рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Управление техническими системами

Управление техническими системами - раздел Менеджмент,   Управление Техническими Системами...

 

Управление техническими системами

 


Часть 1. Теория Автоматического Управления (ТАУ)

Основные термины и определения ТАУ

Основные понятия

Системы управления современными химико-технологическими процессами характеризуются большим количеством технологических параметров, число которых может достигать нескольких тысяч. Для поддержания требуемого режима работы, а в конечном итоге – качества выпускаемой продукции, все эти величины необходимо поддерживать постоянными или изменять по определенному закону. Данный процесс называется управлением.

Решение задачи управления такими процессами вручную не всегда представляется возможным вследствие ограниченности возможностей операторов по быстродействию, точности, безошибочности действий. Управление в таких случаях возможно только путем применения автоматических регуляторов и управляющих устройств (т.е. автоматических и автоматизированных систем управления). Под разработкой автоматических систем регулирования понимается, во-первых, выбор соответствующих регуляторов, датчиков и исполнительных устройств, во-вторых, расчет настроек для выбранного оборудования. Теория автоматического управления (ТАУ) представляет собой математический инструмент для решения задачи разработки такой системы.

Перед ТАУ ставятся основные задачи:

1) анализ существующих систем управления на предмет определения качества их функционирования;

2) синтез новых систем управления – разработка методов расчета настроек регуляторов;

3) решение диагностических задач.

Прежде чем знакомиться с методами ТАУ, необходимо определиться с основными понятиями, которые будут использованы в дальнейшем.

Физические величины, определяющие ход технологического процесса, называются параметрами технологического процесса. Например, параметрами технологического процесса могут быть: температура, давление, расход, напряжение и т.д.

Параметр технологического процесса, который необходимо поддерживать постоянным или изменять по определенному закону, называется регулируемой величиной или регулируемым параметром.

Значение регулируемой величины в рассматриваемый момент времени называется мгновенным значением.

Значение регулируемой величины, полученное в рассматриваемый момент времени на основании данных некоторого измерительного прибора, называется ее измеренным значением.

Пример 1.Схема ручного регулирования температуры сушильного шкафа (рисунок 1.1).

Требуется вручную поддерживать температуру в сушильном шкафу на уровне Тзад.

Человек-оператор в зависимости от показаний ртутного термометра РТ включает или выключает нагревательный элемент Н с помощью рубильника Р. ¨

 

Рисунок 1.1

 

На основе данного примера можно ввести определения:

Объект управления (объект регулирования) – устройство, требуемый режим работы которого должен поддерживаться извне специально организованными управляющими воздействиями.

Управление – формирование управляющих воздействий, обеспечивающих требуемый режим работы объекта управления (ОУ).

Регулирование – частный вид управления, когда задачей является обеспечение постоянства какой-либо выходной величины ОУ.

Автоматическое управление – управление, осуществляемое без непосредственного участия человека.

Входное воздействие (Х) – воздействие, подаваемое на вход системы или устройства.

Выходное воздействие (Y) – воздействие, выдаваемое на выходе системы или устройства.

Внешнее воздействие – воздействие внешней среды на систему.

Структурная схема системы регулирования к примеру 1 изображена на рисунке 1.2.

 
 

 


Пример 2.Схема автоматического регулирования температуры сушильного шкафа.

В схеме используется ртутный термометр с контактами РТК. При повышении температуры до заданной контакты замыкаются столбиком ртути, катушка релейного элемента РЭ возбуждается и цепь нагревателя Н размыкается контактом РЭ. При понижении температуры контакты термометра размыкаются, реле обесточивается, возобновляя подачу энергии на объект (рисунок 1.3). ¨

 
 

Рисунок 1.3

 

Пример 3.Схема АСР температуры с измерительным мостом.

Для измерения температуры в объекте управления (шкафу) используется термометр сопротивления, принцип действия которого заключается в том, что при изменении температуры его электрическое сопротивление также изменяется (при нагреве – увеличивается, при охлаждении – уменьшается), что позволяет по изменению сопротивления судить об изменении температуры.

Основу регулирующей части составляет электронный мост. Электронным мостом называется соединение из нескольких (как правило, четырех, в рассматриваемом ниже примере – из шести) сопротивлений (см. рисунок 1.4), имеющее две диагонали: питающую (диагональ АВ), на которую подается питающее напряжение Uпит, и измерительную (диагональ CD), с которой снимается измеренное напряжение Uизм. Основное свойство моста – способность находиться в одном из двух состояний: уравновешенном (когда Uизм = 0) и неуравновешенном (Uизм ¹ 0).

Уравновешенность моста определяется сопротивлениями Ri и описывается условием

.

На схеме АСР температуры, изображенной на рисунке 1.5, электронный мост обозначен как М и включает термометр сопротивления Rт и переменные сопротивления R и Rзад.

При температуре объекта, равной заданной, измерительный мост М (см. рисунок 1.5) уравновешен, на вход электронного усилителя ЭУ сигнал не поступает и система находится в равновесии. При отклонении температуры изменяется сопротивление терморезистора RТ и равновесие моста нарушается. На входе ЭУ появляется напряжение, фаза которого зависит от знака отклонения температуры от заданной. Напряжение, усиленное в ЭУ, поступает на двигатель Д, который перемещает движок автотрансформатора АТ в соответствующую сторону. При достижении температуры, равной заданной, мост сбалансируется и двигатель отключится.

       
   
 
 

 


Рисунок 1.5

 

Величина заданного значения температуры устанавливается с помощью резистора Rзад. ¨

Описанные примеры иллюстрируют общую для всех систем управления структуру. Любая система управления (ручного, автоматического или автоматизированного) в обязательном порядке содержит четыре элемента (или четыре множества элементов), объединенных в замкнутый контур передачи воздействий (см. рисунок 1.6):

- объект управления,

- управляющая часть,

- датчик (датчики),

- исполнительное устройство (устройства).

 

 
 

 

 


Рисунок 1.6

 

Датчик (Д) – устройство или комплекс устройств, преобразующих измеряемый параметр технологического процесса в вид, удобный для дальнейшей передачи и использования. Как правило, технологические параметры неудобно или невозможно контролировать (наблюдать, выводить на пульт оператора и т.д.) напрямую без дополнительных технических средств. Например, температуру нельзя наблюдать визуально, контроль температуры тела возможен только в сравнении со степенью нагретости какого-либо другого тела. Чтобы контроль параметров стал возможен, используют разного рода датчики, которые преобразуют измеряемые параметры в показания на шкале прибора (показывающие датчики, например, ртутный термометр), в разность потенциалов (например, термопары) в сопротивление (термометры сопротивления), в давление (пневматические датчики).

Датчик измеряет технологический параметр, преобразует его в другой вид энергии и передает управляющей части.

Управляющая часть реализует алгоритмы управления. В автоматических системах управления этой частью является регулятор, для систем ручного управления – человек-оператор. В управляющей части генерируются управляющие воздействия на объект управления (например, решения на включение/выключение рубильника, изменения напряжения и т.д.). Для реализации управляющих воздействий служат исполнительные устройства (ИУ).

Работа датчиков и исполнительных устройств в отличие от управляющей части заключается лишь в преобразовании энергии, изменения информации в них практически не происходит (если не считать погрешности). Поэтому при анализе и синтезе систем управления чаще эти части СУ опускают, считая их коэффициенты усиления равными «1». Наиболее часто в ТАУ при расчетах пользуются общей схемой одноконтурной АСР (см. рисунок 1.7).

На схеме приняты обозначения: x - задающее воздействие (задание), e = х - у - ошибка регулирования, u - управляющее воздействие, f - возмущающее воздействие (возмущение).

Элемент называется сумматором. Его действие заключается в суммировании поступающих к нему сигналов. Если какой-либо сектор сумматора зачернен, то сигнал, поступающий в данный сектор, берется со знаком «минус». Поэтому в данной схеме ошибка е определяется как разность между х и у.

 
 

 

 


Рисунок 1.7

 

Определения:

Задающее воздействие (то же, что входное воздействие х) - воздействие на систему, определяющее требуемый закон изменения регулируемой величины).

Управляющее воздействие (u) - воздействие управляющего устройства на объект управления.

Управляющее устройство (УУ) - устройство, осуществляющее воздействие на объект управления с целью обеспечения требуемого режима работы.

Возмущающее воздействие (f) - воздействие, стремящееся нарушить требуемую функциональную связь между задающим воздействием и регулируемой величиной.

Ошибка управления (е = х - у) - разность между предписанным (х) и действительным (у) значениями регулируемой величины.

Регулятор (Р) - комплекс устройств, присоединяемых к регулируемому объекту и обеспечивающих автоматическое поддержание заданного значения его регулируемой величины или автоматическое изменение ее по определенному закону.

Автоматическая система регулирования (АСР) - автоматическая система с замкнутой цепью воздействия, в котором управление (u) вырабатывается в результате сравнения истинного значения у с заданным значением х.

Дополнительная связь в структурной схеме АСР, направленная от выхода к входу рассматриваемого участка цепи воздействий, называется обратной связью (ОС). Обратная связь может быть отрицательной или положительной.

Принцип функционирования одноконтурной АСР: регулятор производит постоянное сравнение текущего значения регулируемой величины у с заданным значением х, определяя ошибку е = ху. Если текущее значение равно заданному, то регулятор не изменяет управляющее воздействие (АСР работает в установившемся режиме), в противном случае управляющее воздействие на объект u изменяется в соответствии с величиной ошибки. Чем больше ошибка регулирования (и дольше она наблюдается), тем больше изменение управляющего воздействия.

Данная схема справедлива как для автоматического, так и для ручного управления. При ручном регулировании человек-оператор, наблюдая за показаниями датчиков, мысленно сравнивает их с заданными значениями, т.е. определяет величину ошибки регулирования и, исходя из этого, решает, какие действия предпринимать.

 

Классификация АСР

1 По назначению (по характеру изменения задания):

· стабилизирующая АСР - система, алгоритм функционирования которой содержит предписание поддерживать регулируемую величину на постоянном значении (x = const);

· программная АСР - система, алгоритм функционирования которой содержит предписание изменять регулируемую величину в соответствии с заранее заданной функцией (x изменяется программно, например, как функция времени);

· следящая АСР - система, алгоритм функционирования которой содержит предписание изменять регулируемую величину в зависимости от заранее неизвестной величины на входе АСР (x изменяется произвольно).

2 По количеству контуров:

· одноконтурные - содержащие один контур регулирования (одну обратную связь по регулируемому параметру),

· многоконтурные - содержащие несколько контуров регулирования (несколько обратных связей, например, по нескольким параметрам, по скорости/ускорению изменения параметра и т.д.).

3 По числу регулируемых величин:

· одномерные - системы с 1 регулируемой величиной,

· многомерные - системы с несколькими регулируемыми величинами.

Многомерные АСР в свою очередь подразделяются на системы:

а) несвязанного регулирования, в которых регуляторы непосредственно не связаны и могут взаимодействовать только через общий для них объект управления;

б) связанного регулирования, в которых регуляторы различных параметров одного и того же технологического процесса связаны между собой вне объекта регулирования.

4 По функциональному назначению:

АСР температуры, давления, расхода, уровня, напряжения и т.д.

5 По характеру используемых для управления сигналов:

· непрерывные,

· дискретные (релейные, импульсные, цифровые).

6 По характеру математических соотношений:

· линейные, для которых справедлив принцип суперпозиции;

· нелинейные.

Примечание - Если на вход объекта подается несколько входных воздействий, то реакция объекта на сумму входных воздействий равна сумме реакций объекта на каждое воздействие в отдельности:

L(х1 + х2) = L(х1) + L(х2),

где L - линейная функция (интегрирование, дифференцирование и т.д.).

Данный принцип называется принципом суперпозиции (наложения).

7 По виду используемой для регулирования энергии:

· пневматические,

· гидравлические,

· электрические,

· механические и др.

По наличию внутреннего источника энергии

· системы с вспомогательным источником энергии. 9 По принципу регулирования: · по отклонению:

Классификация элементов систем

Системы управления строятся из элементов (устройств, к числу которых можно отнести регуляторы, датчики, исполнительные устройства, а также элементы объекта управления). Элементы СУ также можно классифицировать по нескольким признакам.

1 По функциональному назначению:

· измерительные,

· усилительно-преобразовательные,

· исполнительные,

· корректирующие.

2 По виду энергии, используемой для работы:

· электрические,

· гидравлические,

· пневматические,

· механические,

· комбинированные.

3 По наличию или отсутствию вспомогательного источника энергии:

· активные (с источником энергии),

· пассивные (без источника).

4 По характеру математических соотношений:

· линейные – для которых справедлив принцип суперпозиции,

· нелинейные.

5 По поведению в статическом режиме:

· статические, у которых имеется однозначная зависимость между входным и выходным воздействиями (состояние статики). Примером является любой тепловой объект. Например, если на вход электрического нагревателя подать некоторое напряжение, то с течением времени его температура установится на соответствующем значении (вид зависимости температуры от времени может иметь вид, представленный на рисунке 1.12, а). При этом установившаяся температура будет зависеть от величины поданного напряжения.

· астатические - у которых эта зависимость отсутствует. То есть, при постоянном входном воздействии амплитуда сигнала на выходе непрерывно растет с постоянной скоростью, ускорением и т.д. Пример: Зависимость угла поворота ротора электродвигателя от приложенного напряжения. При подаче напряжения угол поворота будет постоянно возрастать, поэтому однозначной зависимости у него нет (пример см. на рисунке 1.12, б).

 
 

 


а) б)

Рисунок 1.12

 

Характеристики и модели элементов и систем

Основные модели

· статические характеристики, · временные характеристики, · дифференциальные уравнения,

Статические характеристики

  yуст = j(х).  

Временные характеристики

Например, процесс нагрева сушильного шкафа до установившегося значения может иметь вид, представленный на рисунке 1.15. То есть переходный процесс характеризует динамические свойства системы, ее… Следует различать динамические и статические характеристики, поскольку они строятся в разных координатах и…

Дифференциальные уравнения. Линеаризация

Для упрощения задачи нахождения ДУ, описывающего работу АСР в целом, систему разбивают на ее отдельные элементы, переходные процессы в которых… Так как выходная величина предыдущего элемента является входной для… Однако такой метод применим только в частных случаях. Дело в том, что в большинстве случаев в реальных элементах…

Преобразования Лапласа

, (2.1) где х и у - входная и выходная величины. Если в данное уравнение вместо x(t) и… и , (2.2)

Таблица 1.1 - Преобразования Лапласа

Оригинал x(t) Изображение X(s)
d-функция
t
t2
tn
e-at
a.x(t) a.X(s)
x(t - a) X(s).e-as
sn.X(s)

 

Таблица 1.2 - Формулы обратного преобразования Лапласа (дополнение)

Изображение X(s) Оригинал x(t)
a Î R, M Î R (a и М - действительные числа) M.e-at
a = a + j. w M = C + j.D (a и М – комплексные числа) 2.ea*t.[C.cos(w.t) - D.sin(w.t)] для пары комплексных корней

 

Для обратного перехода от операторного уравнения к функциям от времени используется метод обратного преобразования Лапласа. Общая формула обратного преобразования Лапласа:

, (2.3)

где f(t) - оригинал, F(jw) - изображение при s = jw, j - мнимая единица, w - частота.

Эта формула достаточно сложна, поэтому были разработаны специальные таблицы (см. таблицы 1.1 и 1.2), в которые сведены наиболее часто встречающиеся функции F(s) и их оригиналы f(t). Они позволяют отказаться от прямого использования формулы (2.3). Более полные таблицы преобразований Лапласа можно найти, например, в [22, 23].

Существует несколько теорем преобразования Лапласа.

Теорема 1. Теорема линейности. Изображение суммы функций равно сумме изображений, то есть, если f1 имеет изображение F1(s) (или более кратко f1 « F1(s) ), f2 « F2(s) и т.д., то

a1.f1 + a2.f2 + … + an.fn « a1.F1(s) + a2.F2(s) + … + an.Fn(s).

Теорема 2. Теорема дифференцирования. Если f(t) имеет изображение F(s), то при нулевых начальных условиях (т.е. при f(0) = 0, f’(0) = 0 и т.д.) производные f(t) будут иметь изображения:

f’(t) « s.F(s) – для первой производной,

f ”(t) « s2.F(s) – для второй производной,

f(n)(t) « sn.F(s) – для n-й производной.

При ненулевых начальных условиях:

f’(t) « s.F(s) – f(0) – для первой производной,

f ”(t) « s2.F(s) – s.f(0) – f’(0) – для второй производной,

f(n)(t) « sn.F(s) – sn-1.f(0) - sn-2.f’(0) - … - f(n-1)(0) – для n-й.

Теорема 3. Теорема смещения.

f(t).ea×t « F(s - a).

Например, если 1(t) « (см. таблицу 1.1), то 1.ea×t « .

Теорема 4. Теорема запаздывания.

f(t - t) « F(s) .e-t×s,

где t - запаздывание по времени.

Например, если 1(t) « , то 1(t - t) « .

Теорема 5. Теорема интегрирования.

.

Теорема 6. О начальных и конечных значениях.

,

,

где f(0) – начальное значение функции (при t = 0),

fуст – конечное (значение в установившемся режиме).

Закон изменения выходного сигнала обычно является функцией, которую необходимо найти, а входной сигнал, как правило, известен. Некоторые типовые входные сигналы были рассмотрены в п. 2.3. Здесь приводятся их изображения:

единичное ступенчатое воздействие имеет изображение X(s) = ,

дельта-функция X(s) = 1,

линейное воздействие X(s) = .

Пример. Решение ДУ с использованием преобразований Лапласа.

Допустим, входной сигнал имеет форму единичного ступенчатого воздействия, т.е. x(t) = 1. Тогда изображение входного сигнала, согласно таблице 1.1, имеет вид X(s) = .

Производим преобразование исходного ДУ по Лапласу и подставляем X(s):

s2×Y(s) + 5×s×Y(s) + 6×Y(s) = 2×s×X(s) + 12×X(s),

s2×Y(s) + 5×s×Y(s) + 6×Y(s) = 2×s+ 12,

Y(s)×(s3 + 5s2 + 6s) = 2×s + 12.

Определяется выражение для Y:

.

Оригинал полученной функции отсутствует в таблице оригиналов и изображений. Для решения задачи его поиска дробь разбивается на сумму простых дробей с учетом того, что знаменатель может быть представлен в виде s(s + 2)(s + 3):

==-+.

Теперь, используя табличные функции (см. таблицы 1.1 и 1.2), определяется оригинал выходной функции:

y(t) = 2 - 4.e-2t + 2.e-3t. ¨

При решении ДУ с использованием преобразований Лапласа часто встает промежуточная задача разбиения дроби на сумму простых дробей. Существуют два пути решения этой задачи:

- путем решения системы уравнений относительно коэффициентов числителей,

- путем расчета коэффициентов числителей по известным формулам.

Общий алгоритм разбиения дроби на сумму простых дробей:

шаг 1 – определяются корни знаменателя si (знаменатель дроби приравниватся к нулю и решается полученное уравнение относительно s);

шаг 2 – каждому корню ставится в соответствие простая дробь вида , где Мi – неизвестный коэффициент; если имеет место кратный корень с кратностью k, то ему ставится в соответствие k дробей вида ;

шаг 3 – определяются коэффициенты Mi по одному из вариантов расчета.

Первый вариант. Определение Mi с помощью системы уравнений.

Все дроби приводятся к одному знаменателю, затем путем сравнения коэффициентов при равных степенях s числителя полученной дроби и числителя исходной определяется система из n уравнений, где n – степень знаменателя (количество корней si и коэффициентов Mi). Решение системы относительно Mi дает искомые коэффициенты.

Пример. Декомпозиция дроби из предыдущего примера. В исходной дроби n = 3, поэтому решение уравнения s3 + 5s2 + 6s = 0 дает 3 корня: s0 = 0, s1 = -2 и s2 = -3, которым соответствуют знаменатели простых дробей вида s, (s – s1) = (s + 2) и (s – s2) = (s + 3). Исходная дробь декомпозируется на три дроби:

==++.

Далее дроби приводятся к общему знаменателю:

= .

Сравнивая получившуюся дробь с исходной, можно составить систему из трех уравнений с тремя неизвестными (при 2-й степени s в исходной дроби стоит 0, при 1-й стоит 2, свободный член равен 12):

М0 + М1 + М2 = 0 M0 = 2

5.М0 + 3.М1 + 2.М2 = 2 à M1 = -4

6.М0 = 12 M2 = 2

Следовательно, дробь можно представить как сумму трех дробей:

=-+

Второй вариант. Определение коэффициентов Mi по формулам.

Также как и в 1-м варианте необходимо найти корни знаменателя исходной дроби вида . Для определения Mi существуют формулы для каждого вида корней:

- Для нулевого корня si = 0 знаменатель исходной дроби можно записать в виде A(s) = s.A1(s); тогда коэффициент Mi можно определить как .

- Для ненулевого некратного корня (действительного или комплексного) si:

,

где A’(s) – производная знаменателя по s.

Примечание - Комплексные корни при решении уравнений появляются комплексно-сопряженными парами вида si = ai ± j×wi , где ai – действительныя часть корня, wi – мнимая часть, j – мнимая единица. Поэтому коэффициенты для этих корней также будут комплексно-сопряженными: Mi = ci ± di. То есть достаточно определить коэффициент только для одного корня, для парного корня он будет комплексно-сопряженным.

- Для корня si кратности k исходная дробь может быть представлена в виде

;

данному корню соответствуют k дробей вида

,

коэффициенты которых определяются по формуле

.

Пример. Декомпозиция дроби. Рассматривается та же дробь, имеющая три корня: s0 = 0, s1 = -2 и s2 = -3.

Для корня s0 = 0 имеем B(s) = 2.s + 12, A1(s) = s2 + 5s + 6 ,

.

Для корня s1 = -2 имеем A’(s) = 3.s2 + 10.s + 6 и

.

Для корня s2 = -3 имеем аналогично

.

Видно, что коэффициенты Mi, полученные разными методами, совпадают.¨

 

Пример.Случай обратного преобразования Лапласа при наличии комплексных корней.

Изображение выходного сигнала имеет вид

.

Корни знаменателя включают нулевой корень, действительный и пару комплексных корней: s0 = 0; s1 = - 2,54; s2,3 = - 0,18 ± j*1,20.

Изображение Y(s) разбивается на сумму четырех дробей:

.

Тогда оригинал y(t), согласно таблицам 1.1 и 1.2, имеет вид

y(t) = y0(t) + y1(t) + y2,3(t) = M0 + + 2 еat [C . cos(w.t) - D . sin(w.t)],

где a и w - действительная и мнимая части пары комплексных корней s2,3, C и D – действительная и мнимая части пары коэффициентов М2 и М3.

Для корня s0 = 0:

,

,

y0(t) = M0 = 0,85.

Для корня s1 = -2,54:

,

,

,

y1(t) = .

Для корней s2,3 = -0,18 ± j*1,20:

,

,

,

y2,3(t) =2 е-0,18t [-0,34 cos(1,20 t) - 0,24 sin(1,20 t)].

В итоге получаем оригинал:

y(t) = 0,85 – 0,18 е-2,54 t – 2 е-0,18 t [0,34 cos(1,20 t) + 0,24 sin(1,20 t)].¨

Передаточные функции

Определение передаточной функции

Например, операторное уравнение 3s2Y(s) + 4sY(s) + Y(s) = 2sX(s) + 4X(s) можно преобразовать, вынеся X(s) и Y(s) за скобки и поделив друг на друга:

Примеры типовых звеньев

Звеном системы называется ее элемент, обладающий определенными свойствами в динамическом отношении. Звенья систем регулирования могут иметь разную физическую природу (электрические, пневматические, механические и др. звенья), но описываться одинаковыми ДУ, а соотношение входных и выходных сигналов в звеньях описываться одинаковыми передаточными функциями.

В ТАУ выделяют группу простейших звеньев, которые принято называть типовыми. Статические и динамические характеристики типовых звеньев изучены достаточно полно. Типовые звенья широко используются при определении динамических характеристик объектов управления. Например, зная переходную характеристику, построенную с помощью самопишущего прибора, часто можно определить, к какому типу звеньев относится объект управления, а следовательно, его передаточную функцию, дифференциальное уравнение и т.д., т.е. модель объекта. Типовые звенья Любое сложное звено может быть представлено как соединение простейших звеньев.

К простейшим типовым звеньям относятся:

· усилительное,

· инерционное (апериодическое 1-го порядка),

· интегрирующие (реальное и идеальное),

· дифференцирующие (реальное и идеальное),

· апериодическое 2-го порядка,

· колебательное,

· запаздывающее.

1) Усилительное звено.

Звено усиливает входной сигнал в К раз. Уравнение звена у = К*х, передаточная функция W(s) = К. Параметр К называется коэффициентом усиления.

Выходной сигнал такого звена в точности повторяет входной сигнал, усиленный в К раз (см. рисунок 1.18).

у = K.x.

При ступенчатом воздействии h(t) = K.

Примерами таких звеньев являются: механические передачи, датчики, безынерционные усилители и др.

2) Интегрирующее.

2.1) Идеальное интегрирующее.

Выходная величина идеального интегрирующего звена пропорциональна интегралу входной величины:

; W(s) =

При подаче на вход звена ступенчатого воздействия x(t) = 1 выходной сигнал постоянно возрастает (см. рисунок 1.19):

h(t) = K.t.

Это звено астатическое, т.е. не имеет установившегося режима.

Примером такого звена может служить емкость, наполняемая жидкостью. Входной параметр – расход поступающей жидкости, выходной - уровень. Изначально емкость пуста и при отсутствии расхода уровень равен нулю, но если включить подачу жидкости, уровень начинает равномерно увеличиваться.

2.2) Реальное интегрирующее.

Передаточная функция этого звена имеет вид

W(s) = .

Переходная характеристика в отличие от идеального звена является кривой (см. рис. 1.20):

h(t) = K.(t – T) + K.T.e -t/T.

 

Примером интегрирующего звена является двигатель постоянного тока с независимым возбуждением, если в качестве входного воздействия принять напряжение питания статора, а выходного - угол поворота ротора. Если напряжение на двигатель не подается, то ротор не двигается и угол его поворота можно принять равным нулю. При подаче напряжения ротор начинает раскручиваться, а угол его поворота сначала медленно вследствие инерции, а затем быстрее увеличиваться до достижения определенной скорости вращения.

3) Дифференцирующее.

3.1) Идеальное дифференцирующее.

Выходная величина пропорциональна производной по времени от входной:

; W(s) = K*s

При ступенчатом входном сигнале выходной сигнал представляет собой импульс (d-функцию): h(t) = K.d(t).

3.2) Реальное дифференцирующее.

Идеальные дифференцирующие звенья физически не реализуемы. Большинство объектов, которые представляют собой дифференцирующие звенья, относятся к реальным дифференцирующим звеньям, передаточные функции которых имеют вид

W(s) = .

Переходная характеристика: .

Пример звена: электрогенератор. Входной параметр – угол поворота ротора, выходной – напряжение. Если ротор повернуть на некоторый угол, то на клеммах появится напряжение, но если ротор далее не вращать, напряжение снизится до нуля. Резко упасть оно не может вследствие наличия индуктивности у обмотки.

4) Апериодическое (инерционное).

Этому звену соответствуют ДУ и ПФ вида

; W(s) = .

Определим характер изменения выходной величины этого звена при подаче на вход ступенчатого воздействия величины х0.

Изображение ступенчатого воздействия: X(s) = . Тогда изображение выходной величины:

Y(s) = W(s) X(s) = = K x0 .

Разложим дробь на простые:

= + = = - = -

Оригинал первой дроби по таблице: L-1{} = 1, второй:

L-1{} = .

Тогда окончательно получаем

y(t) = K x0 (1 - ).

Постоянная Т называется постоянной времени.

Большинство тепловых объектов являются апериодическими звеньями. Например, при подаче на вход электрической печи напряжения ее температура будет изменяться по аналогичному закону (см. рисунок 1.22).

5) Звенья второго порядка

Звенья имеют ДУ и ПФ вида

,

W(s) = .

При подаче на вход ступенчатого воздействия амплитудой х0 переходная кривая будет иметь один из двух видов: апериодический (при Т1 ³ 2Т2) или колебательный (при Т1 < 2Т2).

 

В связи с этим выделяют звенья второго порядка:

· апериодическое 2-го порядка (Т1 ³ 2Т2),

· инерционное (Т1 < 2Т2),

· консервативное (Т1 = 0).

6) Запаздывающее.

Если при подаче на вход объекта некоторого сигнала он реагирует на этот сигнал не моментально, а спустя некоторое время, то говорят, что объект обладает запаздыванием.

Запаздывание – это интервал времени от момента изменения входного сигнала до начала изменения выходного.

Запаздывающее звено – это звено, у которого выходная величина у в точности повторяет входную величину х с некоторым запаздыванием t:

y(t) = x(t - t).

Передаточная функция звена:

W(s) = e-ts.

Примеры запаздываний: движение жидкости по трубопроводу (сколько жидкости было закачано в начале трубопровода, столько ее выйдет в конце, но через некоторое время, пока жидкость движется по трубе), движение груза по конвейеру (запаздывание определяется длиной конвейера и скоростью движения ленты) и т.д.

 

Соединения звеньев

1) Последовательное соединение. Wоб = W1.W2.W3… При последовательном соединении звеньев их передаточные функции перемножаются.

Передаточные функции АСР

    В общем случае любая одномерная АСР с главной обратной связью путем постепенного укрупнения звеньев может быть…

Определение параметров передаточной функции объекта по переходной кривой

Предположим, что при подаче на вход некоторого объекта ступенчатого воздействия была получена переходная характеристика (см. рисунок 1.31).… Предположим, что передаточная функция имеет вид

Частотные характеристики

Определение частотных характеристик

Предположим, имеется некоторый объект и требуется определить его ЧХ. При экспериментальном снятии ЧХ на вход объекта подается синусоидальный сигнал… x(t) = Авхsin(wt) = sin(wt). Тогда после прохождения переходных процессов на выходе мы будем также иметь синусоидальный сигнал той же частоты w, но…

Логарифмические частотные характеристики

  1) ЛАЧХ - логарифмическая АЧХ. Формула для построения ЛАЧХ: L(w) = 20.lg Aвых(w).

Примеры ЛЧХ

1 Фильтр низких частот (ФНЧ)

ЛАЧХ ЛФЧХ Пример цепи

 

Фильтр низких частот предназначен для подавления высокочастотных воздействий.

2 Фильтр высоких частот (ФВЧ)

ЛАЧХ ЛФЧХ Пример цепи

 

Фильтр высоких частот предназначен для подавления низкочастотных воздействий.

3 Заградительный фильтр.

Заградительный фильтр подавляет только определенный диапазон частот (см. рисунок 1.39).

 

ЛАЧХ и ЛФЧХ Пример цепи

 
 

 


.

 

 

Качество процессов управления

Критерии устойчивости

Понятие устойчивости линейных систем

Необходимое и достаточное условие устойчивости формулируется следующим образом: Звено или система называются устойчивыми, если переходная… . Если выходной сигнал звена или системы y(t) рассматривать как сумму двух составляющих

Корневой критерий

Если корни действительные, т.е. si = ai, то , где n – число корней характеристического уравнения (степень уравнения), Mi – коэффициенты, si – корни.

Критерий Стодолы

Этот критерий является следствием из предыдущего и формулируется следующим образом: Линейная система устойчива, если все коэффициенты характеристического полинома положительны.

То есть, передаточная функция из примера по критерию Стодола соответствует устойчивой системе.

 

Критерий Гурвица

s3 + s2 + 2s + 8 по критерию Стодола соответствует устойчивой системе, однако корни этого… Критерий Гурвица дает необходимое и достаточное условие устойчивости линейных систем.

Критерий Михайлова

, где t - запаздывание. В этом случае характеристическое выражение замкнутой системы полиномом не является и его корни определить невозможно.…

Критерий Найквиста

Последовательность: 1) Определяется передаточная функция разомкнутой системы . 2) Определяется число правых корней m.

Показатели качества

Показатели качества разбиты на 4 группы: 1) прямые - определяемые непосредственно по кривой переходного процесса; 2) корневые - определяемые по корням характеристического полинома;

Прямые показатели качества

Рисунок 1.47     Предположим, переходная кривая, снятая на объекте, имеет колебательный…    

Корневые показатели качества

Степень устойчивости h определяется как граница, правее которой корней нет, т.е. h = min, где Re(si) - действительная часть корня si. Пример определения степени устойчивости показан на рисунке 1.48. Линии…

Частотные показатели качества

По АФХ определяются запасы: DA - по амплитуде, Dj - по фазе. Запас DA определяется по точке пересечения АФХ с отрицательной действительной… Для определения Dj строится окружность единичного радиуса с центром в начале координат. Запас Dj определяется по точке…

Интегральные показатели качества

Если рассмотреть два переходных процесса в некоторой АСР (см. рисунок 1.51), то визуально можно определить, что первый процесс обладает более… Численно это можно охарактеризовать площадью между соответствующей кривой и… Данная площадь определяется как интеграл

Связи между показателями качества

Описанные выше показатели качества связаны между собой примерными соотношениями, справедливыми только для систем не выше второго порядка:

; tp = ; ; M = .

Настройка регуляторов

Типовые законы регулирования

Входным сигналом для аналоговых регуляторов является величина ошибки регулирования, которая определяется как разность между заданным и текущим… 1) П-закон (пропорциональное регулирование). Согласно закон пропорционального… u = K1.e.

Определение оптимальных настроек регуляторов

Поэтому стоит задача, во-первых, определить настройки, соответствующие устойчивой системе, и, во-вторых, выбрать из них оптимальные. Оптимальными настройками регулятора называются настройки, которые… Однако, изменяя настройки таким образом, чтобы увеличить степень затухания, мы можем прийти к слишком большому времени…

Измерения технологических параметров

Государственная система приборов (ГСП)

1) блочно-модульный принцип, лежащий в основе конструкций устройств; 2) унификация входных-выходных сигналов и сигналов питания. Содержит три ветви:

Основные определения

Косвенное измерение - измерение, при котором искомое значение величины находят на основании зависимости между этой величиной и величинами,… Принцип измерений – совокупность физических явлений, на которых основаны… Метод измерений – совокупность приемов использования принципов и средств измерений.

Классификация контрольно-измерительных приборов

На нефтеперерабатывающих и химических производствах наиболее часто измеряемыми величинами являются температура, давление, расход и уровень. На них приходится около 80 % всех измерений. Остальную часть занимают электрические, оптические и другие измерения.

При измерениях используются различные измерительные приборы, которые классифицируются по ряду признаков. Общей градацией является разделение их на приборы для измерения: механических, электрических, магнитных, тепловых и других физических величин.

Классификация по роду измеряемой величины указывает, какую физическую величину измеряет прибор (давление Р, температуру Т, расход F, уровень L, количество вещества Q и т.д.).

Исходя из признака преобразования измеряемой величины, измерительные приборы разделяют на приборы:

а) непосредственной оценки;

б) сравнения.

По характеру измерения: стационарные и переносные.

По способу отсчета измеряемой величины: показывающие, регистрирующие, суммирующие.

 

Виды первичных преобразователей

1) Генераторные осуществляют преобразование различных видов энергии в электрическую, то есть они генерируют электрическую энергию… 2) К параметрическим относятся реостатные, тензодатчики, термосопротивления и… 3) Выходным сигналом механических первичных преобразователей (мембранных, манометров, дифманометров, ротаметров и др.)…

Методы и приборы для измерения температуры

Классификация термометров

Температура вещества - величина, характеризующая степень нагретости, которая определяется внутренней кинетической энергией теплового движения молекул. Измерение температуры практически возможно только методом сравнения степени нагретости двух тел.

Для сравнения нагретости этих тел используют изменения каких-либо физических свойств, зависящих от температуры и легко поддающихся измерению.

По свойству термодинамического тела, используемого для измерения температуры, можно выделить следующие типы термометров:

· термометры расширения, основанные на свойстве температурного расширения жидких тел;

· термометры расширения, основанные на свойстве температурного расширения твердых тел;

· термометры газовые манометрические;

· термометры жидкостные манометрические;

· конденсационные;

· электрические;

· термометры сопротивления;

· оптические монохроматические пирометры;

· оптические цветовые пирометры;

· радиационные пирометры.

 

Термометры расширения. Жидкостные стеклянные

, 1/град, где V0, Vt1, Vt2 - объемы жидкости при 0 °С, температурах t1 и t2… Чувствительность термометра зависит от разности коэффициентов объемного расширения термометрической жидкости и стекла,…

Термометры, основанные на расширении твердых тел

1) Конструктивное исполнение дилатометрических термометров основано на преобразовании измеряемой температуры в разность абсолютных значений… , 1/град, где l0, lt1, lt2 - линейные размеры тела при 0 °С, температурах t1 и t2 соответственно.

Газовые манометрические термометры

Манометрические термометры обычно включают в себя термобаллон, капиллярную трубку и трубчатую пружину с поводком, зубчатым сектором и стрелкой. Вся… Газовые манометрические термометры основаны на зависимости температуры и… Достоинства: шкала прибора практически равномерна.

Жидкостные манометрические термометры

В качестве манометрической жидкости в приборах этого типа применяется метиловый спирт , ксилол, толуол, ртуть и т.д.

Жидкостные манометрические термометры имеют равномерную шкалу.

 

Конденсационные манометрические термометры

Конденсационные манометрические термометры реализуют зависимость упругости насыщенных паров низкокипящей жидкости от температуры. Поскольку эти зависимости для используемых жидкостей (хлористый метил, этиловый эфир, хлористый этил, ацетон и др.) нелинейны, следовательно, и шкалы термометров неравномерны. Однако, эти приборы обладают более высокой чувствительностью, чем газовые жидкостные.

 

Электрические термометры

В термоэлектрической цепи, состоящей из двух проводников А и В (см. рис. 2.1) возникают 4 различные ТЭДС: 2 ТЭДС в местах спаев проводников А и В,… EAB(t t0) = eAB(t) + eBA(t0), где eBA и eAB - ТЭДС, обусловленная контактной разностью потенциалов и разностью температур концов А и В.

Термометры сопротивления

Вид функции R = f(t) зависит от природы материала и может быть записан как линейное уравнение R = R0.(1 + a.t), где a - температурный коэффициент сопротивления, t – температура.

Пирометры излучения

Лучистая энергия выделяется нагретым телом в виде волн различной длины. При сравнительно низких температурах (до 500 °С) нагретое тело испускает…  

Цветовые пирометры

В цветовых пирометрах определяется отношение интенсивности излучения реального тела Еl в лучах с двумя заранее выбранными значениями длины волны l1 и l2, то есть показания цветовых пирометров определяются функцией f(Еl1 / Еl2). Это отношение для каждой температуры различно, но однозначно.

 

Вторичные приборы для измерения разности потенциалов

Для измерения ТЭДС в комплектах термоэлектрических термометров применяются пирометрические милливольтметры и потенциометры. В потенциометрах, в отличие от милливольтметров, используется компенсационный метод измерения.

 

Пирометрические милливольтметры

В конструкции пирометрических милливольтметров можно выделить магнитную и подвижную системы (см. рисунок 2.3). Первая состоит из подковообразного… В этом зазоре соосно с сердечником размещается рамка 4, которая монтируется на… Взаимодействие тока, протекающего по рамке, с полем постоянного магнита 2 вызывает появление вращающего момента,…

Потенциометры

D Е(t t0) ΔU Принцип компенсации при измерении… Рисунок 2.4 Последовательно с термопарой,…  

Автоматические электрические потенциометры

  Схема автоматического потенциометра показана на рисунке 2.5, где обозначено: … Rp - сопротивление реохорда,

Методы измерения сопротивления

Двухпроводная схема подключения моста к ТС показана на рис. 2.6, где обозначены: R1, R2, R3, R4 - сопротивления моста; Rб - балластное сопротивление для ограничения рабочего тока;

Методы и приборы для измерения давления и разряжения

Классификация приборов для измерения давления

Под давлением в общем случае понимают предел отношения нормальной составляющей усилия к площади, на которую действует усилие.

В зависимости от природы контролируемого процесса нас интересует абсолютное давление Ра или избыточное Ри. При измерении Ра за начало отсчета принимается нулевое давление, которое можно себе представить как давление внутри сосуда после полной откачки воздуха. Естественно, достигнуть Ра = 0 невозможно.

Барометрическое давление Рбар - давление, оказываемое атмосферой на все находящиеся в ней предметы.

Избыточное давление представляет собой разность между абсолютным и барометрическим давлениями:

Ри = Ра - Рбар

Если Рабс < Рбар, то Ри называется давлением разряжения.

 

 

Классификация приборов для измерения давления:

I. По принципу действия:

1) жидкостные (основанные на уравновешивании давления столбом жидкости);

2) поршневые (измеряемое давление уравновешивается внешней силой, действующей на поршень);

3) пружинные (давление измеряется по величине деформации упругого элемента);

4) электрические (основанные на преобразовании давления в какую-либо электрическую величину).

II. По роду измеряемой величины:

1) манометры (измерение избыточного давления);

2) вакуумметры (измерение давления разряжения);

3) мановакуумметры (измерение как избыточного давления, так и давления разряжения);

4) напорометры (для измерения малых избыточных давлений);

5) тягомеры (для измерения малых давлений разряжения);

6) тягонапорометры;

7) дифманометры (для измерения разности давлений);

8) барометры (для измерения барометрического давления).

 

Жидкостные манометры

Двухтрубный манометр представляет собой U-образную трубку, заполненную затворной жидкостью. Давление в каждой трубке связано с уровнями как и ,

Чашечные манометры и дифманометры

Уравнение равновесия: Р = r g (h + H). Чашечные и трубные манометры применяются для тарировки и поверки рабочих приборов, реже - в качестве рабочих…

Микроманометры

h = L.sin(a) - высота поднятия уровня жидкости в узкой трубке, P = r.g.h - измеренное давление. Погрешность: ± 1,5 %.

Пружинные манометры

Состоят из трубчатой пружины 1 с поводком, зубчатого сектора 3 и шестерни 4 с прикрепленной к ней стрелкой 2.

При увеличении давления трубчатая пружина стремится разогнуться, в результате чего она через поводок начинает воздействовать на зубчатый сектор, отклоняя стрелку.

 

Электрические манометры.

Эти манометры обеспечивают непрерывное преобразование значения измеряемого параметра (давления избыточного, абсолютного, разряжения, разности… Мембранный тензопреобразователь 3 размещен внутри основания 9 (см. рисунок… Измеряемое давление подается в камеру 7 фланца 5, который уплотнен прокладкой 8. Измеряемое давление воздействует на…

Методы и приборы для измерения расхода пара, газа и жидкости

Классификация

Количество вещества выражается в единицах объема или массы (т.е. в м3 или килограммах). Количество жидкости с равной степенью точности может быть измерено и объемным, и массовым методами, количество газа - только объемным. Для твердых и сыпучих материалов используется понятие насыпной или объемной массы, которая зависит от гранулометрического состава сыпучего материала. Для более точных измерений количество сыпучего материала определяется взвешиванием.

Расходом вещества называется количество вещества, проходящее через данное сечение трубопровода в единицу времени. Массовый расход измеряется в кг/с, объемный - в м3/с.

Приборы, измеряющие расход, называются расходомерами. Эти приборы могут быть снабжены счетчиками (интеграторами), тогда они называются расходомерами-счетчиками. Такие приборы позволяют измерять расход и количество вещества.

Классификация:

Механические

объемные

ковшовые

барабанного типа

мерники

скоростные

по методу переменного перепада давления

по методу постоянного перепада давления

напорные трубки

ротационные

Электрические

электромагнитные

ультразвуковые

радиоактивные

 

Метод переменного перепада давления

В измерительной технике сужающими устройствами являются диафрагмы, сопла и сопла Вентури. Наиболее часто из них применяются диафрагмы, которые представляют собой тонкий… I - I - сечение потока до искажения формы.

Расходомеры постоянного перепада давления

Наиболее распространенными приборами группы расходомеров постоянного перепада давления являются ротаметры (см. рис. 2.17), которые имеют ряд… а) потери Рп незначительны и не зависят от расхода; б) имеют большой диапазон измерения и позволяют измерять малые расходы.

Расходомеры переменного уровня

Используются для измерения расходов смесей продуктов, содержащих твердые частицы, пульсирующих потоков, особо активных сред.

Измерения осуществляются при атмосферном давлении. Состоит из элементов (см. рисунок 2.18): 1 - калиброванный сосуд, 2 - уровнемерное стекло, 3 - отверстие в днище, 4 - перегородка для успокоения потока.

 

Расходомеры скоростного напора

Измерение расхода основано на зависимости динамического напора от скорости потока измеряемой среды.

Дифманометр, соединяющий обе трубки, показывает динамическое давление, по которому судят о скорости потока и, следовательно, о расходе.

 

Методы и приборы для измерения уровня

Методы измерения уровня

Под измерением уровня понимается индикация положения раздела двух сред различной плотности относительно какой-либо горизонтальной поверхности,… Методы измерения уровня: 1) поплавковый, 2) буйковый, 3) гидростатический,…  

Поплавковый метод измерения уровня

Поплавковый уровнемер построен по принципу использования выталкивающей силы жидкости. Чувствительный элемент представляет собой тело произвольной формы (поплавок), плавающее на поверхности жидкости и имеющее постоянную осадку. Поплавок перемещается вертикально вместе с уровнем жидкости и текущее значение уровня определяется фиксацией положения поплавка.

 

Буйковые уровнемеры

Таким образом, по величине погружения буя судят об уровне жидкости в сосуде. Характеристика буйкового уровнемера линейная, а чувствительность тем…  

Гидростатические уровнемеры

Различают пьезометрические уровнемеры и уровнемеры с непосредственным измерением столба жидкости. Пьезометрические уровнемеры применяются для измерения уровня самых… Воздух из пьезометрической трубки 1 барботирует через слой жидкости. Количество воздуха, подаваемого под давлением,…

Электрические методы измерения уровня

Кондуктометрический метод измерения уровня основан на измерении электрической проводимости первичного преобразователя, зависящей от значения… Емкостной метод измерения основан на изменении емкости первичного…  

Радиоволновые уровнемеры

В результате обработки параметров отраженной радиоволны выделяется сигнал, пропорциональный расстоянию от датчика до поверхности L. Достоинства уровнемеров: надежность, температурная стабильность, отсутствие…  

Исполнительные устройства

Классификация исполнительных устройств

Исполнительным устройством (ИУ) называется устройство в системе управления, непосредственно реализующее управляющее воздействие со стороны регулятора на объект управления путем механического перемещения регулирующего органа (РО) объекта.

Большинство управляющих воздействий в нефтепереработке, нефтедобыче и нефтехимии реализуется путем изменения расходов веществ (например, сырья, топлива, кубового остатка колонны и т.д.).

Уравнение статики ИУ для расхода F жидкости или газа может быть описано как

F = F(ΔP, ν, ρ, C1, C2, …),

где ΔP – перепад давления на РО, ν - вязкость, ρ – плотность, Сi – некоторые параметры, зависящие от конструкции РО, режима истечения потока и т.д. Отсюда видно, что расход F может быть изменен путем:

- изменения ΔP (насосные ИУ),

- ν или ρ (реологические ИУ),

- коэффициентами Ci (дроссельные ИУ).

 

 

Исполнительные устройства насосного типа

Для данных ИУ, как правило, давление на выходе Рвых больше, чем давление на входе Рвх, а перепад давления на РО определяется как ΔР = Рвых –… Насосные ИУ делятся на три класса: 1) С вращательным движением РО:

Исполнительные устройства реологического типа

Преобразователь в ИУ данного типа осуществляет изменение электромагнитного поля в РО в зависимости от u, которое в свою очередь влияет на ν.… Структура ИУ реологического типа изображена на рисунке 2.27.  

Исполнительные устройства дроссельного типа

Пропускной характеристикой дросселя называется зависимость расхода F от перепада давления ΔР = Рвх – Рвых, положения РО и т.д. Зависимость F(ΔР) для турбулентного потока:

Исполнительные механизмы

- по виду энергии, создающей перестановочное усилие (электрические, пневматические, гидравлические и др.); - по виду движения (прямоходовые, однооборотные и многооборотные); - по принципу создания перестановочного усилия (мембранные, поршневые, сильфонные, лопастные, электромагнитные,…

Условные обозначения

       

Примеры построения условных обозначений приборов и средств автоматизации

(В скобках указаны примеры типов приборов)

 

  Первичный измерительный преобразователь для измерения температуры, установленный по месту (например, термоэлектрический преобразователь (термопара), термопреобразователь сопротивления, термобаллон манометрического термометра, датчик пирометра и т.д.). Пример: термоэлектрический термометр ТХА‑0515 градуировки ХА; датчик Метран-201-ТХА гр. ХА.
  Прибор для измерения температуры показывающий (термометры ртутный, манометрический и т.д.). Пример: термометр …
  Прибор для измерения температуры показывающий, установленный на щите (милливольтметр, логометр, потенциометр (типа КСП и др.), мост автоматический (типа КСМ и др) и т.д.).
  Прибор для измерения температуры бесшкальный с дистанционной передачей показаний, установленный по месту. Пример: Преобразователь термоЭДС в стандартный токовый сигнал 0…5 мА, гр. ХА, марка Ш-72.
Прибор для измерения температуры одноточечный регистрирующий, установленный на щите (милливольтметр самопишущий, логометр, потенциометр и т.д.).
  Прибор для измерения температуры с автоматическим обегающим устройством регистрирующий, установленный на щите (термометр манометрический, милливольтметр, потенциометр, мост и т.д.). Пример: Автоматический электронный потенциометр ТСП-4 градуировки ХА (для термопар ТХА).
  Прибор для измерения температуры регистрирующий, регулирующий, установленный на щите (термометр манометрический, милливольтметр, потенциометр и т.д.). Пример: Автоматический электронный потенциометр ТСП-4 градуировки ХА (для термопар ТХА) с блоком пневматического регулятора.
Регулятор температуры бесшкальный, установленный по месту (дилатометрический регулятор температуры и д.р.).
  Комплект для измерения температуры регистрирующий, регулирующий, снабженный станцией управления, установленный на щите (пневматический вторичный прибор, например, ПВ 10.1Э системы «Старт» с регулирующим блоком ПР 3.31).
  Прибор для измерения температуры бесшкальный с контактным устройством, установленный по месту (реле температурное).
  Байпасная панель дистанционного управления, установленная на щите.  
  Переключатель электрических цепей измерения (управления), переключатель для газовых (воздушных) линий, установленный на щите.
  Прибор для измерения давления (разряжения), показывающий, установленный по месту (любой показывающий манометр, дифманометр, напоромер и т.д.). Пример: Электроконтактный манометр ЭКМ-1, пружинный манометр ОБМ1-160.
  Прибор для измерения перепада давления показывающий, установленный по месту (дифманометр показывающий).
  Прибор для измерения давления (разряжения) бесшкальный с дистанционной передачей показаний, установленный по месту (дифманометр бесшкальный с пневмо- или электропередачей). Пример 1: Преобразователь абсолютного давления Сапфир-22М-ДА-2020 с верхним пределом измерений 2,5...10 кПа. Пример 2: Манометр сильфонный с пневмовыходом 0,02…0,1 МПа типа МС-П1.
  Прибор для измерения давления (разряжения) регистрирующий, установленный на щите (самопишущий манометр или любой другой вторичный прибор для регистрации давления).
  Прибор для измерения давления с контактным устройством, установленный по месту (реле давления).
  Прибор для измерения давления (разряжения) показывающий с контактным устройством, установленный по месту (электроконтактный манометр и т.д.).
  Регулятор давления прямого действия «до себя».  
  Первичный измерительный преобразователь для измерения расхода, установленный по месту (диафрагма, сопло Вентури датчик индукционного расходомера и т.д.). Пример: Диафрагма камерная ДК 6-100 (давление 6 кгс/см2, условный диаметр 100 мм).
  Прибор для измерения расхода бесшкальный с дистанционной передачей показаний, установленный по месту (бесшкальный дифманометр, ротаметр с пневмо- или электропередачей). Пример 1: Преобразователь измерительный разности давлений Сапфир-22М-ДД-2420 с верхним пределом измерений 2,5...10 кПа. Пример 2: Дифманометр сильфонный с пневмовыходом 0,02…0,1 МПа типа ДС‑П1.
  Прибор для измерения соотношения расходов регистрирующий, установленный на щите (любой вторичный прибор для регистрации соотношения расходов).
  Прибор для измерения расхода показывающий, установленный по месту (дифманометр или ротаметр показывающий и т.д.). Пример 1: Преобразователь измерительный разности давлений Сапфир-22М-ДД-2420 с верхним пределом измерений 2,5...10 кПа. Пример 2: Дифманометр сильфонный с пневмовыходом 0,02…0,1 МПа типа ДС‑П1.
  Прибор для измерения расхода интегрирующий показывающий, установленный по месту (любой счетчик-расходомер с интегратором).
  Прибор для измерения расхода показывающий интегрирующий, установленный на щите (показывающий дифманометр с интегратором).
  Прибор для измерения расхода интегрирующий с устройством для выдачи сигнала после прохождения заданного количество вещества, установленный по месту (счетчик-дозатор).
  Первичный измерительный преобразователь для измерения уровня, установленный по месту (датчик электрического или емкостного уровнемера). Пример 1: Уровнемер буйковый с пневмовыходом 0,02…0,1 МПа типа УБ-П. Пример 2: Преобразователь измерительный разности давлений Сапфир-22М-ДД-2420 с верхним пределом измерений 2,5...10 кПа.
  Прибор для измерения уровня показывающий, установленный по месту.  
  Прибор для измерения уровня с контактным устройством, установленный по месту (реле уровня).
  Прибор для измерения уровня с контактным устройством бесшкальный с дистанционной передачей показаний, установленный по месту (уровнемер бесшкальный с пневмо- или электропередачей).
  Прибор для измерения уровня бесшкальный регулирующий с контактным устройством, установленный по месту (электрический регулятор-сигнализатор уровня с блокировкой по верхнему уровню).
  Прибор для измерения уровня показывающий с контактным устройством, установленный на щите (вторичный показывающий прибор с сигнализацией верхнего и нижнего уровня). Пример: Электроконтактный манометр ЭКМ-1.
  Прибор для измерения плотности раствора бесшкальный с дистанционной передачей показаний, установленный по месту (датчик плотномера с пневмо- или электропередачей).
  Прибор для измерения размеров показывающий, установленный по месту (толщиномер).
Прибор для измерения любой электрической величины показывающий, установленный по месту.
  Вольтметр.  
  Амперметр.  
  Ваттметр  
  Прибор для управления процессом по временной программе, установленный на щите (командный пневматический прибор, многоцепное реле времени и т.д.).
  Прибор для измерения влажности регистрирующий, установленный на щите (вторичный прибор влагомера и т.д.).
  Первичный преобразователь для измерения качества продукта, установленный по месту (датчик рН-метра и т.д.).
Прибор для измерения качества продукта показывающий, установленный по месту (газоанализатор на кислород и т.д.).
Прибор для измерения качества продукта регистрирующий регулирующий, установленный на щите (вторичный самопишущий прибор регулятора концентрации серной кислоты в растворе и т.д.).
  Прибор для измерения радиоактивности показывающий с контактным устройством, установленный по месту (прибор для показаний и сигнализации предельно допустимых значений a и b-излучений).
Прибор для измерения частоты вращения привода регистрирующий, установленный на щите (вторичный прибор тахогенератора).
Прибор для измерения нескольких разнородных величин регистрирующий, установленный по месту (самопишущий дифманометр-расходомер с дополнительной записью давления и температуры).
Прибор для измерения вязкости раствора показывающий, установленный по месту (вискозиметр показывающий).
Прибор для измерения массы продукта показывающий с контактным устройством, установленный по месту (устройство электронно-тензометрическое сигнализирующее и т.д.).
Прибор для контроля погасания факела печи бесшкальный с контактным устройством, установленный на щите (вторичный прибор запально-защитного устройства; применение резервной буквы В должно быть оговорено на поле схемы).
Преобразователь сигнала, установленный на щите (входной и выходной сигналы – электрические; нормирующий преобразователь и т.д.).
Преобразователь сигнала, установленный по месту (входной сигнал пневматический, выходной – электрический; электропневмопреобразователь ЭПП-63 и т.д.).
Устройство, выполняющее функцию умножения на постоянный коэффициент К.  
Пусковая аппаратура для управления электродвигателем (магнитный пускатель, контактор и т.д.; применение резервной буквы N должно быть оговорено на поле схемы).
Аппаратура, предназначенная для ручного дистанционного управления, установленная на щите (кнопка, ключ управления, задатчик и т.д.).  
Аппаратура для ручного дистанционного управления, снабженная устройством для сигнализации, установленная на щите (кнопка с лампочкой и т.д.).
Ключ управления, предназначенный для выбора управления, установленный на щите.

 

 


Список литературы

1 Кулаков М.В. Технические измерения и приборы для химических производств. -М.: Машиностроение, 1983. - 424 с.

2 Никитенко Е.А. Автоматизация и телеконтроль электрохимической защиты магистральных газопроводов. М.: Недра, 1976.

3 Полоцкий Л.М., Лапшенков Г.И. Автоматизация химических производств. Учеб. пособие -М.: Химия, 1982. - 296 с.

4 Теория автоматического управления / Под ред. А.В. Нетушила -М.: Высш. шк., 1968. -Ч.1.

5 Бесекерский В.А., Попов Е.П. Теория автоматического регулирования. -М.: Наука, 1966.

6 Дадаян Л.Г. Автоматизация технологических процессов: Методические указания к курсовому и дипломному проектированию. -Уфа: Изд-во УНИ, 1985. - 225 с.

7 Камразе А.Н., Фитерман М.Я. Контрольно-измерительные приборы и автоматика. Л.: Химия, 1988. - 225 с.

8 Стефани Е.П. Основы построения АСУТП: Учеб. пособие -М.: Энергоиздат, 1982. -352 с.

9 Автоматические приборы, регуляторы и управляющие машины: Справочник /Под ред. Б.Д. Кошарского -Изд. 3-е. -Л.: Машиностроение, 1976. -486 с.

10 Голубятников В.А., Шувалов В.В. Автоматизация производственных процессов в химической промышленности: Учебник. -М.: Химия, 1985. -352 с.

11 Теория автоматического управления: Учебник: В 2-х частях / Под ред. А.А.Воронова. -М.: Высш.шк., 1986. -Ч.1. - 367 с.; Ч.2. -504 с.

12 Аязян Г.К. Расчет автоматических систем с типовыми алгоритмами регулирования: Учеб. пособие -Уфа: Изд-во УНИ, 1986. -135 с.

13 Веревкин А.П., Попков В.Ф. Технические средства автоматизации. Исполнительные устройства: Учеб. пособие -Уфа: Изд-во УНИ, 1996. -95 с.

14 ГОСТ 21.404-85. Обозначения условные приборов и средств автоматизации.

15 ГОСТ 21.408-93. Правила выполнения рабочей документации автоматизации технологических процессов.

16 Кузнецов А. SCADA-системы: программистом можешь ты не быть// СТА. -1996. -№ 1. –С. 32 – 35.

17 Кабаев С. SCADA-пакет InTouch в отечественных проектах// Мир компьютерной автоматизации. -1997. -№ 2. – С. 88 – 90.

18. Христенсен Д. Знакомство со стандартом на языки программирования PLC IEC 1131-3.// Мир компьютерной автоматизации. -1997. -№ 2. – С. 24 – 25.

19 Захаров В.Н., Поспелов Д.А., Хазацкий В.Е. Системы управления. Задание. Проектирование. Реализация. -Изд. 2‑е, перераб. и доп. -М.: Энергия, 1977. -424 с.

20 Олссон Г., Пиани Д. Цифровые системы автоматизации и управления. –СПб.: Невский диалект, 2001. -557 с.

21 Справочник проектировщика АСУ ТП/ Г.Л. Смилянский, Л.З. Амлинский, В.Я. Баранов и др.; Под ред. Г.Л. Смилянского. -М.: Машиностроение, 1983. -527 с.

22 Справочное пособие по теории систем автоматического регулирования и управления / Под общ. ред. Е.А. Санковского. Минск: «Вышэйшая школа», 1973. -584 с.

23 Современные системы управления/ Р. Дорф, Р. Бишоп. Пер. с англ. Б.И.Копылова. –М.: Лаборатория Базовых Знаний, 2002. -832 с.

24 Методы классической и современной теории автоматического управления: Учебник: В 3-х т./ Под ред. Н.Д. Егупова. –М.: Изд-во МГТУ им. Н.Э. Баумана, 2000. -748 с.

25 Справочник по средствам автоматики/ Под ред. В.Э. Низэ и И.В. Антика. –М.: Энергоатомиздат, 1983. -504 с.

26 Теория автоматического управления. Учебник для вузов/ С.Е. Душин, Н.С. Зотов, Д.Х. Имаев и др.; Под ред. В.Б. Яковлева. –М.: Высшая школа, 2003. -567 с.

27 Любашин А.Н. Промышленные сети// Мир компьютерной автоматизации. - 1999. - № 1. –С. 38 – 44. (http://www.mka.ru/?p=41313.)

28 Жданов А.А. Современный взгляд на ОС реального времени // Мир компьютерной автоматизации. – 1999. - № 1. -С. 54 - 60.

29 Золотарев С.В. Системы SCADA в среде ОС QNX // Мир ПК. – 1996. - № 4. -С. 114.

30 Кунцевич Н.А. SCADA-системы и муки выбора // Мир компьютерной автоматизации. – 1999. - № 1. - С. 72 - 78.

31 Соболев В.С. Программное обеспечение современных систем сбора и обработки измерительной информации.// Приборы и системы управления. - 1998. - № 1. -С. 55.

32 Системы диспетчерского управления и сбора данных (SCADA-системы)// Мир компьютерной автоматизации. – 1999. - № 3. -С. 4-9.

33 SCADA-продукты на российском рынке// Мир компьютерной автоматизации. - 1999. - № 3. -С. 25-33.

34 ISaGRAF. Версия 2.10. Часть 1. Руководство пользователя. -CJ International// Перевод Е.А. Поповой.-М.: АО «RTSoft», 1995.

35 ISaGRAF. Версия 2.10. Часть 2. Руководство по языкам программирования. -CJ International// Перевод Е.А. Поповой.-М.: АО «RTSoft», 1995.

36 Инструментальная система программирования логических контроллеров ISaGRAF: Учеб. пособие. Издание второе, перераб. и дополн/ М.А. Шамашов. -Самара: Самарский муниципальный комплекс непрерывного образования «Университет Наяновой», 1997. - 118 с.

37 Шакиров С. ULTRALOGIC-система подготовки программ для промышленных контроллеров// СТА. -1997. -№ 3.-С. 96-102.

38 Любашин А.Н. Что такое ISaGRAF? // МКА. -1995. -№ 2. -С. 31-36.

39 Шмелев Г.С., Ашкалиев Э.Я., Ляпин А.В. Опыт реализации стандарта МЭК 1131-3 (ISaGRAF) в среде операционной системы реального времени// Приборы и системы управления. -1997. - № 4.-С. 8 - 10.

40 Мазур Л.Е. Система управления предприятием// ComputerWorld – Казань. – 1999. - № 5. – С. 30 – 34.

41 Глушаков С.В., Ломотько Д.В. Базы данных: Учебный курс. –Харьков: Фолио, 2000. -504 с.

42 Построение системного проекта АСУ (комплекса моделей) с использованием IDEF-технологии: Методические указания к лабораторным работам по курсу «Кибернетические основы информационных систем» для студентов направления 552300 «Информационные системы в экономике»/ Уфим. гос. авиац. техн. ун-т; Сост. Г.Г. Куликов, А.Н. Набатов. -Уфа, 1995. -35 с.

43 Design/IDEF. Version 3.0. User’s manual. Meta Software Corp. -1994. -600 p.

44 Золотарев С.В., Кабанов П.Н. QNX-контроллеры и средства их поддержки//Мир ПК. -1998. - № 9.

45 Цельтвангер Х. Взгляд изнутри на основы CAN// http://www.mka.ru/?p=40568.

46. Синк П. Восемь открытых промышленных сетей и Industrial Ethetrnet// http://www.mka.ru/?p=42499.

47. Рыбаков А.Н., Зеленова Т.И. Локальная шина РСI: обзор// http://www.mka.ru/?p=40432.

48. Эйзенбарт В. Промышленные шины для систем автоматизации// http://www.mka.ru/?p=40169.

49. Тиммерман М. Руководство по выбору подходящей шины// http://www.mka.ru/?p=40233.

50. Иванов П. Средства коммуникации промышленного применения нижнего уровня иерархии// http://www.mka.ru/?p=40517.

51. Рыбаков А.Н. Шина PCI в специальных приложениях: мифы и реальность. Полемические заметки// http://www.mka.ru/?p=41226.

52. K. Crater. When Technology Standards Become Counterproductive, Control Technology Corporation, 1996// http://www.control.com/tutorials/language/ counter.htm.

53. "Perspectives on the Future of Automation Control. The Direction of Automation Systems", Rockwell International Corporation, 1997// http://www.ab.com/ events/choices/direct1.html.

 

 


 

 


СОДЕРЖАНИЕ

С.

Введение 3

Часть 1. Теория Автоматического Управления (ТАУ) 4

1.1 Основные понятия 4 1.2 Классификация АСР 9 1.3 Классификация элементов автоматических систем 11

Часть 2. Средства автоматизации и управления 63

1.1 Государственная система приборов (ГСП) 63 1.2 Основные определения 63 1.3 Классификация контрольно-измерительных приборов 65

– Конец работы –

Используемые теги: управление, техническими, системами0.072

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Управление техническими системами

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Понятие управления. Виды управления. Управленческий труд и его особенности. МОДЕЛИ УПРАВЛЕНИЯ. ПОДХОДЫ К УПРАВЛЕНИЮ
Основатель Ф У Тейлор В г выпустил первую печатную работу которая... Основная идея используя замеры и наблюдения за работой исполнителей можно оптимизировать технологию выполнения работ...

Имеется 4 основные задачи управления: стабилизация; программное управление; слежение; оптимальное управление
Управление это такое входное воздействие или сигнал в результате которого система ведет себя заданным образом... Различают способа управления в зав сти от того на основе какой информации...

Управление, его цель и задачи функции. Организация управления. Система управления в составе системы производства
Информационная система ИС это организационно упорядоченная взаимосвязанная совокупность средств и методов ИТ а также используемых для хранения... Российский ГОСТ РВ определяет информационную систему как... Основной задачей ИС является удовлетворение конкретных информационных потребностей в рамках конкретной предметной...

Управление техническими системами
Уфимский государственный нефтяной технический университет... Кафедра Автоматизации химико технологических процессов...

Опорный конспект Дисциплина Управление персоналом 1. СОВРЕМЕННЫЕ КОНЦЕПЦИИ УПРАВЛЕНИЯ ПЕРСОНАЛОМ
Опорный конспект... Дисциплина Управление персоналом... Доцент к э н Иванкович Т С...

Направления повышения эффективности коммерческой деятельности на основе теоретических основ управления целями и анализа управления целями
При этом неблагоприятные внешние факторы и сложное финансовое положение углубляется и тем, что отечественные товаропроизводители медленно переходят… В данном случае управление целями коммерческой деятельности осуществляется… Это комплекс предметов и методов, обеспечивающих максимальную выгодность любой торговой операции для каждого из…

СИСТЕМНЫЙ АНАЛИЗ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ ВОЕННО-ТЕХНИЧЕСКИМИ СИСТЕМАМИ
На сайте allrefs.net читайте: "СИСТЕМНЫЙ АНАЛИЗ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ ВОЕННО-ТЕХНИЧЕСКИМИ СИСТЕМАМИ"

КОНСПЕКТ ЛЕКЦИЙ по дисциплине Корпоративное управление Экономика и управление на предприятии
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ... МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ... ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ...

Курсовая работа по дисциплине «Основы менеджмента» на тему: «Роль управления в системе управления предприятием на примере салона красоты «Бабочка»
Филиал ГОУ ВПО Костромской государственный университет им Н А Некрасова в г Кировске Мурманской области... Кафедра Менеджмента... Специальность Менеджмент организации...

СИСТЕМНЫЙ АНАЛИЗ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ ВОЕННО-ТЕХНИЧЕСКИМИ СИСТЕМАМИ
Военная инженерно космическая академия... Имени А Ф Можайского...

0.038
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам