

ПЛАН Вступ Розділ 1. Роль історизму і шляхи його використання в навчанні фізики 1. Елементи історизму як засіб обґрунтування нових знань 2. Використання елементів історизму при розвязуванні задач 1.3 . Використання елементів історизму на лабораторних роботах 1.4 . Використання елементів історизму при узагальненні знань 1.5 . Ознайомлення учнів з творчістю та поглядами видатних фізиків Розділ 2. Екскурси в історію фізики під час вивчення механіки 2.1. До історії кінематики 2.2. Відкриття законів вільного падіння 2.3. До історії законів динаміки Ньютона 2.4. До історії закону всесвітнього тяжіння 2.5. До історії принципу відносності 6. Формування поняття сили 2.7. До історії закону збереження кількості руху 2.8. До історії закону збереження механічної енергії Висновки Список використаних джерел Додаток1 Додаток 2 Додаток 3 Додаток 4 Додаток 5 Додаток 6 Додаток 7 Додаток 8 Додаток 9 Найбільш оптимальний шлях розвитку пізнання і вміння в кожній окремій людині співпадає в загальних рисах з шляхом, який пройдений історичним людством при розвитку даного роду пізнання і вміння. Брекфорд.

ВСТУП Фізика посідає важливе місце серед навчальних предметів основної школи, оскільки в процесі навчання фізики формується науковий світогляд учня, розвиваються його інтелектуальні та творчі здібності. Знання, отримані під час вивчення фізики, стають основою технічної грамотності людини, дозволяють використовувати результати фізичних досліджень і відкриттів для задоволення матеріальних та духовних потреб особистості. Формування в учнів міцних знань з фізики вимагає пошуку нових та вдосконалення вже відомих методичних прийомів і засобів навчання, вдосконалення організації навчального процесу.

В наш час головне завдання і проблема кожного вчителя - це залучення школярів до науки взагалі і фізики зокрема.

Одним із шляхів вирішення цього питання є використання на уроках елементів історії. Вчителі звертаються до історії фізики, коли хочуть пожвавити урок. зробити його цікавим.

Однак іноді цікавість історії фізики бачать в історичних курйозах та легендах, в потішних та цікавих відомостях про окремих вчених і зовнішньо ефективних історичних епізодах. Звичайно, внесення в урок такого типу відомостей може бути і корисним. Учні, наприклад, з цікавістю слухають відому легенду про Еврику! Архімеда чи про те, яку роль в народженні класичної механіки відіграло яблуко, яке впало в саду Ньютона.

Однак такого типу відомості бють на зовнішній ефект і, як будь-які сенсації, можуть викликати лише короткочасну цікавість. Щоб пробудити стійкий інтерес у школярів до фізики-науки, потрібно розкрити еволюцію фізичних ідей, причини, що спонукали прийняти ту чи іншу ідею, механізм наукового пошуку, атмосферу творчого процесу.

Це потрібно робити не фрагментарно, а по можливості систематично, не академічно строго, а з особистим захопленням. Адже цікаво саме по собі не буває, можна і про роботи Марії та Пєра Кюрі, і про революцію в фізиці на перетині 19-20ст.ст і про створення теорії відносності розповісти так, що розповідь буде давати користь розуму і насолоду серцю. Звичайно, дуже важливою при цьому є форма викладання. А в змісті історичних повідомлень головну увагу потрібно звертати не стільки на те, хто, що, коли відкрив, скільки на те, чому і як виникла у вченого та чи інша ідея, який хід його думки при обґрунтуванні ідеї, який його метод дослідження.

Не випадково Д.К.Максвелл говорив Наука нас захоплює тільки тоді, коли, цікавлячись життям великих дослідників, ми починаємо слідкувати за історією розвитку їх відкриттів. Отож, говорячи, наприклад, про створення теорії відносності, потрібно не просто повідомити про ті висхідні постулати, які були покладені в її основу Ейнштейном, а й пояснити, чому Ейнштейн вірив в універсальність принципу відносності чому Лоренц і Пуанкаре не побачили в нових перетвореннях координат і часу вираження реальних властивостей простору і часу, а Ейнштейн побачив це, тобто показати учням, якого відображення набуло сприймання Ейнштейна в тих ідеях, які склали зміст теорії відносності. Розповідаючи про народження нових ідей та їх еволюцію не слід нехтувати деталями, цікавими епізодами.

Вони можуть зробити розповідь більш живішаю, але стійкий інтерес мають породжувати і самі процеси пошуку істини з їх внутрішньою логікою, неминучими зиґзаґами і навіть поверненням назад з неминучим знаходженням істини.

Отже, історизм у викладанні фізики - один з важливих засобів розвитку школярів інтересу до науки і в цьому перш за все полягає його роль. Адже те, до чого пожвавлений інтерес, засвоюється завжди краще, ніж те, що вивчається лише із зовнішніх спонукань, тому історизм сприяє і кращому розумінню фізики. Однак справа не лише в цьому.

Знайомство з історією науки не лише демонструє, як потрібно мислити, щоб зрозуміти природу, але і застерігає нас від хибних уявлень. Порівнюючи погляди Аристотеля і Галілея, ми застерігаємо учнів від можливих помилкових уявлень про те, що важкі тіла падають швидше, що причина руху - сила. Говорячи про існування і крах концепції теплороду, ефіру, ми запобігаємо появі у школярів подібних ілюзій. Говорячи про помилки концепції енергетизму, ми застерігаємо учнів від уявлення про енергію в дусі субстанції. А все це забезпечує більш правильне розуміння явищ природи.

Розповідаючи про розвиток уявлень про природу світла, ми узагальнюємо і систематизуємо знання учнів і тим самим робимо їх більш глибокими, усвідомленими і міцними. Отже, історизм у викладанні фізики сприяє підвищенню якості знань учнів. Така його друга функція. Але глибоке засвоєння наукових знань лежить в основі формування наукового світогляду, і історизм тим самим - один із засобів його створення. Формування наукового світосприймання - складний процес, який складається з ряду компонентів і деякі з них здійснюються виключно на основі історизму. Дійсно, світогляд включає в себе наукове розуміння процесу пізнання світу. Історичні огляди, в яких розкривається еволюція ідей, дозволяють продемонструвати, що наукові знання - це не застиглі догми, що наукові знання розвиваються.

Під час процесу пізнання ми отримуємо достовірні відомості про світ, тобто пізнаємо обєктивну істину. Але кожне наукове твердження справедливе лише в певних умовах і є неповним і неточним для знання про світ, тобто є істиною відносною, що містить, як правило, елементи абсолютної істини.

Показуючи еволюцію фізики, ми відкриваємо роль практики виробництво і науковий експеримент як джерела знань і критерію істини, а поступове все більш глибоке осмислення законів природи, з якими нас знайомить історія, означає осмисленість світу і всесильність людського розуму. Тим самим історія фізики дозволяє відкрити перед учнями загальні закономірності і принципи наукового пізнання.

Ознайомлюючи школярів з історією науки, ми показуємо, як створюються фізичні теорії, яка роль гіпотез в розвитку фізики, в чому особливості наукового експерименту і т. д. На матеріалі історії фізики ми даємо школярам уявлення про методи фізичного дослідження, що дуже важливо для формування світогляду. Нарешті, світогляд включає в себе не лише знання, але і переконання. Знання ж стають переконаннями, коли вони самостійно осмислені, а не взяті на віру в готовому вигляді, коли вони - плід напруженої роботи думки.

В цьому випадку мислення вже не є напівінтуїтивним та поверхневим, а відрізняється якостями, характерними для наукового діалектичного стилю осмислення дійсності. І саме матеріали історії науки дозволяють хоча б в певній мірі сформувати окремі елементи наукового мислення, такі, наприклад, як повага до фактів, здоровий скептицизм, всебічність розгляду явища, вміння засумніватися в очевидному і т. д. Отже, історизм є одним із засобів формування наукового світогляду учнів в процесі викладання фізики це його третя функція. Ознайомлення учнів з життям, діяльністю та поглядами видатних вчених як вітчизняних, так і зарубіжних, дозволяє поставити на уроці ряд важливих проблем сенсу життя, національної гідності і т. д. Звичайно, біографічні дані не повязані внутрішньою логікою з суто фізичним матеріалом навчальної програми.

Але враховуючи, що навчання повинно бути виховуючим, потрібно вважати необхідним ознайомлення учнів з науковою діяльністю, поглядами, духовним світом видатних представників фізичної науки. Адже серед кінцевих результатів навчання в школі є явні - це знання, вміння - і є неявні, які не вимірюються в балах це погляди на життя, на своє в ньому, етичні переконання, риси характеру, інтереси. І ці неявні результати дії на учня не можна вважати другорядними.

Тому не можна залишити без уваги і засоби для досягнення цих результатів в процесі навчання, зокрема такий засіб, як розповіді про кращих людей науки.

Таким чином, історія науки є одним із засобів виховання учнів. Це четверта функція історизму. Можна виділити ще одну важливу функцію історизму, яка має пряме відношення до викладання фізики. Суть її в найзагальнішому вигляді добре сформульована Луї де Бройлем Історія науки може дати нам цінні вказівки про методику викладання науки. Як показує досвід викладання, учні допускають такі помилки в розумінні важливих фізичних понять та ідей, які є аналогічними помилками, що мали місце в історичному процесі формування цих понять та ідей згадаємо уявлення про силу як причину руху, уявлення про енергію як вид матерії, абсолютизацію однієї якої-небудь системи відліку, частіше всього тієї, що повязана з Землею і т. д І це можна пояснити, так як логічне навчальне пізнання і історичне суспільно-історичне пізнання знаходяться в єдності і мають загальність в тому, що в пізнанні будь-якого обєкта є дещо обєктивно складне як для зрілого розуму вченого, так і тим більше для розуму школяра, що тільки формується. Звідси випливає можливість деякого прогнозування труднощів, що виникають в учнів в процесі вивчення ряду фізичних понять та ідей. Знаючи, на чому конкретно спіткнулися фізики в трактуванні тих чи інших понять та ідей, можна побудувати методику викладання так, щоб на цьому ж не спіткнулися учні, тобто можна скорочувати навчальне пізнання в порівнянні з історичним.

Таким чином, сутність історичного підходу до вирішення проблем викладання полягає в тому, що під час розробки методики вивчення фізичних понять та ідей необхідно 1 виявити, які помилки були в історичному процесі формування цих понять та ідей 2 виявити конкретні причини цих помилок в історичному процесі розвитку фізики тобто встановити, в чому виявилась недіалектичність мислення, що конкретно перебільшувалось, розумілося однобоко, ігнорувалося, незнання яких питань створювало труднощі пізнання і т. д. 3 побудувати методику викладання цих питань так, щоб при їх трактуванні були усунені причини, які могли б виникнути в учнів помилки тобто усунути ту недіалектичність, однобокість, неповноту знань по даному питанню, які можуть породити помилки. Такий підхід до вирішення проблеми методики викладання фізики цілком виправданий.

Застосування в методиці фізики принципу історизму як метода дослідження дозволяє побудувати таку методику викладання важливих фізичних понять та ідей, за якої можна буде запобігати можливості виникнення в учнів помилкових уявлень, аналогічним тим, що були в історії науки.

Звернення до історії науки може бути корисним для вирішення педагогічних проблем іще в одному відношенні. Багато вчених-фізиків, займаючись вивченням природи, думали про те, як зробити наукові знання надбанням людей, суспільства.

При цьому вони наштовхнулись на педагогічні проблеми і так чи інакше вирішували їх. Звернення до педагогічної спадщини ряду великих фізиків може дати багато корисного кожному викладачу фізики. Загальновідомі думки А.Ф.Йоффе про перспективи реформи фізичної освіти в середній школі. Дуже повчальні слова Луї де Бройля по педагогічним проблемам.

Дослідження показують, що мудрим педагогом, який тонко розумів багато аспектів педагогічної діяльності, був і А.Ейнштейн.

Його думки і сьогодні свіжі та актуальні і запрошують до роздумів про педагогічні проблеми. Щоб не бути голослівними, можна привести деякі з висловлювань Ейнштейна про педагогічні проблеми, тим більше, що вони мало відомі. Про цілі освіти В першу чергу школа повинна створювати не майбутніх чиновників, вчених, адвокатів та письменників, а справжніх живих людей.

Про експеримент красивий експеримент сам по собі часто на багато цінніший, ніж двадцять формул, здобутих в реторті думки дітей кормлять означеннями, замість того, щоб показати їм що-небудь зрозуміле. Про роль емоцій в навчанні Акт здивування, очевидно, настає тоді, коли сприймання вступає в конфлікт з достатньо встановленим в нас світом понять. В тих випадках, коли конфлікт переживається гостро, він в свою чергу сильно впливає на наш розумовий світ. Розвиток цього розумового світу представляє собою у відомому сенсі подолання почуття здивування - неперервна втеча від дивовижного, від чуда. Чи не цього не вистачає зараз процесу навчання в школі та вузі? Про роль історизму в навчанні Зміст науки можна розуміти та аналізувати, не вдаючись в розгляд індивідуального розвитку її творців. Але при такому однобоко обєктивному викладі окремі кроки іноді можуть здаватися випадковими вдачами.

Розуміння того, як стали можливими і навіть необхідними ці кроки, досягається лише, якщо прослідкувати за розумовим розвитком особистостей, які сприяли виявленню напрямку цих кроків. Таким чином історія фізики є не лише складовою частиною змісту шкільного курсу фізики, що дозволяє вирішувати багато завдань освіти і виховання, але і важливим джерелом педагогічних ідей, які дають можливість удосконалювати методи викладання і збагачувати методику новими підходами та рішеннями.

Однак визнання важливості історизму ще не визначає, в якій мірі історизм повинен увійти в шкільний курс фізики. Безперечно в курс потрібно включати ті питання історії, які в найбільшій мірі допомагають вирішенню завдань, які постають перед навчанням фізики. Звичайно, питання історії, що включаються в курс фізики, повинні бути тісно повязані з навчальною програмою і доступні школярам.

Але ці положення не дають жорстких критеріїв для відбору історичних відомостей.

Перш за все з багатої скарбниці історії фізики потрібно вибрати те, що є визначаючим в розвитку фізики з точки зору її сучасного стану. Проблематика ж сучасної фізики повязана з рядом фундаментальних фізичних принципів та ідей, до яких відносяться такі, як ідея збереження, відносності, єдності перервності та неперервності, елементарності, необоротності, симетрії і ін. Актуальність саме цих проблем для фізики наших днів не викликає сумніву. До того ж багато з цих ідей по суті є методологічними принципами.

Звертаючись до історії фізики, можна побачити, що ці фундаментальні ідеї виражали головні напрями розвитку фізичної думки протягом всього існування фізичної науки, і історичний процес її розвитку можна представити як процес становлення і розвитку цих фундаментальних фізичних ідей. Тому якщо ми хочемо представити історію фізики в шкільному курсі головними питаннями, а не другорядними фактами і подіями, то історичний матеріал, який включається в зміст шкільного курсу, повинен перш за все показати еволюцію фундаментальних фізичних ідей. Деякі з цих ідей виходять за рамки шкільної програми.

Про них, звичайно, можна говорити на факультативах, засіданнях фізичного гуртка, в класах з поглибленим вивченням фізики. Отже, основний історичний матеріал, що заслуговує в першу чергу на внесення в шкільний курс це ті питання історії, які забезпечують розкриття еволюції найважливіших ідей історії фізичної науки. Звичайно, такий критерій відбору, що по суті є методологічним, повинен поєднуватися з вказаними раніше педагогічними критеріями. Це означає, що матеріал історії фізики, повинен бути пропущеним через своєрідний педагогічний сепаратор. В результаті з нього відбирається не лише найсуттєвіше з точки зору розвитку фізики і її сучасного стану, але і найкорисніше в освітньому і виховному відношенні, найпереконливіше та зрозуміле для учнів. А це, зокрема, означає, що в історичному матеріалі в першу чергу виділяється те, що показує, якою була епоха, коли було зроблено відкриття, як отримали той чи інший висновок, чому фізика прийшла до тієї чи іншої ідеї, яким був хід думки вченого, якою людиною він був і в яких умовах працював, яка загальна логіка розвитку фізичної ідеї. В такій педагогічній обробці наявних історичних матеріалів та в їх адаптації до потреб і можливостей навчання фізики в школі потрібно компонувати свою діяльність. РОЗДІЛ 1РОЛЬ ІСТОРИЗМУ І ШЛЯХИ ЙОГО ВИКОРИСТАННЯ В НАВЧАННІ ФІЗИКИ 1.1. Елементи історизму як засіб обґрунтування нових знань При переході до практики постає питання про форми використання історичного матеріалу у викладанні фізики, про типи історичних матеріалів за характером їх використання, про методи та прийоми роботи вчителя на уроці. Історизм у викладанні фізики передбачає, як вказувалося вище, перш за все розкриття еволюції фундаментальних ідей. Здійснити це можливо, на нашу думку, на спеціальних уроках-лекціях, присвячених історичним оглядам основних етапів розвитку поглядів на найважливіші фізичні проблеми. Такі огляди можуть проводитися або вкінці великих розділів курсу фізики і завершувати їх, або на початку розділу і носити ввідний характер. Історичні огляди дозволяють підготувати учнів до засвоєння фундаментальних знань та викладаються під час вивчення теми чи розділу курсу.

Щоб учень засвоїв нові знання, він повинен перш за все повірити в їхню істинність, а для цього вчитель повинен обґрунтувати нові відомості, переконати школярів у факті існування того чи іншого явища, в справедливості тієї чи іншої ідеї. Обґрунтування нових знань - дуже важливий елемент навчання.

Відсутність чи непереконливість нових знань породжує у школярів елементи догматичного стилю мислення, легковірності, звичку не вдумуватися в ті основи, на яких базується те чи інше твердження, вбиває допитливість думки, здоровий скептицизм. Можливо, неувагою до проблеми обґрунтування знань і пояснюється та обставина, що під час навчання у школяра зникають ті сто тисяч чому, якими відрізняються діти в ранньому віці. Чи не дуже часто ми грішимо поспішним викладом понять та ідей, які по причині цього поспіху не набувають для учня силу неминучої необхідності? Таким чином, обґрунтування нових знань необхідне для того, щоб привчити школярів не брати нічого на віру і сформувати в них допитливість та анти догматизм як риси стилю мислення.

Які ж шляхи обґрунтування фізичних понять та ідей доступні вчителю фізики? Природно, що в силу особливостей сприйняття школярів найбільш переконливим для них є експериментальний спосіб обґрунтування нових знань, коли новий факт чи ідея випливають з результатів навчального досліду експерименту. Так, наприклад, обґрунтовується явище електромагнітної індукції. Другим засобом обґрунтування нових знань в процесі навчання є математичний вивід відношення чи закону, який буде переконувати учнів в силі теоретичного мислення і, зокрема, в пророчій силі математичного апарата.

Так, наприклад, обґрунтовується основне рівняння кінетичної теорії газу. Але не завжди можна використати математичний апарат або експеримент для виведення нового, і тоді теоретичне обґрунтування нових знань здійснюється шляхом логічних роздумів. Так, наприклад, необхідність холодильника як важливої частини теплової машини доводиться шляхом якісних логічних суджень.

Та часто ми не можемо використати жодного зі способів обґрунтування нових знань.

Дійсно, як на перших кроках вивчення електрики переконати учнів в існуванні електричного поля? Висувати таку фундаментальну ідею без якого-небудь хоча б попереднього виправдання - означає звернутися до догматизму.

Але ні експериментальний, ні теоретичний способи обґрунтування ідеї існування електричного поля непридатні на початку вивчення електрики.

Залишається єдиний шлях - розповісти учням про те, як в історії науки формувалась і стверджувалась концепція близькодії, тобто використати історичний спосіб обґрунтування.

До історичного способу обґрунтування нових знань ми звертаємось в тих випадках, коли жоден зі способів не можна використати.

З аналогічною ситуацією ми зіштовхуємося під час вивчення висхідних постулатів теорії відносності, розмова про які стає для учнів виправданою з самого початку, якщо розповісти їм про передісторію теорії відносності. Історичний спосіб обґрунтування фізичних ідей здійснюється на уроці у формі історичного огляду. Цей огляд вчитель може провести у формі розповіді чи лекції. Мета такого огляду - розкрити, на яких основах виникла дана ідея і продемонструвати учням, що вона є результатом розвитку науки. Досить часто історичний спосіб обґрунтування нових знань використовується не для розкриття фундаментальної фізичної проблеми, а для того, щоб ознайомити учнів з новими фактами та явищами, що не відтворюються експериментально в шкільних умовах.

Так, ознайомлюючи учнів з відкриттям рентгенівського випромінювання, радіоактивності, нейтрону, ми повинні відновити історію цих відкриттів. Формою викладу такого матеріалу є розповідь вчителя. Можливо, іноді історичний спосіб є менш переконливим, ніж інші. Але відмовитися від історизму не можна.

Так, наприклад, переконавшись шляхом нескладних міркувань вчителя в існуванні тиску світла, учень не зрозуміє, яку роль в розвитку фізики відіграло це відкриття, і воно буде здаватися школярам малозначущим, несуттєвим фактом. Лише розповідь про передісторію відкриття тиску світла, про неймовірні тонкощі дослідів Лебедєва та їх роль в утвердженні електромагнітної теорії дозволить переконати школярів у фундаментальності цього відкриття.

Таким чином, історичний спосіб обґрунтування явища чи ідеї може співіснувати з іншими способами. Учні, звичайно, повинні знати саме в історичному плані такі фундаментальні експерименти, як досліди Лебедєва, Герца, Резерфорда і т. д. Слід зауважити, що чим більше зміст шкільного курсу фізики буде наближатися до сучасної фізики, тим частіше ми будемо звертатися до історії науки, як до засобу обґрунтування ідей, так як переважну більшість відкриттів сучасної фізики ми не можемо відтворити експериментально і обґрунтувати математично.

Навчальна інформація історичного характеру, на нашу думку, не повинна бути обовязковою для запамятовування, щоб не перевантажувати память. Якщо в кінцевому результаті в учнів обґрунтування і доведення фактів не збережуться у памяті, то все ж вони виконають головну роль - формування допитливого, анти догматичного стилю мислення. Отже, використання історизму як засобу обґрунтування нових знань може здійснюватися в двох формах по-перше, у вигляді історичного розвитку поглядів з приводу якої-небудь фундаментальної фізичної проблеми і, по-друге, у вигляді історичного матеріалу, який містить опис окремих фундаментальних фізичних експериментів. Прикладами першої форми використання історизму є такі ввідні історичні огляди, як Історія виникнення і ствердження концепції поля , Історія встановлення закону збереження і перетворення енергії , Історія створення основ теорії відносності і ін. Прикладами другої форми є такі описи окремих важливих історичних подій, як Відкриття тиску світла , Досліди Герца по виявленню електромагнітних хвиль та їх властивостей , Досліди Резерфорда по встановленню будови атома , Відкриття радіоактивності і ін. 1.2. Використання елементів історизму при розвязуванні задач Спеціальним типом історичного матеріалу є задачі з історичним змістом. Наведемо приклади таких задач. 1. Визначаючи швидкості молекул різними методами, Штерн поставив наступний дослід. В печі, яку помістили в посудину з відкачаним повітрям, утворилися пари цезію. Атоми цезію вилітали зі щілини і фокусувалися за допомогою розміщеної біля щілини діафрагми.

Вузький горизонтальний пучок атомів попадав на екран, розміщений за діафрагмою.

При цьому внаслідок тяжіння відбувалося відхилення пучка від горизонталі. Як знаючи зміщення цезієвої смуги на екрані і відстані від щілини до екрана, знайти середню швидкість молекул? 2. Чи може людина злетіти, використовуючи лише силу власних мязів? Це далеко не нове питання до наших днів не втратило своєї гостроти.

Не виключено, що багаторазові спроби створити мязолет в кінці кінців досягнуть успіху. При побудові такого апарату виникають слідуючи запитання яку потужність може розвивати людина і яка потужність потрібна для польоту? Які повинні бути розміри крил, чи повинні вони бути махаючими? Як залежить підіймаюча сила такого апарата від висоти польоту над землею? 3. На рис.1.1. запозиченому з книжки голландського фізика Стевіна, виданої в 1586 р зображена людина, яка стоїть на дошці, і тисне усією своєю вагою на міх з водою.

Стевіна вразило, що висота стовпа рідини досить незначна. Спробуйте обчислити цю висоту, оцінивши приблизно значення ваги і площу опори. 4. Видатний вчений Б.Паскаль у 1648 р. зробив такий дослід. У міцну, наповнену водою і закриту з усіх боків бочку він вставив вузьку трубку рис. 1.2. і, піднявшись на балкон другого поверху будинку вилив у цю трубку кухоль води. На превеликий подив сучасників вченого клепки бочки розійшлися і вода почала виливатися.

Поясніть. Задачі з історичним змістом хоч і мало чисельні і не так часто використовуються в навчанні в порівнянні з іншими видами задач, але представляють не менший інтерес.

Маючи всі достоїнства звичайних задач, вони знайомлять учнів з історичними подіями, фактами, методами досліджень і тим самим навчають школярів самим своїм змістом, а не лише отриманими при їх розвязку результатами. 1.3. Використання елементів історизму на лабораторних роботах, демонстраціях Історизм не є якимось стороннім елементом змісту шкільного курсу фізики, а тому і якихось особливих методів їх вивчення не існує. Всі ті методи і прийоми, які застосовуються при навчанні фізики в школі взагалі, придатні і в процесі викладання історичного матеріалу. Можливо, лише окремі методи і прийоми набувають найбільшого значення або ж деякий специфічний відтінок. Вчителі фізики справедливо вважають, що всі найважливіші положення, які розкриваються на уроці, повинні бути обґрунтовані і переконливо доведені і саме цим цілям служить навчальний експеримент.

Обґрунтованістю повинно відрізнятись і викладання історичного матеріалу. Однак, як правило, з цією метою не можна користуватися навчальним експериментом, так як історичні досліди і установки важко, а інколи і неможливо відтворити в шкільних умовах.

Тому обґрунтованість у викладанні історичного матеріалу досягається іншими засобами, головним з яких є документалізм. Форми його можуть бути різними - це схеми, фотографії установок-оригіналів, фільми дані, що характеризують масштаб установок і точність вимірювання вислови та справжні формулювання самих вчених описи епохи, умов праці вчених, а іноді і художній опис того чи іншого відкриття, що відтворює з допустимою долею домислу атмосферу відкриття.

Можна провести урок у формі гри-реконструкції історії відкриття винаходу, основною метою якого є як можна глибше ознайомити учнів з історією здійснення відкриттів, з життям та дійсністю вчених, з шляхами та методами наукових знань.

Наприклад, під час вивчення різниці потенціалів у класах зі спеціалізацією Фізика, хімія, біологія можна повторити дослід Гальвані на препарованих жабах, проведений ним у 80-х роках XVIIIст. При цьому сформулювати задачу такого типу В своєму класичному досліді по дослідженню нервових та мязових волокон Гальвані використовував простий пристрій. На бронзовому кронштейні, прикрученому до залізної перекладини, підвішувалась лапка жаби так, що вона доторкалась до основи перекладини і кожного разу доторкаючись до основи, лапка посмикувалася.

Після того, як посмикування припинялися, лапка витягувалася і знову торкалася перекладини, ізнову починалися скорочення та посмикування. Повторивши аналогічний дослід дайте відповіді на таке питання що викликає таку реакцію лапки? Намагайтесь підкріпити свої доведення розрахунками. Все це дозволяє ввести учня в умови, в обставини, за яких здійснювалося відкриття, забезпечити в якійсь мірі ефект присутності під час відкриття, переконати учнів в достовірності історичної інформації. 1.4. Використання елементів історизму при узагальненні знань Вивчаючи фізику, школярі отримують багато відомостей про поняття та ідеї, які є фундаментальними в фізичній науці. До таких відносяться принцип атомізму, принцип близькодії, ідея корпускулярно-хвильового дуалізму і ін. Однак, якщо запитати у випускника, що він знає про поле, що йому відомо про масу, то навіть встигаючий учень може потрапити у складне становище.

Після двох-трьох орієнтуючих питань учень зазвичай говорить Я це знаю, тільки не думав, що про це треба говорити. Йому не вистачає для відповіді на питання узагальнюючого характеру не конкретно змістовних знань, а їх системності і узагальненості, він не усвідомлює структури знань.

Це відбувається тому, що ми не завжди розкриваємо перед школярами структуру знань. Учні не розуміють, що є основою теорії, що відноситься до її наслідків, що є фактами, а що їх поясненням і т.д. Узагальнені знання, включені в розгалужену систему взаємозвязків, засвоюються значно глибше і міцніше. Узагальнення і систематизація навчального матеріалу можуть бути успішними при дотриманні щонайменше двох педагогічних вимог.

Одна з них полягає в тому, що узагальнення повинно здійснюватися на основі фундаментальної наукової ідеї, яка виконує роль систематизую чого фактора. Друга вимога полягає в тому, що узагальнення, так як воно повязане з повторенням вивченого, повинно обовязково містити елемент новизни.

Так як логіка розгортання навчального матеріалу в курсі фізики, як правило, не відповідає історичному розвитку фізики, то узагальнення знань здійснюється вчителем зазвичай в логічному, а не в історичному перерізі, що є досить правомірним. Однак це не виключає можливості узагальнення і систематизації знань на історичній основі. Більш того, досить часто історичний шлях побудови узагальнення навчального матеріалу є абсолютно неминучим.

Дійсно, узагальнюючий матеріал в кінці курсу одинадцятого класу про фізичну картину світу повинен містити відомості про еволюцію наукових уявлень про світ. Лише за цих умов картина світу, яку малює сучасна наука, постане перед учнями як закономірний результат розвитку фізики, наслідуючий з минулого всі елементи абсолютного знання, як процес, а не як щось застигле і вічне. Виключіть з цього матеріалу відомості про механічну і електромагнітну картини світу як етапи еволюції фізики - і сучасна картина світу не буде вже виглядати такою вражаючою зникне суть розкриття цього навчального матеріалу. Таким чином, одною з важливих форм узагальнення і систематизації навчального матеріалу є історичні огляди деяких ведучих ідей сучасної фізики. Узагальнюючі огляди історичного характеру можуть бути присвячені таким темам, як Історія розвитку атомізму , Історія розвитку ідей дискретності відкриття електрона , Історія розвитку ідеї близькодії поля , Еволюція фізичної картини світу і ін. Головне завдання узагальнюючих оглядів - показати основні етапи розвитку поглядів на ту чи іншу проблему.

При цьому мало перерахувати ці етапи з коротким поясненням і коментуванням суту кожного етапу, а необхідно розкрити механізм наукового пізнання, що спонукають до видвигання тих чи інших ідей, причини заміни однієї ідеї іншими, методи обґрунтування нових поглядів, труднощі, які поставали на шляху утвердження нових ідей. Отже, потрібно не лише викласти історію, а пояснити її, бо саме це останнє і є найбільш повчальним.

Якщо в процесі попереднього вивчення матеріалу курсу учням не повідомлялися відомості про вчених, з іменами яких повязане те чи інше формування нової ідеї. То це може бути зроблено на узагальнюючих заняттях.

Під час побудови кожного такого огляду відкривається можливість познайомити учнів із загальним шляхом наукового пізнання і з методами фізичного дослідження. По суті, кожний огляд будується однотипно, так як кожного разу послідовно розглядаються такі етапи загального шляху наукового пізнання, як накопичення фактів, висування модельної гіпотези або вихідних принципів, виведення з них наслідків та їх експериментальна перевірка. В розкритті етапів наукового пізнання - методологічне значення цих оглядів. Кожен огляд повинен показувати як відбувається поглиблення та уточнення знань по певній проблемі, а це дає можливість поступово привчати школярів до думки про те, що кожне наукове знання є обєктивна істина, яка містить елемент абсолютного і відносного що знання розвиваються, що світ пізнається. Отже, розгляд історії розвитку поглядів дозволяє ненавязливо та природно ознайомити учнів з діалектикою процесу пізнання, що відіграє велику роль у формуванні наукового світогляду.

Саме використання історичного матеріалу дає можливість представити повною мірою процес розвитку фізики в цілому та її окремих розділів як суперечний процес руху пізнання до абсолютної істини через істини відносні. Звичайно для цієї мети історичний матеріал повинен бути ретельно відібраним.

Він повинен бути таким, щоб під час його викладу можна було продемонструвати суперечний характер пізнання, який виражається в тому, що в процесі розвитку науки відбувається боротьба між старим і новим, між вже існуючими і виникаючими теоріями та уявленнями що в процесі розвитку відбуваються революційні перевороти в поглядах вчених, які змінюють докорінно основні уявлення, загальні концепції і т.д. 1.5.Ознайомлення учнів з творчістю та поглядами видатних вчених Необхідність ознайомлення учнів з образами творців фізичної науки досить очевидна.

Складнішим є питання про те, що і як потрібно сказати про того чи іншого вченого, враховуючи той мінімум часу, який має вчитель для повідомлення не програмного матеріалу. Важливим методичним завданням є визначення змісту і форми викладу біографічних відомостей про вчених як специфічного навчального матеріалу. Оцінка біографічного матеріалу з точки зору педагогічного ефекту, який він повинен викликати, означає перш за все, що біографія вченого будується не як хронологія подій і дат, яка дозволяє в хронологічній послідовності простежити за життям вченого, а як своєрідний етюд, що дозволяє кількома фактами виявити найбільш притягуючи в житті і поглядах даної людини, оживити його образ, зробити його памятним, близьким для учнів. Тут іноді достатньо кількох штрихів, кількох фактів з життя вченого, відгуку про нього колег, одного-двох афористичних висловлювань вченого Кожна людина може зробити те, що може зробити інша Т. Юнг Мислю - отже, існую Р.Декарт. А іноді можна навести гумористичний вислів, епізод з життя, і вчений стане ближчим, доступнішим. Все це не потребує великих затрат часу, але дуже пожвавлює урок, і цим не можна нехтувати.

Отже, навчальна біографія вченого - це не хроніка подій його життя, а біографія його думок, поглядів і вчинків на фоні тих соціально-політичних умов, в яких він жив і працював.

Вводячи учнів в духовний світ кращих представників фізичної науки, ми допомагаємо учням сформулювати їх життєві позиції, цілі та ідеали.

Тому потрібно вибирати з біографії вчених ті відомості, які є найбільш актуальними для сучасної молоді і які можуть допомогти їм звільнитися від шкідливих звичок.

Наприклад. Враховуючи окремі факти, які говорять про існування у деяких людей культу речей, слід було б частіше показувати, на скільки невимогливими були до зовнішніх атрибутів життя люди науки, які вимірювали своє щастя не предметами комфорту, а тим, в якій мірі вони змогли звільнитися від власного Я і віддатися зовсім нелегкій справі - служінню людям на шляху істини.

Тобто дуже важливо звертати увагу учнів на героїчний епос наукових відкриттів, на прекрасні риси в біографії вчених юність М.Фарадея, біографія Ломоносова, відречення Галілея і ін Актуальними є приклади з життя вітчизняних вчених. Самі розповіді про те, який великий внесок в розвиток світової науки зробили вітчизняні вчені, безперечно буде сприяти розвиненню в школярів почуття національної гідності. Питання історії розвитку української фізики висвітлені в роботах Г.К.Кордуна, Ю.А.Храмова, О.Янковського, О.Біланюка.

В них можна знайти дані про життя та наукову діяльність видатних та маловідомих українських вчених Ю.Дрогобича, З.Скари, Ф.Прокоповича, М.Пильчика, І.Пулюя, Ю.Кондратюка О.Шаргея , Г.Лангемака, Нобелівського лауреата І.Тамма, В.Челомея та ін. Потрібно створити в учнів вірне уявлення про характер наукової діяльності, показавши, що це - праця, до того ж дуже нелегка.

Ознайомлюючи учнів з тим, як думали, як шукали істину кращі представники науки, ми повинні озброїти учнів хоча б деякими елементами наукового мислення. Біографічний матеріал в звязку з цим повинен навчати учнів науковому підходу до вирішення повсякденних проблем. Це означає, що в біографію вченого треба включити не лише відомості про те, що він зробив і який його внесок в науку, але і те, що його змусило звернутися до цієї проблеми, чому він вибрав саме таке її вирішення, чому він думав так, а не інакше.

Образ вченого стає яскравішим і притягуючим не через величні слова на його адресу тим більше, що людство вже витратило весь свій запас метафор та епітетів щодо таких людей, як І.Ньютон чи А.Ейнштейн, а через глибини його думок і величі духу. Звичайно, слід повідомити, наприклад, відому епітафію на могилі Ньютона, бо, дійсно, нехай смерті радіють, що існувала така прикраса роду людського, але велич Ньютона буде відчутною тоді, коли буде продемонстровано, що було в механіці та оптиці до Ньютона і якими вони стали після нього.

Як і взагалі в навчанні, говорячи про вчених, потрібно бути переконливим. Тому перелік особистих рис вченого сам по собі мало що дає. Кращий спосіб познайомити учнів з образом вченого - це читання його висловів про науку, про людей, про життя, про себе. Нехай учні над ними подумають. Не слід малювати вчених людьми, які не мають недоліків, людьми, якими залишається лише захоплюватись і які неспіврозмірні зі звичайними смертними, що наслідування їм здається безперспективною справою.

Звичайно, кожний вчений - своє рідна особистість і має неповторну індивідуальність, розкрити яку дуже важливо. Але в духовному образі видатних вчених є дещо загальне, обєднуюче їх і найбільш повчальне для молодого покоління. Розкриваючи це загальне під час ознайомлення школярів з біографічними відомостями, ми поступово формуємо в свідомості учнів узагальнений образ, свого роду колективний портрет вченого-фізика. Під час викладу історичних питань слід також керуватися такими положеннями 1 Відкриття у фізиці і винаходи в техніці слід співставляти з іншими подіями всесвітньої та вітчизняної історії. 2 Для цих співставлень можна використовувати знання учнів по вітчизняній та всесвітній історії. Хронологічні дати потрібно давати не лише від прийнятої ери, але і вказувати період часу, що минув з тих пір. Так, наприклад, говорячи про відкриття закону Архімеда, потрібно не лише вказувати, що Архімед жив з 287 до 212 р. до н.е але і вказувати, що жив він приблизно 250 2001 , чи більше 2200 років тому. 3 Підвищенню інтересу учнів та пожвавленню викладу допомагають також зачитування уривків з першоджерел. Характерним прикладом таких уривків можуть бути витримки з листа 26 липня 1753р. М.В.Ломоносова президенту Академії наук Шувалову див. Додаток 1 . 4 Слід враховувати особливу цінність демонстрації фотографій та малюнків історичних памяток та документів. Ці демонстрації в значній мірі допомагають учням отримати уявлення про історичну епоху та умови життя та роботи вчених. До числа таких документів відносяться, наприклад, малюнки та фотографії Смерть Ріхмана Картина Смерть Ріхмана грішить по відношенню до історичної істини Ломоносов не був присутнім при смерті Ріхмана, проводячи подібні досліди окремо . див. Додаток 2 , Дослід О.Геріке див. Додаток 3 , Пізанська башта див. Додаток 4 , Стовп Вольта див. Додаток 5 , Легенда про Едісона див. Додаток 6 , Математичні начала натурфілософії І.Ньютона див. Додаток 7 і т.п. Крім того, необхідно показувати хороші портрети вчених Портрети вчених, які наводять в підручниках, дуже часто неякісні див. Додаток 8, Додаток 9 . 5 Історичний елемент повинен знайти особливо велике місце у позакласній роботі та в читанні учнів. Учні можуть на заняттях гуртка підготувати розповідь про вченого, перемалювати його портрет чи зробити про нього плакат стенд для фізичного кабінету. В окремих випадках можна наукові події представити на сцені, драматизувати їх. 6 Для ефективності застосування історичного матеріалу він повинен чітко відповідати навчальній програмі. РОЗДІЛ 2ЕКСКУРСИ В ІСТОРІЮ ФІЗИКИ ПІД ЧАС ВИВЧЕННЯ МЕХАНІКИ 2.1. До історії кінематики Розділ механіки курсу фізики починається з кінематики.

Ця данина традиції має історичні причини.

Механіка була породжена діяльністю людини по механізації процесів виробництва.

До тих пір, поки люди не навчилися використовувати енергію горючих корисних копалин, центральну роль відігравали різні механізми. Основна проблема тут - перетворення обертального руху в поступальний.

Перші книги про механізми зявляються в 15 ст і їхня кількість поступово збільшується. В середині 18 ст. Створюється теоретична база. Французький вчений Жан Даламбер 1717 - 1783 в своїй книзі Динаміка 1743 висловлює думку, що механіку потрібно вивчати, починаючи з руху як такого.

Цю думку розвиває петербурзький академік Леонард Ейлер 1707 - 1783 у відомій Теорії руху твердих тіл. Він вважає доцільним розділити дослідження твердого тіла на дві частини геометричну та механічну. Для отримання аналітичних формул переміщення точок тіла, які вони визначають, потрібно досліджувати не розглядаючи причин руху. Таким чином виділяється суто геометричний аспект проблеми, і це, звичайно, дає методичні переваги, спрощуючи підходи та пошуки вирішення.

Ще більш визначено ідея виділення кінематики була сформульована видатним діячем Л.Карно 1758 - 1823 . Він писав Геометрія могла б включити в себе рухи, які не повязані із взаємодією тіл, бо механіка, по суті, не наука про рух, а наука про надання руху Не рух сам по собі є предметом механіки, а ефект видозмін, яких він зазнає. Нарешті, у великого французького вченого Андре Марі Ампера 1775 - 1836 зявляється поняття кінематика Науку, яка розглядає самі по собі рухи, які ми спостерігаємо в оточуючих тілах і, особливо, в пристроях, які називають машинами, я називаю кінематикою В Досвіді філософії наук Ампер стверджує, що кінематика повинна бути і частиною теоретичної механіки, прикладною дисципліною, в якій вивчаються різноманітні механізми. Цікавим є його приклад в обґрунтуванні дидактичної цінності кінематики Щоб скласти собі яскраве уявлення про ту зубчатку, за допомогою якої хвилинна стрілка годинника здійснює дванадцять обертів, тоді як годинна лише один, чи потрібно займатися силою, яка приводить годинник в рух? Хіба дія зубчатого зчеплення, так як воно регулює відношення швидкостей цих двох стрілок, не залишається тією ж самою, коли рух викликається якою-небудь силою, що відрізняється від сили звичайного двигуна, наприклад, коли ми повертаємо стрілку пальцем? Вперше розділ кінематики був чітко виділений в курсі Фізичної та експериментальної механіки генерала Понсле, який читав його в Паризькому університеті з 1837 до 1848 року. Тут розглядалися види рухів, додавання рухів, швидкостей і прискорень і після цього різного типу механізми. В результаті кінематика виділилася як розділ теоретичної механіки. Але за традицією вона залишилась в курсах фізики як вступна частина до динаміки Ньютона і Ейнштейна.

В кінематиці є два аспекти теоретичний і прикладний.

Змістом першого є формування понять про механічний рух, системи відліку, швидкості, прискорення, правила додавання швидкостей та прискорень.

В прикладному аспекті розглядаються механізми, що перетворюють рух. На ввідних уроках по кінематиці слід виділити головне Механічний рух - зміна положення тіла в просторі, і для вивчення цього виду руху матерії першочергову важливість мають поняття системи відліку, траєкторії, суперпозиції незалежності рухів. Необхідно використовувати цей історичний матеріал для підготовки до сприйняття ідеї відносності переміщень і швидкостей.

Слід мати на увазі, що лише в теорії відносності кінематика почала грати самостійну роль. В рамках механіки Ньютона суто кінематичний розгляд руху без звязків із законами динаміки зустрічає ряд методологічних труднощів. Так, наприклад, збереження горизонтальної компоненти вектора швидкості тіла, кинутого під кутом до горизонту, неможливо без посилання на перший закон Ньютона. 2.2. Відкриття законів вільного падіння В Стародавній Греції механічні рухи класифікувалися на природні та вимушені. Падіння тіла на землю вважали природнім рухом, деяким властивим тілу прагненням до свого місця. Відповідно уявленням великого старогрецького філософа Арістотеля 384 - 322 р. р. до н.е. тіло падає на землю тим швидше, чим більша його маса. Це уявлення було результатом примітивного життєвого досвіду спостереження показували.

Що яблука і листя яблуні падають з різними швидкостями.

Поняття прискорення в старогрецькій фізиці було відсутнє. Вперше виступив проти Аристотеля, утвердженого церквою, великий італійський вчений Галілео Галілей 1564 - 1642 див. Додаток 8 . Галілей народився 15 лютого 1564 р. в м. Піза, в бідній дворянській сімї . Його батько був композитором, теоретиком музики і математиком.

До 11 років Галілей відвідував школу, а далі, після переїзду сімї до Флоренції, за звичаєм того часу виховання і освіта відбувались в монастирі. Під приводом важкої хвороби очей батьку вдається забрати Галілея з монастиря і дати йому хорошу домашню освіту, ввести його в коло музикантів, письменників, художників. Однак незрівнянно більший інтерес викликали в нього математика та фізика. Галілей самостійно вивчив фізику Аристотеля, читав твори Евкліда та Архімеда. Перша наукова праця Галілея - Маленькі терези - відноситься до 1586 і присвячена опису винайдення ним гідростатичних терезів, за допомогою яких можна було швидко визначати склад металевих сплавів. Тут же Галілей виклав свої дослідження про центри тяжіння тілесних фігур. Ця праця відразу принесла 22-річному Галілею відомість серед вчених.

В 1589 р. Галілей зайняв кафедру математики в Пізанському університеті, а через три роки виїхав в Падуе, де до 1610 р. був професором відомого Падуанського університету.

Свої дійсні наукові погляди Галілей повідомляв лише в листах до друзів, бо не наважувався виступити з ними в умовах церковної реакції. Падуанський період був найбільш плідним в житті вченого.

В Падуе Галілей зробив свої відомі астрономічні відкриття, які переконали його в справедливості геліоцентричної системи Коперніка. В 1609 р. Галілей вперше в історії науки використав удосконалену ним підзорну трубу - перший телескоп - для вивчення небесних обєктів. На початку 1610 р. Галілей відкрив чотири супутники в Юпітера. Ці відкриття викликали різкі напади з боку схоластів та церкви.

Свої астрономічні спостереження він продовжив у Флоренції, куди він переїхав у 1610 р. на запрошення тосканського герцога Казімо ІІ Медичі. Там він був назначений придворним філософом і першим математиком університету.

В 1611 р. Галілей, телескоп якого до того часу давав вже збільшення в 32 рази, вперше відкрив западини та узвишшя на поверхні Місяця, спостерігав плями на Сонці. Тоді ж відкрив обертання Сонця, фази Венери і вперше помітив кільце Сатурна.

Флорентійський період в житті Галілея був спочатку спокійним. Однак вже з 1612р. на нього почалися доноси в інквізицію. В 1615 р. Галілей змушений був їхати до Риму для зустрічі з папою і виправдовування своєї діяльності перед церквою. Лише після 1623 р коли папою став кардинал Барбенії, який товаришував з Галілеєм і особливо високо оцінював його досягнення, Галілей вирішив, що прийшов час, коли він знову може вільно говорити про свої наукові ідеї. В 1630 р. він друкує свою працю Діалог про припливи та відливи. Поява цього твору викликала обурення церкви.

На Галілея було зроблено новий донос. В 1633 р. його викликали в Рим і віддали суду інквізиції. В результаті трьохмісячних погроз та залякувань, після трьох допитів 69-річного вченого примусили привселюдно в одній з церков Рима. стоячи на колінах, прочитати текст відречення від своїх переконань. Галілею заборонили писати будь-що про землю як планету і про Всесвіт. Астрономічні відкриття Галілея, захист коперніканських поглядів в епоху церковної реакції, його ореол мученика науки - все це затьмарило на час інші галузі діяльності великого мислителя і, зокрема, його праці в області механіки. Хоча механікою Галілей займався з самого початку наукової діяльності. В листі до одного зі своїх друзів він писав, що вважає успіхи в заняттях з механіки найціннішим результатом своїх досліджень за все життя.

Ще в Пізі на поч 90-х р. р. в Діалозі про рух Галілей виступив проти фізики Аристотеля.

В Падуе Галілей пише Трактат про механіку, присвячений статиці. В ці ж роки він проводить важливе дослідження простих механізмів і формулює золоте правило механіки. В 1612 р. Галілей у праці Міркування про тіла, перебувають у воді, і ті, які в ній рухаються застосував до виведення умов рівноваги в рідких тілах розвинений ним принцип рівних моментів Архімеда. В 1632 р. він підсумував свої відкриття в області механіки у відомому Діалозі про дві головні системи світу - творі, який, окрім свого великого значення в історії астрономії, відіграв не меншу роль і в розвитку механіки. Ідеї Галілея в області механіки отримали свій подальший розвиток в класичний праці Бесіди і математичні доведення, що стосуються двох нових галузей науки, що відносяться до механіки і місцевого руху. Поява Бесід свідчила, що розправа інквізиторів над геніальним вченим не зламала його дух. В Бесідах Галілей запропонував першу в історії науки теорію маятника, вперше розглянув питання про вплив тертя на рух тіл. Він довів вагомість повітря, встановив ряд основних закономірностей звучання струн.

Йому належить винайдення термоскопа - першого приладу для порівняння теплоти тіл. Не дивлячись на те, що Галілей досконало володів загальноприйнятою латинською мовою, його основні роботи написані на рідній італійській мові. Праці Галілея відрізнялися живою, образною мовою і вражали противників влучною та гострою іронією. В останні роки життя Галілей тяжко хворів, в 1637 р. він осліп. Ала до кінця своїх днів великий мислитель не залишав наукових досліджень.

За твердженням Вівіані, Галілей в 1641р. повідомив своїм учням і сину про винайдення маятникового годинника.

На жаль, ні син, ні учні не продовжили роботу над цим винаходом. Появою сучасного годинника ми зобовязані знаменитому голландському фізику Гюйгенсу Г.Галілей помер 8 січня 1642р. Крім сина та невістки, а також трьох учнів - Кастеллі, Вівіані та Торрічеллі, біля смертного ложе великого перетворювача фізики невідступно знаходилися два представники інквізиції. Навіть після смерті Галілея церква продовжувала переслідувати його. Прах Галілея не дозволили помістити в сімейному склепі. З великими труднощами вдалося отримати дозвіл поховати його в годинникарні біля сусідньої церкви. Лише в 1737р тобто через 95 років після смерті було виконано останнє бажання Галілея його останки були перевезені у Флоренцію. Могила Г. Галілея знаходиться поряд з могилами двох інших великих синів Італії - Мікеланджело і Данте. Галілей відкинув старогрецьку класифікацію механічних рухів. Він вперше ввів поняття рівномірного та рівноприскореного рухів і почав дослідження механічного руху шляхом вимірювання відстаней та часу руху. Досліди Галілея з рівноприскореним рухом тіла по нахиленій площині і сьогодні повторюються у всіх школах світу. Особливу увагу Галілей приділив експериментальному дослідженню вільного падіння тіл. Всьому світу відомі його досліди на Пізанській башті. Як засвідчував Вівіані, Галілей кидав з башти одночасно півфунтову кулю і сто фунтову бомбу.

Наперекір думці Аристотеля, вони досягали поверхні землі майже одночасно бомба випередила кулю лише на кілька дюймів. Цю різницю Галілей пояснив наявністю опору повітря. Таке пояснення було принципово новим.

Справа в тому, що з часів Стародавньої Греції утвердилось таке уявлення про механізм переміщення тіл рухаючись, тіло залишає за собою пустоту природа ж боїться пустоти існував помилковий принцип побоювання пустоти. Повітря прямує в пустоту і штовхає тіло. Таким чином, вважалось, що повітря не сповільнює, а, навпаки, прискорює рух тіла. Далі Галілей відкинув ще одну багатовікову помилку.

Вважалось, якщо рух не підтримується якою-небудь дією, то він повинен припинитися, навіть якщо не існує перешкод.

Галілей вперше сформулював закон інерції. Він стверджував якщо на тіло діє сила, то результат її дії не залежить від того знаходиться тіло у спокої чи рухається. У випадку вільного падіння на тіло постійно діє сила тяжіння і результати цієї дії неперервно сумуються, бо відповідно до закону інерції, викликана одноразово дія зберігається. Це уявлення є основою його логічної побудови, яка привела до законів вільного падіння. Галілей визначив прискорення вільного падіння з великою похибкою.

В Діалозі він стверджує, що куля падала з висоти 60 метрів протягом 5 секунд. Це відповідає значенню g майже в 2 рази меншого, ніж істинне.

Галілей, звичайно, не міг точно визначити g, оскільки не мав секундоміра. Пісочні, водяні годинники або винайдений ним годинник з маятником не сприяли точному відліку часу. Прискорення вільного падіння було достатньо точно визначене лише в 1660р. Гюйгенсом. Розповідаючи про роботи Галілея, важливо пояснити учням суть методу, яким він користувався при встановленні законів природи. Спочатку він провів логічну побудову, з якої витікали закони вільного падіння. Але результати логічної побудови потрібно перевірити дослідом. Лише спів падання теорії з дослідом приводить до ствердження справедливості закону.

Для цього потрібно вимірювати. У Галілея гармонічно перепліталася потужність теоретичного мислення з експериментальним мистецтвом. Як перевірити закони вільного падіння, якщо рух дуже швидкий і немає пристроїв для вимірювання малих проміжків часу? Галілей зменшує швидкість падіння застосуванням похилої площини. В дошці було зроблено жолоб, висланий для зменшення тертя пергаментом.

По жолобу пускалась відполірована латунна куля. Для точного виміру часу руху Галілей придумав наступне. В дні великої посудини з водою робився отвір, через який витікав тонкий струмінь. Він направлявся в маленьку посудину, яка заздалегідь зважувалася. Проміжок часу вимірювали по приросту ваги посудини! Пускаючи кулю з половини, четверті і т.д. довжини похилої площини, Галілей встановив, що пройдені шляхи відносились як квадрати часу руху. Повторення цих дослідів Галілея може слугувати предметом корисної роботи на шкільному фізичному гуртку. 2.3. До історії законів динаміки Ньютона Три закони динаміки, що склали фундамент класичної механіки були сформульовані англійським фізиком Ісааком Ньютоном 1643 - 1727 див. Додаток 9 в книзі Математичні початки натуральної філософії див. Додаток 7 . І.Ньютон народився 4 січня 1643р. в м. Вулсторт в сімї небагатого фермера.

В 12 років його віддали в школу. Спочатку він не відрізнявся успіхами в навчанні, але потім дуже зацікавився математикою.

Коли через рік занять внаслідок матеріальної скрути взяли додому, щоб привчити до господарства, Ньютон виявив таку байдужість і нездібність до подібного роду занять, що в 1660 р. його знову повернули до школи. В 1661р. його прийняли в один з коледжів Кембріджського університету. В коледжі Ньютон був незадоволений офіційними навчальними підручниками, які здавались йому дуже тривіальними. Він починає самостійно вивчати Геометрію Декарта, Арифметику нескінченного Уолліса та Оптику Кеплера.

В 1665р. він отримує степінь бакалавра, а потім магістра. В 1669р. займає фізико-математичну кафедру в Кембріджському університеті. В ці ж роки Ньютон починає свої наукові дослідження. Період 60-80-х р. р. був найбільш плідним в діяльності вченого. До того часу відносяться його фундаментальні відкриття в області математики, механіки та оптики 1666р відкрив явище дисперсії, відбиваючий телескоп 1675р відкрив явище, яке носить назву кільця Ньютона, був близьким до відкриття поляризації, одним з перших висловив думку про механічну природу тепла, дав теорію фігури Землі, правильно вказавши, що вона повинна бути стиснута біля полюсів. Великі заслуги Ньютона перед людством були визнані вже його сучасниками.

В 1672р. Ньютона вибрали членом Лондонської королівської спілки, а з 1703р. і до кінця життя був незмінним її президентом. Крім того він був іноземним членом Паризької Академії наук з 1699р Після політичного заколоту 1688р. в Англії Ньютона обрали членом парламенту від університету і займав він цю посаду протягом року. В 1696р. його призначили хранителем Монетного двору в Лондоні і віддавав багато сил і часу цій роботі. З наукових досліджень Ньютона в цей останній період його життя слід відзначити захоплення теплофізикою, зокрема відкриття закону охолодження тіл 1705р В основному ж він займався виданням раніше написаних раніше творів. Ньютон помер 31 березня 1727р. в Кенсінгтоні зараз частина Лондона і був похований у Вест мінському абатстві - пантеоні великих людей Англії. І.Ньютон своїми працями завершив важливий період в історії розвитку сучасного природознавства, розпочатий Галілеєм період створення класичної механіки. Він відкрив основні закони механічної взаємодії тіл не лише на Землі, але і в оточуючому нас Всесвіті і тим самим заложив основи небесної механіки. Виключно великим вкладом в науку стали оптичні відкриття Ньютона, який одним з перших почав дослідження в області фізичної оптики. Нарешті, завдяки геніальним математичним відкриттям Ньютона і Лейбніца, фізика була озброєна таким міцним апаратом дослідження, як диференціальне та інтегральне числення.

Авторитет Ньютона як вченого і за життя, і після його смерті був величезним.

В математиці виникла школа Ньютона.

В фізиці - механіці, оптиці і ін. Її областях - більше століття панував напрямок, відомий як ньютонівський. Сам Ньютон говорив про свої відкриття Якщо я бачив далі, ніж інші, то тому, що стояв на плечах гігантів. Дійсно, великі відкриття Ньютона були підготовлені діяльністю ряду видатних вчених.

Ньютон не надавав своїм відкриттям великого значення всеохоплюючих, все пояснюючих законів. Вважаючи процес пізнання нескінченним, він говорив незадовго до своєї смерті Не знаю, чим я можу здаватися світу, але сам собі я здаюся лише хлопчиком, який грається на березі моря, розважається тим, що іноді відшукує камінець більш яскравий, кольоровий, ніж звичайно, або красиву черепашку, в той час, коли великий океан істини розстеляється переді мною недослідженим.

В формулюваннях Ньютона закони динаміки, чи, як їх називав сам автор, аксіоми руху виглядають так Перший закон. Всяке тіло упирається в збереженні стану спокою або незмінного по напряму руху, поки і оскільки прикладені сили не змінять цей стан. В цьому законі відображена важлива властивість тіл - інертність поки на тіло не діють зовнішні сили, воно рухається весь час в одному і тому ж напрямі з незмінною сталою швидкістю. Цей закон повязаний із законом незалежності дії сил, який був сформульований до Ньютона Галілеєм. Якщо на тіло, що рухається під дією деякої сили, подіє нова сила, то новий рух буде складатися з попереднього та з того руху, який отримало б тіло під дією нової сили, перебуваючи в стані спокою.

Поєднання законів Ньютона і Галілея важливе для розуміння суті того, що ми називаємо інертністю. Адже в оточуючому світі на тіла завжди діють зовнішні сили. Реальна лише ситуація, при якій сили зрівноважені. Інертність проявляється в тому, що якби тіло рухалося в якому-небудь напрямку зі швидкістю , і нова сила надає йому швидкість в іншому напрямку, то новий рух буде відбуватися зі швидкістю. Якщо зявиться ще одна сила, яка надасть йому швидкість, то вона просто додається до суми, не змінюючи попередніх величин.

Це один з виразів загального принципу суперпозиції, який стосується і сил, і результатів їх дій. Другий закон. Зміна кількості руху пропорційна прикладеній рушійній силі і відбувається в тому ж напрямі, в якому ця сила діє. В математичній формі цей закон виражається так. Ньютон в цьому законі розглядає добуток маси на прискорення як особливу механічну величину - кількість руху імпульс і ефект дії сили оцінює саме за зміною цієї величини.

С.І.Вавилов у книзі Ісак Ньютон показав, що в такій формі другий закон може застосовуватися і в релятивістській динаміці. Лише в окремому випадку, коли маса тіла не залежить від швидкості і не змінюється з часом, ми можемо записати і, поділивши обидві частини рівності на, перейти до окремої власної форми закону. Ньютонівська форма другого закону динаміки застосовна і на практиці. Наприклад, всі механічні ефекти в гідро- та аеродинаміці оцінюються саме за зміною кількості руху. Під час виведення основного рівняння молекулярно-кінетичної теорії в основу покладають закон в ньютонівській формі. В цьому одне з виражень дивовижної прозорливості Ньютона, яку підкреслював С.І.Вавилов.

Ньютонівська форма другого закону має один особливо важливий дидактичний аспект.

Написавши закон у вигляді , ми приходимо до простого трактування важкого поняття сили. Можна стверджувати, що сила - причина зміни кількості руху тіла і повязана завжди із взаємодією тіла, що рухається, з іншими тілами при зіткненні чи на відстані. Сила є мірою цієї взаємодії. Далі відкривається звязок першого і другого законів динаміки і встановлюється міра тієї властивості, яку ми називаємо інерцією. Із другого закону в ньютонівській формі випливає, що при тобто ми приходимо до першого закону.

Змінити стан руху тіла при даній масі тим важче, чим більший його імпульс. Цьому є багато життєвих ілюстрацій. Загальність формулювання другого закону динаміки підкреслюється ще одним фактом. У звязку з розвитком ракетної техніки виникла проблема вирішення задач, повязаних з рухом тіл змінної маси. Власна форма закону не давала навіть поставити задачу. Вперше почав вирішення проблем механіки тіл змінної маси професор Петербурзького політехнічного інституту Іван Всеволодович Мещерський 1859 - 1935 . Він виходив саме з ньютонівської форми закону, де. Третій закон.

Дії завжди є рівна і протилежна протидія, інакше взаємодії тіл одне на інше між собою рівні і напрямлені в протилежні сторони. Цей закон погано розуміли з часів його появи в Началах. Особливо важким був його додаток у випадку взаємодії тіл на відстані. Пояснюючи закон в листах до друзів і відповідях опонентам, Ньютон підкреслював необхідність спільного розгляду з І та ІІ законами.

В листі до редактора Начал Р.Котсу він писав Якби деяке тіло могло притягувати інше, розташоване поблизу нього, але не притягувалося саме з такою ж силою з цим останнім, то тіло притягуючи менш сильно, погнало б інше перед собою відповідно до ІІ закону , і обидва вони б почали рухатись з прискоренням до нескінченності, що протирічить І закону. Якщо в цьому міркуванні вказаними тілами будуть Земля і Місяць або Земля і Сонце, то неважко бачити, що невиконання законів динаміки призведе до руйнування Сонячної системи.

Від сили тяжіння Ньютон переходить до магнітної сили. Він описує дослід, який він придумав і відтворив. В двох стичних посудинах з водою плавають пробки. На одну з них кладуть полосовий магніт, на іншу - рівної маси залізну пластинку. Якщо б тільки притягував залізо міркував Ньютон, то пробка з магнітом залишилась би на місці, а залізна пластина поплила до нього. Однак дослід показав, що обидві пробки з вантажами пливуть назустріч одна одній, і, якщо маси їх рівні, то сили притягання надають їм однакових прискорень.

Цей дослід Ньютона і його міркування про взаємодію, на жаль, забуті. Їх слід було б широко використовувати в шкільному курсі. С.І.Вавилов писав На стінах фізичних аудиторій вищих навчальних закладів справедливо висять відомі Аксіоми або закони руху Ньютона поряд з періодичною системою елементів. Ці закони зовсім не історична памятка або прикраса аудиторії це фундамент того, що повинен засвоїти студент в області фізики, схема розвязку всіх фізичних і механічних задач в наш час. Добре відомо, що нова фізика в теорії відносності і квантовій механіці пішла по дорозі, що не була передбачена класикою Ньютона.

Змінилися фізичні уявлення про простір, час, масу, дію Але фізична революція не знищила ньютонівську механіку, вона лише надбудувала, перетворивши закони Ньютона із загальних в граничні, справедливі для порівняно невеликих швидкостей і великих обємів. І для нас, жителів земної кулі , ці невеликі швидкості і великі обєми найбільш звичні і нормальні, вони визначають нашу практику і техніку. 2.4. До історії закону всесвітнього тяжіння Закон всесвітнього тяжіння - універсальний закон.

Йому підкоряються всі без виключення обєкти природи притягуються, хоч і слабо, електрони і ін. елементарні частинки аналіз руху всіх тіл на Землі потребує врахування цього закону планети Сонячної системи притягуються до Сонця і одна до іншої зоряні скупчення пояснюються притяганням. Тяжіння діє навіть на світло. Саме завдяки цьому закону нам точно відомо на десятки років вперед настання сонячних і місячних затемнень і появу на небі комет. І якщо говорити про те, кому ми зобовязані тим, що людина нині з успіхом освоює космос, то в довгому ланцюжку імен одним з перших повинно стояти імя Ньютона.

Адже розрахунки траєкторії будь-якого штучного космічного обєкта обовязково спирається на використання закону тяжіння. Як же вдалося Ньютону встановити, що всі обєкти природи без виключення притягаються одне до одного і визначити, від чого ця сила залежить? Думку про тяжіння планет до Сонця і Місяця висловлював австрійський вчений Кеплер, який відкрив три закони руху планет.

Після того, як Галілей встановив, що за відсутності дій тіло буде рухатись рівномірно і прямолінійно, припущення про те, що нерівномірний рух по криволінійним траєкторіям обумовлений дією якихось сил, ставали все більш реальними. Про притягання планет до Сонця говорило багато вчених Бореллі, Гук, Галілей і ін. Поступово виникло уявлення, що притягання зменшується з відстанню.

Вже Кеплер висловлював цю думку, вважаючи, що тяжіння слабшає подібно освітленості при збільшенні відстані від джерела. Гук висунув гіпотезу про те, що тяжіння підкоряється закону оберненого квадрату, і повідомив про це в листі Ньютону 1680р вказуючи, що в нього самого немає часу на обґрунтування цієї ідеї. Отже, на поч.80-х р. р. ідея про існування притягання планет до Сонця літала в повітрі , але потрібен був талант Ньютона, щоб вона отримала розвиток і переконливе доведення.

В 1680р. на небі зявилася комета, яка рухалася до Сонця. Через два місяці виявили, як вважали, другу комету, яка рухалася від Сонця. Виникло припущення, що це одна і та ж комета, яка рухається по дуже витягнутому еліпсу. Е.Галлей намагався обчислити її траєкторію, виходячи із закону оберненого квадрату, але не міг перебороти математичні труднощі і звернувся за допомогою до Ньютона. Але виявилося, що Ньютон вирішив подібну задачу ще в 1665р. Галлей наполягав на необхідності публікації роботи Ньютона по тяжінню. Ньютон з великою неохотою вкінці кінців дає згоду.

В 1686р. виходить праця Ньютона, яка заложила основу всієї класичної механіки відомі Математичні начала натуральної філософії . Однією з важливих проблем, що вирішувалася в цій праці і була проблема тяжіння. В дуже спрощеному вигляді теорія тяжіння Ньютона зводиться до наступного. Прискорення двох планет, що рухаються навколо Сонця по коловим орбітам з радіусами та будуть. Так як, то. Але за ІІІ законом Кеплера, тому. Відповідно до основного закону динаміки, отже, сили, які діють на планети будуть обернено пропорційні квадратам радіусів орбіт, тобто. Далі Ньютон припустив, що природа сили, яка втримує планети на орбітах, тотожна з природою притягання тіл до Землі, і довів це. Суть його міркувань в наступному.

Коли тіла віддалені від центра Землі на відстань, рівну радіусу Землі , то, притягуючись до Землі, вони набувають прискорення. Якщо сила тяжіння Землі з віддаленням зменшується за законом оберненого квадрата, то на відстані, рівній відстані від Землі до Місяця, тіло набуло б, притягуючись до Землі, прискорення меншого, ніж. Так як, то прискорення тіла, віддаленого на таку відстань, буде. Земне тіло на таку відстань помістити важко.

Але в цьому і немає потреби адже Місяць, притягуючись до Землі і рухаючись навколо неї по орбіті, близькій до колової, набуває під дією притягання до Землі доцентрове прискорення. Ньютон отримав, що . І таким чином довів, що сила тяжіння має ту ж природу, що і сила тяжіння планет до Сонця. Далі Ньютон робить узагальнення, стверджуючи, що тяжіння носить всесвітній характер.

А чи не дуже великим був розмах цього узагальнення? Чому ми впевнені в універсальності цього закону? Щоб відповісти на ці питання, звернемося до методу Ньютона. Закон тяжіння Ньютон вивів із обмеженого кола даних спостережень. Його справедливість для більш широкого кола можна вважати доведеною лише тоді, коли, виходячи з його універсальності, отримати для ряду явищ наслідки, і ці наслідки будуть відповідати дослідним даним.

В цьому суть метода Ньютона - на основі даних досліду знайти узагальнююче ствердження принцип начала і надавши йому математичної форми вивести з нього ряд наслідків, перевірка яких і буде перевіркою твердження. Минуло кілька століть з часу створення механіки Ньютона. Заслуга цього вченого не лише в тому, що він винайшов нові закони природи, але і в тому, що він ввів нові методи її вивчення.

Суть методу принципів виражена в таких словах Ньютона Виведення двох чи трьох загальних начал руху з явищ і після цього викласти, яким чином властивості і дії всіх речей випливають з цих начал, було б дуже важливим кроком в філософії. За Ньютоном сила притягання обернено пропорційна квадрату відстані і визначається ще й масами взаємодіючих тіл. Звідки це випливає. Нехай є дві порожні кулі з масами і , які взаємно притягуються.

На першу діє з боку другої сила притягання, а на другу Збільшимо масу другої кулі, наприклад, насипавши в неї дріб, тоді збільшиться, так як сила тяжіння пропорційна масі тіла, на яке вона діє. А за ІІІ законом Ньютона, отже, збільшиться в стільки ж разів і сила, хоча маса першої кулі і не змінилась. Отже, сила притягання пропорційна масам обох куль. Одне з блискучих підтверджень закону відбувається через 120 років після смерті Ньютона. Спостереження за рухом планети Уран показали, що Уран приходив в певне місце простору то раніше, то пізніше того моменту, в який він повинен був би прийти за розрахунками, що ґрунтувалися на законі тяжіння. Дехто починає думати чи вірний закон? Два математики - Адамс в Англії та ЛаверЧє у Франції - припустили, що ці відхилення викликані дією на Уран якоїсь іншої планети і поставили завдання - знайти, де повинна бути ця планета. Це дуже складне завдання вони вирішили незалежно один від одного і повідомили координати планети в астрономічні обсерваторії. 23.09.1847р. повідомлення ЛаверЧє потрапило в Берлін, і того ж вечора астроном Галле повернув телескоп в ту частину неба, яку вказував ЛаверЧє, і виявив там нову планету, названу потім Нептун. Це було величезним тріумфом ньютонівського закону свідченням великої передбачуваності науки! Аж до 1919р. до теорії тяжіння Ньютона нічого додано не було. І лише Ейнштейн зумів внести нове в проблему тяжіння, не відкинувши при цьому і ньютонівське її розуміння. Просто звузилася сфера дії закону.

Наведений історичний матеріал можна використовувати на уроках по вивченню закону всесвітнього тяжіння в 9 класі. Хоча в підручнику Фізика - 9 викладення закону ведеться частково в історичному плані, але, на нашу думку, історія проблеми тяжіння повинна бути представлена ширше.

Вона дозволяє продемонструвати велич закону, труднощі його встановлення, вводить учнів в атмосферу наукового пошуку.

Згадування про закони Кеплера в 9 класі може здаватися передчасним, але воно дозволяє обґрунтувати закон оберненого квадрату, звичайно нічим немотивований. Обґрунтування наявності мас в формулі закону подано в дусі Ньютона.

Звичайні посилання на те, що залежність сили тяжіння від маси випливає з ІІІ закону динаміки, нічого не розяснюють учням, тому експеримент із взаємодією куль, маса однієї з яких змінюється, хоча і не взятий з історії науки, але пояснює, чому в законі зявляються маси взаємодіючих тіл. Поєднання історизму з такими неісторичними включеннями неминуче для того, щоб полегшити учням розуміння суті справи. Історичний характер викладу дозволяє, окрім цього, ознайомити учнів з важливим методом сучасної фізики, який бере свій початок від Ньютона методом принципів. Найбільш доречно це зробити саме під час викладу закону всесвітнього тяжіння. Необхідно також розповісти про відкриття планет Нептун і Плутон - факт, який демонструє важливу передбачуваність теоретичних знань та здійснює великий вплив на формування наукового світогляду школярів. Проблемність викладу цього матеріалу забезпечується постановкою наступних питань з метою привернення уваги учнів Чому 20 років мовчав Ньютон? Чому пальма першості відкриття закону належить саме Ньютону? Чому закон всесвітнього тяжіння потрібно вважати універсальним? І т.д. Засвоєння учнями логіки викладу дозволить вчителю ціленаправлено побудувати вивчення всієї теми вцілому. 2.5. До історії принципу відносності Одним з найсильніших аргументів церкви проти системи Коперніка було наступне твердження якби Земля дійсно рухалася, то літаючі пташки відставали від рухомої Землі, дальність пострілів на Захід і Схід були б різними, важкі тіла не падали б по вертикалі. Ця аргументація була розбита Галілеєм. В 1632 р. вийшла його відома праця Діалог про дві найголовніші системи світу - Птоломея і Коперніка, в якій він сформулював механічний принцип відносності. Галілей не мав можливості прямо виступати проти авторитету церкви.

Тому формулювання відкритих ним законів природи він подавав в оригінальній формі. Ось яким було перше формулювання принципу відносності Потрібно усамітнитися з одним із друзів у сторонньому приміщенні під палубою якого-небудь корабля, запастися мухами, метеликами і іншими подібними дрібними літаючими комашками нехай буде у вас також посудина з водою і плаваючими в ній рибками далі підвісьте вгорі відерце, з якого вода буде крапати крапля за краплею в іншу посудину з вузькою шийкою, підставлену знизу.

Поки корабель стоїть нерухомо, спостерігайте уважно, як дрібні літаючі комахи з однією і тією ж швидкістю рухаються у всі сторони приміщення риби, як ви побачите, будуть плавати байдуже у всіх напрямках, усі падаючі краплі потраплять у підставлену посудину, і вам, кидаючи товаришу який-небудь предмет, не доведеться кидати його з більшою силою в одну сторону, ніж в іншу, якщо відстані будуть одні і ті ж і якщо ви будете стрибати відразу обома ногами, то зробите стрибок на однакову відстань в будь-якому напрямку. Уважно спостерігайте все це, хоча у нас не виникає ніякого сумніву в тому, що, поки корабель стоїть нерухомо, все повинно відбуватися саме так. Якщо тепер ви примусите корабель рухатися з будь-якою швидкістю, то тоді якщо тільки рух буде рівномірним і без качки в ту і іншу сторону, у всіх названих явищах ви не виявите жодної зміни і по жодному з них ви не зможете встановити, чи рухається корабель, чи стоїть нерухомо І причина узгодженості всіх цих явищ в тому, що рух корабля загальний для всіх предметів, які знаходяться на ньому, так як і повітрю тому я і сказав, що ви повинні знаходитись під палубою Ці міркування Галілея резюмовані так інерціальний рух системи не впливає на механічні процеси, які в ній відбуваються.

Або ще коротше у всіх інерціальний системах механічні явища відбуваються однаково.

Таким чином.

Механічний принцип відносності є узагальненням дослідницьких фактів. Якщо прийняти принцип відносності, то аргументація теологів автоматично руйнується. Однак потрібно було пояснити природу морських припливів та відпливів. Галілей робить тут повчальну помилку.

Він спирається на слідуючи аналогію. Якщо везти в човні воду, то при будь-якому прискоренні човна вода підніметься до носу чи корми по інерції. Вода океанів на Землі подібна воді в човні. При прискоренні Землі вода також піднімається або опускається в залежності від знака прискорення.

Нерівномірність руху Землі, за Галілеєм, обумовлена сумою двох рухів - добового і річного.

Як ми тепер знаємо, неінерціальність, викликана добовим обертанням Землі, дає дуже слабкі ефекти, які можуть бути зафіксовані пристроями типу маятника Фуко. Неінерціальність від річного обертання ще менш відчутна. Питання про вплив руху системи на фізичні явища, які в ній відбуваються, загострилося в звязку з відкриттям англійським вченим астрономом Д. Брадлеєм явища аберації - вдавані зміщення положення зірки за якою спостерігають із Землі. Поступово фізики прийшли до необхідності експериментального обґрунтування неможливості виявити інерціальний рух системи за допомогою будь-якого фізичного експерименту оптичного, електромагнітного, електро- чи магніто статичного і т.д. Уявимо собі, що в каюті корабля Галілея були б зосереджені всі можливі фізичні пристрої. Чи можна було б поставити дослід, який би показав, що наш гігантський космічний корабель - Земля рухається відносно Сонця зі швидкістю біля 30 км с? Адже ми визначили цю швидкість з астрономічних спостережень, спираючись на теорію Коперніка. Чи можна результат астрономічних спостережень підтвердити фізичним дослідом в каюті Галілея ? Зрозуміло, що ця думка привертала увагу багатьох експериментаторів. Інтерес загострювалася ще й тим, що існувала гіпотеза ефіру. Вважалося, що простір, який здається порожнім, заповнений тонким, невідчутним матеріальним середовищем - ефіром. Це середовище не заважає рухові планет, але воно в той же час пружне, бо його коливання передаються зі швидкістю світла і створюють оптичні і електромагнітні ефекти. Природно було б зясувати, цілком чи повністю захоплюється ефір рухомою Землею, чи залишається він нерухомим.

Потрібен був дослід, який виявив би властивості ефіру. Не випадково всі видатні фізики ламали голову над цією проблемою.

Ставилося багато дослідів, але безуспішно. В 1880р. американський фізик Альберт Абрахам Майкельсон 1852 - 1931 поставив відомий експеримент зі своїм інтерферометром.

Пристрій мав фантастичну чутливість він міг фіксувати зміщення порядку мм. Теорія показала, що цей пристрій міг би виявити рух Землі крізь ефір. На основі негативних дослідів в каюті Галілея А.Ейнштейн узагальнив принцип відносності Галілея ніяким фізичним дослідом неможливо виявити інерціальний рух системи.

Узагальнений принцип відносності ліг в основу нової фізичної теорії - спеціальної теорії відносності Ейнштейна. 2.6.

Формування поняття сили

Тут доречною є аналогія тіло - віз, сила - кінь. Галілей пише Тяжіння є постійно діюча сила і, отже, викликає в кожний ... Історично це була не пряма, а складна крива. Зрозуміло, що учнів не сл... 3. Исторические обзоры в курсе физики средней школы М.

– Конец работы –

Используемые теги: Історія, навчання, фізики0.061

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Історія навчання фізики

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Робоча програма та методичні рекомендації до вивчення навчальної дисципліни Історія України за вимогами кредитно-модульної системи навчання КИЇВ
НАВЧАЛЬНО НАУКОВИЙ ІНСТИТУТ ПРАВА ТА ПСИХОДОГІЇ... Кафедра гуманітарних дисциплін...

До лаборатоних робіт з курсу загальної фізики Механіка і молекулярна фізика
Одеський національний університет імені І І Мечникова... Методичні вказівки до лаборатоних робіт з курсу загальної фізики...

ІСТОРІЯ АРХІТЕКТУРИ. ІСТОРІЯ АРХІТЕКТУРНИХ СТИЛІВ
ВП Брянківський технолого економічний технікум... Луганського національного університету імені Тараса Шевченка...

Історія економіки та історія економічних вчень
О Ю Омельченко... Н М Скороход... Сторія економіки та...

Опорний конспект лекцій з курсу Основи екології Тема 1. Предмет, історія, структура та методи екології 1. Предмет, об’єкт і завдання екології 2. Історія розвитку екології як науки
Кафедра екології харчових продуктів та виробництв... Опорний конспект лекцій... з курсу Основи екології...

Питання до екзамену з дисципліни Основи дистанційного навчання 1. Поняття про дистанційне навчання. Перспективи його розвитку
Поняття про дистанційне навчання Перспективи його розвитку... Дистанционное обучение ДО совокупность технологий обеспечивающих доставку обучаемым основного объема изучаемого...

Історія України
Історія України втілює в собі віхи історичного шляху українського народу який вносив значний вклад у розвиток світової цивілізації Історичний... Запропонований опорний конспект лекцій з курсу Історія України укладений з... При підготовці конспекту лекції ми враховували й те що в сучасних умовах вдосконалення науково методичного...

РОЗДІЛ 1.Статистична фізика і термодинаміка
РОЗДІЛ Статистична фізика і термодинаміка... Тема Молекулярно кінетична теорія ідеального газу... Дослідне об рунтування молекулярно кінетичної теорії Дослідні закони ідеального газу...

ДЛЯ КОНТРОЛЬНИХ РОБІТ ТА ТЕСТУВАННЯ З ДИСЦИПЛІНИ ЗАГАЛЬНА ФІЗИКА Частина 2
СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ... ЗБІРНИК ЗАДАЧ ДЛЯ КОНТРОЛЬНИХ РОБІТ ТА ТЕСТУВАННЯ З ДИСЦИПЛІНИ ЗАГАЛЬНА ФІЗИКА...

З дисципліни Історія України Виконання самостійної та індивідуальної роботи
ПОЛТАВСЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ... ІМЕНІ ЮРІЯ КОНДРАТЮКА... КАФЕДРА ІСТОРІЇ...

0.03
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам