рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные понятия и определения

Основные понятия и определения - раздел Образование,   Основные Понятия И Определения....

 

Основные понятия и определения.

Теория механизмов и машин занимается исследованием и разработкой высокопроизводительных механизмов и машин.

Механизм– совокупность подвижных материальных тел, одно из которых закреплено, а все остальные совершают вполне определенные движения, относительно неподвижного материального тела.

Звенья – материальные тела, из которых состоит механизм.

Стойка– неподвижное звено.

Стойка изображается ; конфигурация стойки в курсе ТММ не изучается. Звено, к которому изначально сообщается движение, называется входным (начальным, ведущим). Звено, совершающее движение, для выполнения которого предназначен механизм – выходное звено.

Кривошипно-

Ползунный

Механизм

 

Рис.1

Если это компрессор, то зв.1 – входное, а зв.3 – выходное.

Если это механизм ДВС, то зв.3 – входное, а зв.1 – выходное.

Кинематическая пара– подвижное соединение звеньев, допускающее их относительное движение. Все кинематические пары на схеме обозначают буквами латинского алфавита, например A, B, C и т.д.

Если , то К.П. – вращательная ; если , то поступательная.

Порядок нумерации звеньев:

входное звено – 1;

стойка – последний номер.

Звенья бывают:

· простые – состоят из одной детали;

· сложные – состоят из нескольких, жестко скрепленных друг с другом и совершающих одно и тоже движение.

Например, шатунная группа механизма ДВС.

Звенья, соединяясь друг с другом, образуют кинематические цепи, которые разделяют на:

· простые и сложные;

· замкнутые и разомкнутые;

Пример замкнутой кинематической

цепи на рис.1;

пример разомкнутой цепи:

 

Машина – техническое устройство, в результате осуществления технологического процесса определенного рода, можно автоматизировать или механизировать труд человека.

Машины условно можно разделить на виды:

· энергетические;

· технологические;

· транспортные;

· информационные.

Энергетические машины разделяют на:

· двигатели;

· трансформирующие машины.

Двигатель – техническое устройство, преобразующее один вид энергии в другой. Например, ДВС.

Трансформаторная машина – техническое устройство, потребляющее энергию извне и совершающее полезную работу. Например, насосы, станки, прессы.

Техническое объединение двигателя и технологической (рабочей машины) – Машинный агрегат (МА).

Внешняя Технологический среда процесс

 

 
 

Двигатель имеет определенную механическую характеристику, рабочая машина тоже. Механические характеристики указаны в техпаспорте.

w1 – скорость, с которой вращается вал двигателя;

w2 – скорость, с которой будет вращаться главный вал рабочей машины.

w1 и w2 нужно поставить в соответствие друг другу.

Например, число оборотов n1 =7000 об/мин., а n2=70 об/мин.

Чтобы привести в соответствие механические характеристики двигателя и рабочей машины, между ними устанавливают передаточный механизм, который имеет свои механические характеристики.

up2=w1/w2=700/70=10

 

В качестве передаточного механизма могут быть использованы:

· фрикционные передачи (с использованием трения);

· цепные передачи (привод мотоцикла);

· зубчатые передачи.

В качестве рабочей машины наиболее часто используют рычажные механизмы.

Основные виды рычажных механизмов.

1. Кривошипно-ползунный механизм.

а) центральный (рис.1);

б) внеосный (дезоксиальный) (рис.2);

 

е - эксцентриситет

 

 

Рис. 2

1-кривошип, т.к. звено совершает полный оборот вокруг своей оси;

2-шатун, не связан со стойкой, совершает плоское движение;

3-ползун (поршень), совершает поступательное движение;

4-стойка.

 
 

2. Четырехшарнирный механизм.

Звенья 1,3 могут быть кривошипами.

Если зв.1,3 – кривошипы, то механизм двукривошипный.

Если зв.1 – кривошип (совершает полный оборот), а зв.3 – коромысло (совершает неполный оборот), то механизм кривошипно-коромысловый.

Если зв.1,3 – коромысла, то механизм двукоромысловый.

3. Кулисный механизм.

 
 

1 - кривошип;

2 - камень кулисы (втулка) вместе с зв.1 совершает полный оборот вокруг А (w1 и w2 одно и тоже), а также движется вдоль зв.3, приводя его во вращение;

3 - коромысло (кулиса).

 

 
 

на зв.3 выбирают точку В3 и выбирают в данный момент так, чтобы она совпадала с точкой В.

 

4.Гидроцилиндр

(в кинематическом отношении подобен кулисному механизму).

 
 

В процессе проектирования конструктор решает две задачи:

· анализа (исследует готовый механизм);

· синтеза (проектируется новый механизм по требуемым параметрам);

Анализ рычажных механизмов.

 

В данной главе будут рассмотрены вопросы:

1. структурный анализ механизма (изучение строения механизма);

2. изучение классов и видов кинематических пар.

3. определение числа степеней свободы механизма и определение наличия или отсутствия избыточных связей; в случае наличия – дать рекомендации по способу их устранения;

4. кинематический анализ механизма.

 

Структурный анализ механизма.

Примечание: Кинематическая пара существует, если не происходит деформации звеньев,… Примечание:

Рис.1.2.1

Пространственные механизмы.

В пространственном механизме оси непараллельны, звенья могут двигаться в разных плоскостях. Wпр= 6n - (S1+ S2+ S3+ S4+ S5) Допустим, что механизм, изображенный на рис.1.2.1 – пространственный и все кинематические пары 5-го класса, т.е.…

Кинематический анализ рычажных механизмов.

Основные понятия и определения.

 

Зависимость линейных координат в какой-либо точке механизма от обобщенной координаты – линейная функция положения данной точки в проекциях на соответствующие оси координат.

Хс= f(j1)

Зависимость угловой координаты какого-либо звена механизма от обобщенной координаты – угловая функция положения данного звена.

j2= f(j1)

Первая производная линейной функции положения точки по обобщенной координате – линейная передаточная функция данной точки в проекциях на соответствующие оси координат (иногда называют «аналог линейной скорости…»)

 

полная скорость т. С будет

Первая производная угловой функции положения звена по обобщенной координате – передаточное отношение.

Вторая производная линейной функции положения по обобщенной координате – аналог линейного ускорения точки в проекциях на соответствующие оси.

 

Вторая производная угловой функции положения звена по обобщенной координате – аналог углового ускорения звена.

 

Основными задачами кинематического исследования движения звеньев механизма явля­ются:

1) определение положения звеньев и траекторий заданных точек;

2) определение линейных и угловых скоростей и ускорений звеньев и отдельных точек механизма.

Для этой цели применяются следующие методы:

a) графический (планы скоростей и ускорений);

б) графоаналитический (метод диаграмм);

в) аналитический.

Методы а и б уступают в точности аналитическому, но обладают простотой и наглядностью.

Для выполнения анализа движения звеньев механизма должны быть за­даны:

а) схема механизма и

б) размеры его звеньев, а так же

в) функция зависимости перемещений ведущих звеньев от параметра времени или др. параметров их движения.

 

Построение планов механизма имеет целью определение относительных расположений звеньев и траекторий движения их точек по заданным поло­жениям ведущих звеньев. Решение этой задачи производится при помощи ме­тода засечек.

Планом механизма называют масштаб графического изображения кине­матической схемы соответствующей заданному положению входного звена.

Рис 1.

 

Определение скоростей и ускорений методом построения кинематичес­ких диаграмм.

Кинематической диаграммой принято называть зависимость какого-ли­бо параметра движения звена от времени или параметра перемещения веду­щего звена, представляемую графически кривой в прямоугольной системе координат.

Наивысший интерес представляют графики S, V, W ведомых звеньев. В качестве параметра S ведущего звена могут быть выбраны либо угол пово­рота, либо одна из координат принадлежащей ему точки. Эти параметры связаны с параметром времени.

Как известно, функции S,V и W движения какой-либо точки могут быть определены при помощи дифференцирования или интегрирования.

 

Построение диаграммы перемещения.

Строим 12 положений (см.рис.1) За начало отсчета принимаем положение поршня Во.  

Планы ускооений

       

Условие существования высшей КП.

 

Для того чтобы не было отрыва или внедрения поверхностей звеньев, образующих высшую КП, необходимо, чтобы проекции линейных скоростей взаимодействующих тел на общую нормаль, проведенную в точке контакта тел, были равны.

 

 

Кинематика высшей КП.

Для определения мгновенного центра скоростей тела 1 и тела 2 в относительном движении применим метод обращения движения, в соответствии с которым… рис. 4.4.1 с угловой скоростью -w1. Тогда в обращенном движении

Эвольвента и ее свойства.

     

Основные расчетные зависимости для определения параметров эвольвентного зубчатого колеса.

 

Из (1) следует, что радиус делительной окружности

(3)

модуль по ГОСТу определяется

m = p / p p = p.m (4)

2p .r = p.z

(5)

2p .ry = py.z

à

(6)

по основной окружности

ay = 0 à pb = p cos 20o (7)

 

Виды зубчатых колес.

s= + Δ.m (9) где Δ – коэффициент изменения толщины зуба. В зависимости от знака коэффициента Δ различают виды зубчатых колес:

Основные расчетные зависимости для определения основных параметров эвольвентных зубчатых передач.

1. Определение угла зацепления. inv aw = inv a + (1) где Δ1 , Δ2 – изменение толщины зуба;

Качественные показатели зубчатых передач.

к ним относятся: 1. Коэффициент перекрытия ea. Характеризует плавность работы зубчатой передачи и показывает, какое число зубьев одновременно участвуют в перекрытии…

Коэффициент удельного давления n.

Характеризует прочностные характеристики передачи с точки зрения контактных напряжений в высшей КП.

 

Коэффициент удельного скольжения l.

  Определение коэффициента перекрытия графическим способом.

Способы изготовления зубчатых колес

Существуют два основных способа изготовления зубчатых колес: 1. копирование: профиль зуба инструмента (протяжка) переносится, и он… 2. огибание (см. лаб.раб. №8): инструменту и заготовке сообщают такое относительное движение, при котором огибающая к…

Станочное зацепление.

Станочное зацепление – зацепление заготовки и инструмента (см. рис. 10-86). Параметры, относящиеся к инструменту, имеют индекс ‘o’ eo – ширина впадины инструмента по делительной прямой,

Основные расчетные зависимости для определения параметров зубчатого колеса, исходя из схемы станочного зацепления.

1. Радиус окружности вершин ra. ra = r + xm + ha*m – Δуm (1) Δуm – уравнительное смещение инструмента (расстояние между граничной прямой инструмента и окружностью вершин…

Сравнительный анализ передачи с неподвижными осями планетарной передачи.

На первое колесо подается крутящий момент, а со второго снимают. Ось В неподвижна Ось В подвижна

Определение передаточного отношения планетарных механизмов различных схем.

Планетарный однорядный механизм (механизм Джеймса).

 

КПД в одном ряду – 0.99

Передаточное отношение можно определить:

1. графическим способом по чертежу;

2. аналитическим способом, используя формулу Виллиса.

Графический способ определения передаточного отношения.

Выберем на водиле Н точку F которая расположена на том же расстоянии от оси О2, что и точка А.

Оси О1 и О2 расположены на одном уровне.

Для данной схемы входное звено – звено 1 (солнечное колесо), выходным является водило Н.

Зададимся отрезком АА’, который изображает линейную скорость колеса 1 в точке А. Т.к. колесо 1 вращается вокруг О1, то закон распределения линейной скорости по первому звену изображается прямой линией О1А’. Сателлит 2 в т.А имеет такую же линейную скорость, что и колесо 1. В т.С сателлит 2 имеет МЦС в абсолютном движении, т.к. идет контакт с неподвижным колесом 3. Закон распределения линейной скорости по второму колесу изображается прямой линией СА’. В т.В сателлит имеет линейную скорость, которая изображается отрезком ВВ’, однако т.В является также и осью водила Н, которое вращается вокруг О2. Следовательно, закон распределения линейной скорости по водилу изобразиться прямой линией О2В’. Для точки F водила линейная скорость изображается отрезком FF’.

От вертикали до линии распределения скоростей по водилу измеряем угол ψн, а от вертикали до линии распределения скоростей по колесу 1 измеряем угол ψ1. Т.к. углы ψ1 и ψн отложены от вертикали в одном направлении, то это показывает, что входное звено 1 и выходное звено вращаются в одном направлении.

Аналитический способ определения передаточного отношения.

Применим метод обращения движения, обратив планетарный механизм в непланетарный.

w1* = w1 – wН

w3* = w3 – wН = – wН

– плюсовой механизм.

 

Планетарный механизм со смешанным зацеплением

при η= 0,99 Входное звено – первое звено; Выходное – водило.

Механизм с двумя внешними зацеплениями.

 
 

 


u(4)1–Н = 20 ÷ 50 при η = 0.99

 

 

Входное звено – водило;

Выходное – первое колесо.

u(4)1–Н = 1 / u(4)Н–1

Например, если u(4)Н–1= 20, то u(4)1–Н = 1 /20 .

Графический способ.

Выберем точку F на входном звене так, чтобы O1F = O2B.

Точка С для данной схемы может располагаться как выше, так и ниже точки А. В зависимости от положения точки С план скоростей будет разный.

ψ1 и φ2 – направлены в разные стороны от вертикали. Следовательно, водило и колесо 1 вращаются в разные стороны.

 

Аналитический способ.

Применим метод обращения движения.

u(4)1–Н = 1 – u(Н)1–4

Запишем передаточное отношение через число зубьев:

Минусовой механизм

 

Планетарный механизм с двумя внешними

Зацеплениями.


Механизм Давида

 

Применяется в приборных устройствах, так как u(4)Н–1 до 10 000.

Недостаток – низкий К.П.Д

 

Графический способ.

Выберем на водиле Н точку F так, чтобы O2F=O1A (валы O1 и O2 соосны). Точка С может быть выше или ниже точки А.

FF' – произвольный отрезок (линейная скорость точки F).

Для колес 2 и 3 точка С – МЦС.

 

Аналитический способ.

u(4)1–Н = 1 – u(Н)1–4

Минусовой механизм.

 

Синтез (проектирование) планетарных механизмов.

Расчет на прочность не проводим, но он обязательно должен быть проведен при проектировании. При проектировании конструктор обязан выполнить ряд условий: 1. Отклонение от заданного передаточного отношения не должно превышать 10% (5%).

Проектирование однорядного планетарного механизма.

m = 1 мм k = 3 – количество сателлитов Определить: z1, z2, z3 – ?

Кулачок

Толкатель

Ролик

Пружина

Контакты

Поверхность кулачка, с которой взаимодействует толкатель – рабочий профиль кулачка (действительный).

Поверхность, проходящая через точку В и отстоящая от действительного профиля на расстоянии радиуса ролика – теоретический профиль.

§6.1 Основные схемы кулачковых механизмов.

6.1.1 Кулачковый механизм с поступательно движущимся толкателем.

а) с центральным толкателем (ось толкателя проходит через ось вращения кулачка);


 

С заостренным

Толкателем

б) с внеосным толкателем.

 

е – эксцентриситет

внеосность левая, т.к. ось толкателя проходит справа оси вращения кулачка.

 

 

Кулачковый механизм с поступательно движущимся

Толкателем.

 

 

звено 2 (толкатель) совершает возвратно­­–вращающееся движение с центром вращения в точке О2.

 

 

Основные параметры кулачковых механизмов.

В процессе работы толкатель совершает в соответствии с рисунком 3 движения: 1. поступательно вверх – в этом случае толкатель взаимодействует с участком… 2. стоит на месте (выстой) –

Построение графика перемещений толкателя при заданном профиле кулачка.

Точка В принадлежит толкателю, который повора - чивается вокруг оси С, т.е. т.В перемещается по дуге окружности радиусом r = lт. Из точки 1 проводим… точке 1. Из т.С1 проводим дугу окружности r = lт до пресечения с начальной…  

Понятие об угле давления.

Угол давления – угол между вектором линейной скорости выходного звена (толкателя) и реакцией, действующей с ведущего звена (кулачка) на выходное… Для кулачкового механизма с качающимся толкателем допустимый угол давления…

Вывод формулы для определения угла давления в кулачковом механизме.

(1) КР = О1Р – О1К = О1 – е КВ = so + sB

Понятие об отрезке кинематических отношений.

Если из точки В для какого­­‑то текущего положения толкателя проведем линию, параллельную О1Р, а из центра – || nn, то при их пересечении получим точку D:

BD = O1P = vB2 / vB1 =vqB2

Из рисунка следует, что перемещение точки В толкателя и, найдя максимальный отрезок кинематического отношения, можно определить положение центра вращения кулачка, отложив внешним образом от точки D допустимый угол давления.

Синтез (проектирование) кулачковых механизмов по заданному закону движения толкателя.

 

Под синтезом кулачкового механизма будем понимать построение профиля кулачка, в каждой точке которого угол давления не превышал бы допустимого, а размеры самого профиля были бы минимальны.

Данная задача решается в 3 этапа:

1. Строится график заданного закона движения (как правило либо график ускорения точки В толкателя как функция угла положения – aB = f(φ1), либо график линейной скорости точки В – vB= f(φ1)). Требуется построить график перемещения точки В как функцию от угла поворота кулачка sB= f(φ1).

2. Определение минимального размера кулачковой шайбы при условии, что угол давления в любой точке профиля не превышает допустимого.

3. Построение профиля кулачка.

Построение закона движения оси толкателя.

вид графика aB = f(φ1), графики aB = f(φ1) максимальный ход vB= f(φ1) толкателя hт sB= f(φ1)

Определение минимального радиуса кулачковой шайбы по известному закону движения толкателя.

а) для кулачка с поступательно движущимся толкателем: Дано: sB=f(φ1); vB= f(φ1); [θ] Определить: ro min

Построение профиля кулачка.

а) с поступательно движущимся толкателем (рис. 6.5.3.а): Дано: ro min, внеосность левая е, φраб = ψраб, ωк=ω1, sB = f(φ1)

– Конец работы –

Используемые теги: основные, понятия, Определения0.064

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные понятия и определения

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. ЭЛЕМЕНТЫ ЯЗЫКА. ЭЛЕМЕНТЫ ДАННЫХ. ВЫРАЖЕНИЯ. ОСНОВНЫЕ ИНСТРУКЦИИ. ПРОЦЕДУРЫ. ПРЕПРОЦЕССОР. СТИЛЬ ПРОГРАММИРОВАHИЯ
ВВЕДЕНИЕ... ОСНОВНЫЕ ПОНЯТИЯ И...

Основные макроэкономические понятия. Список основных макроэкономических элементов. Классическая теория
В литературе можно найти много определений экономической теории Вот одно из них Экономическая теория исследует проблемы эффективного... Объект исследования экономической теории называется экономикой... Понятно что составление модели является очень важной частью исследования Вопрос о том что существенно и...

Конспект Лекций по ТОЭ ГЛАВА 1 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
Кафедра ТОЭ... Конспект Лекций по ТОЭ... Уфа ОГЛАВЛЕНИЕ...

Курс лекций Основные понятия и определения
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ... МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ... Г С БОРОВСКИЙ...

Введение. Основные понятия и определения
Введение Основные понятия и определения... Аксиоматика линейных пространств... Определение Линейным пространством L a b c называется множество относительно элементов которого определены...

Введение и основные понятия. Метод сечений для определения внутренних усилий. Эпюры внутренних усилий при растяжении-сжатии и кручении
Метод сечений для определения внутренних усилий... Эпюры внутренних усилий при растяжении сжатии и кручении... Эпюры внутренних усилий при прямом изгибе...

Основные классы неорганических соединений. Определение молярной массы эквивалентов цинка. Определение теплоты реакции нейтрализации. Скорость химической реакции. Катализ
ВВЕДЕНИЕ... При изучении химии большое значение имеет лабораторный практикум Правильно поставленный эксперимент позволяет...

Транспортное обеспечение внешней торговли: основные понятия и определения
Таким образом, формируются два различных подхода к роли транспорта в системе внешнеэкономических связей.Рассмотрим более детально первый из них. Он… Первой особенностью транспортного обеспечения в международных экономических… Транспортная продукция реализуется через международные рынки транспортных услуг.

Матрицы: основные понятия и определения
На сайте allrefs.net читайте: Матрицы: основные понятия и определения.

Лекция 1. Основные понятия и определения
Основные понятия и определения... Теория механизмов и машин занимается исследованием и разработкой высокопроизводительных механизмов и машин...

0.039
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам